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Abstract

We defined a modified SIR model for the spread of influenza that accounts for non-
random mixing among a discrete network of 33 cities. The nodes of the network were
weighted by the population of the city and the bonds between the nodes represented the
daily movement of people between the data as estimated by airline flight data. Data
from the influenza transmission studies, and the reported mortality data attributed to
influenza and pneumonia were used to define the model parameters. Despite noise in
the 122 Cities data from the CDC, similar estimates for fluctuation in infectivity and
number of contacts (and thus reproductive numbers) are obtained for each city.

The essential features of the yearly influenza epidemic approximated the influenza
and pneumonia mortality data reported by Centers for Disease Control and Prevention.
The magnitude and fluctuation of the yearly epidemic is well matched by the prediction
of the model at the periodic equilibrium. At the endemic equilibrium the travel terms
in this model are not important.

We observed that the threshold reproductive number for the network of cities is very
close to one and that the model predictions are most sensitive to « and r3. There is a
substantial time lag between the peak of the infectivity and the peak of the epidemic,
which is accounted for by deriving an approximate solution to the differential equation
of the infected stage.

We also used the model to predict the initial spread of a new infectious agent when
it is introduced into one of the cities. In the initial stages of the epidemic, the number
of cities in the network and the timing of the outbreak determine how the epidemic
spreads within and between each of the cities.

One area of primary concern in the model is the assumption of random mixing of
the populations within the cities. However, people within cities have groups (ex age,
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geographic, socio-economic, or religious groups) that they mix with regularly and have
fairly few contacts with people outside of them. Additionally, a small portion of the
citizens of a city will do the majority of the traveling. This suggests the development
of a model which has non-randomly mixing groups called a small world model within
each city in addition to the travel between cities. Some of the groups would travel
more often than others. A first step in this direction would be to have a model with
two groups in each city, travelers and non-travelers. We have observed in more detailed
biased mixing models that after a brief startup period, the random mixing assumption
is fairly accurate.

In the model the same fraction of people in each city are susceptible, infected,
immune and partially susceptible to the epidemic at periodic equilibrium. This is a
result of the contact rate and infectivity being the same for each city. This assumption
has been used in other multi-city SIR models [10] with good results. However uniform
contacts is not an appropriate assumption for the early stages of an epidemic because
of the nonrandom mixing of the population, variations in the population density, and
availability of public transportation in different cities. A better approach would be
to fit contact rates to the data for subsets of cities based on availability of public
transportation or population density.

The populations of the cities was kept constant by not including any increased mor-
tality due to influenza. As long as we are concerned only with the endemic equilibrium
and the annual influenza epidemic this assumption is reasonable. However for longer
term simulations, or more severe epidemics, the increased mortality due to influenza
must be accounted for.

The current model accounts for one strain of influenza. For many years this is a
reasonable assumption, as the annual influenza epidemic is frequently decisively dom-
inated by a single strain. A straight forward extension of the model could account for
multiple strains. However, there is very little data on the strain that causes a particu-
lar infection or the variation of the susceptibility of the population to different stains
needed to validate the model.

1 Introduction

Every year influenza kills thousands of Americans and millions are stricken ill. Despite
attempts to vaccinate high-risk populations the cost of influenza in terms of lost life and
lost productivity is still high. Mathematical models can provide insight into how influenza
spreads between individual people within a community and across the United States. This
insight can potentially help guide health care workers anticipate the number of influenza
cases each year and identify anomalies that might foretell an unexpected new or stronger
epidemic.

Weekly data on the mortality and morbidity attributed to influenza and pneumonia
(P/I) is collected by the Center for Disease Control and Preventions (CDC) Epidemiology
Branch Office for each of 122 cities in the United States. We analyze this data search for
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correlations between the number of cases in a city and other epidemiological parameters,
such as the population of the city, the infectitiousness of the disease, and the transmission
from city to city during an epidemic. We also searched for possible precursor cities that
might herald the start of a new season.

The simplest Susceptible-Infected-Recovered (SIR) model, developed in 1927 by Kermack
and McKendrick [7] assumes random mixing of the population. Models for the initial spread
of infectious agents through non-randomly mixing populations where people move between
groups in a single population is needed to predict the early spread of a disease [11]. However,
after the short initial growth of an epidemic in a city, the random mixing assumption can
be used for the spread of diseases, such as influenza, within a city.

The mixing between the cites still needs to be modeled to predict the spread of a disease
between cities when their populations are unevenly spread over a large geographic area. In
the 1980’s Rvachev and Longini published a series of papers modeling the spread of influenza
from city to city around the world during the 1968-1969 pandemic[6] [10]. They developed
a multi-city model in which air-travel was used to approximate the spread of the pandemic
from its (assumed) origins in Hong Kong to 51 other major populations centers worldwide.
The structure of our model is similar to the one developed by Longini and Rvachev.

We model the spread of the disease in each city by a systems of deterministic differential
equations. The susceptible and infected people are assumed to mix randomly within a city.
We assume that air travel between the major cities reflects the nonrandom mixing of the
population between the cities. We also assume that people continue to travel when they are
infectious. This assumption restricts the current model to diseases, such as influenza, where
people my asymptomatic or only mildly ill while infected. Our model could be extended to
account for people who change their travel plans due to the severity of the disease by adding
another infection stage the model.

The model parameters for the transmission and disease progression are estimated from
the literature [12][1]. The rate that people move between the cities is based on airline data, as
was done in [10]. We were unable to estimate two parameters from the literature, the average
number of contacts a typical city person has during a day that could result in transmitting
the disease, and the seasonal change in the infectivity of influenza. We assumed that these
two parameters were the same for every city and estimated them by a least squares fit to
the CDC data. We fit the parameters on several different cities. The fits on the cities with
the best data provided similar estimates for these parameter values.

After defining the model and parameters, we compare the results of the model with
the data collected by the 122 Cities Mortality Reporting System and reported to the CDC
and conclude that this model approximates the magnitude and fluctuation of the influenza
seasons for 1996-2001. This simple model did remarkably well at predicting the yearly
influenza epidemic.

After describing the SIR transmission model for a single city, we extend the model for
multiple cities. We then provide details on how we estimated the model parameters and
data for the population and traffic between the cities. We provide a simple analysis for the
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reproductive number and the sensitivity of the model predictions to small changes in the
parameter estimates. Finally, we provide a comparison of the model predictions with the
CDC data for several representative cities.

2 MultiCity Transmission

We first define and analyze the single city model, then add a term to account for the return to
susceptibility of an infected person and an emigration/migration term. Next we generalize
the model to a multi-city transmission model where the epidemic is spread through the
network of cities by the migration of infected people

2.1 Single City Transmission Model

By dividing a fixed population into susceptible(S), infected(I) and recovered(R) individuals,
the simple SIR model

dS/dt = —\S (1a)
dl/dt = AS—al (1b)
dR/dt = ol (1c)

can model the spread of a disease. Here the susceptible population is infected at a rate
A > 0, and the infected population recovers from illness at the rate o > 0. For a randomly
mixing population, the infection rate, A can be estimated by the product of three terms

A=rfy @

The average number of contacts per individual per unit time, » > 0, is assumed to be
constant for large populations. A contact is defined as an encounter between people that
could transmit the disease. When defining r we have assumed the contacts in the population
are random and that the number of contacts per unit time is independent of the population
size. This is an appropriate assumption for large cities, but for smaller populations or villages
it might be more appropriate for r to proportional to the total population, N =S+ [ + R,
of the city. That is, if the population of the village increased by, say, 10%, then a typical
person would have 10% more contacts. This is not true for large cities.

The next factor in A accounts for the probability of transmitting the disease in a contact.
This factor, § > 0, is proportional to the average infectiousness of an infected person times
the average susceptibility of a susceptible person. Influenza is more likely to spread in the
winter than the summer. This may be caused by an increased infectiousness of the disease,
an increased susceptibility of people, or an increased number contacts with others that might
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result in transmitting the infection during the winter. (For example, people may spend more
time indoors.) Because r and 3 only occur as a product in the model, we can approximate
both of these effects by allowing the product r3 to vary through the year.

r3 = Br[1 + esin(27t/365))] (3)

Here € < 1 is the fluctuation in infectivity between seasons and will be determined by a
fitting € the seasonal variation of the model to CDC influenza data. We assume that € is the
same in all of the cities.

The final factor (I/N) in A reflects that the probability that a randomly chosen contact
infected is equal to the fraction of the population that is infected.

2.2 Loss of Immunity

Once entering the recovered state, people slowly return to being susceptible to the currently
circulating strain of the virus. This can happen because the current circulating strain of
the virus is different from the strain that they were originally infected with. We account
for the loss of immunity by including a new state between the recovered state and the
susceptible state in which people have partial immunity to the current strain of the disease.
We define the constant rates %t for return to partial immunity and nf for a full return to
susceptibility. We include the state by modifying the SIR model, S — I — R, to an SIRP
model, S — I — R — P — S, where P is the stage of partial immunity.

We also extend the model to account for people entering and leaving the population
either through birth/death or by leaving the network of cities in the model. We define
the migration term in a form where S is the stable susceptible population in the absence
of infection. In this simple model, we do not explicitly include a term to account for the
increase in mortality due to influenza.

The resulting single city transmission SIPR model is

dS/dt = —\°S+n"P+ u(S®—9) (4a)
dI/dt = NS+ NP —al —ul (4b)
dR/dt = ol —n"R—puR (4c)
dP/dt = n"R—n"P—-\'P—puP (4d)

Both susceptible and partially immune people can be infected. As before, the infection
rate the fully susceptible population is A¥ = 3r(I/N), where 3° is the susceptibility of a
person in S. Similarly, partially immune people are infected with the rate A* = g7r(I/N).
Because people in the partially immune state are less likely to be infected in a single contact
we assume 3° > BF. The total population is now defined as N =S + 1+ R+ P.
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2.3 Multi-city Transmission Model

We begin by modeling two cities (city 1 and city 2) with people traveling between them.
The epidemic is modeled within each city by the single city model. We use subscripts to
indicate the city number and define m;; to be the number of people traveling from city 7 to
city j per unit time. The equations for city 1 and city 2 are:

dSl/dt = —)\fSI + 77PP1 + /,L(S? — Sl) + mglsg/Ng — mlgsl/Nl (5&)
d]l/dt = )\fSl + )\fpl — O[]l — ﬂ]l + m21[2/N2 — mlgll/Nl (5b)
de/dt = Oé]l — nRRl — [LRl + mgle/NQ — mlgRl/Nl (5C)
dPl/dt = ﬂRRl - ’I]PP1 — )\fpl - /,Lpl —|—m21P2/N2 - m12P1/N1 (5d)
s P 0 S Sy
ng/dt = —)\252+77 P2+,LL(SQ —Sg)+m12——m21— (6&)
Ny Ny
1 1
d[g/dt = )\552 + /\gpg — Oé[Q — ,ulg + mlg—l — m21—2 (Gb)
Ny Ny
R R
ng/dt = Ot]g — ?7RR2 - MRQ + Tn12—1 - Tanl—2 (60)
Ny Ny
R P P Py Py
dPy/dt = 7Ry — 1 Py — AY Py — Py + myg— — myy— (6d)
Ny Ny

Now X7 = ,657"]{,—"]_ and \F = ﬁPT]{,—j]_ for j = cities 1,2 and i = S, P.

The populations of the two cities are constant if mo; = mo. In this simple model with
only one infection stage, we assume that infected people continue to travel with the same
rate as the uninfected population. Thus the fraction of people traveling from city 2 to city
1 that are infected is equal to the fraction of people in city 2 who are infected, (Iy/N3).
Consequently, the number of infected people entering city 2 from city 1 is I; mg (I2/Na).

Figure 1 is a schematic of how people move through the stages of illness in a four city
model. To generalize the two-city model to a multi-city model with n cities we first generalize
the migration matrix M for the number of people traveling between cities;

mia Mi2 -+ Mipy

Mgy Mg2 -+ Moy
M = . . .

Mp1 Mp2 - Mpp

Here m;; is the number of people per unit time who travel from city 7 to city j. We
have assumed that the simulation will be used for a short enough time that the population
of the cities can be assumed to be constant. This assumption allows us to assume that the
migration matrix is also constant. If the model is modified to allow the populations of the
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Figure 1: A schematic of how people travel through the stages of the illness and between the cities for a
four city system. S-susceptible, I-infected, R-recovered(immune) P-partially susceptible. m; ;-the number of
people traveling from city i to city j per day.

cities change, then the migration matrix must be recast as a function of the city populations.
In our simulations M is symmetric, m;; = m;;, and therefore the population of each city
remains constant. The diagonal terms, m;;, account for all the non-travelers do not explicitly

n
appear in the equations. The number of susceptible people entering city k is > m Jk% and
J

j=1
the number of susceptible people leaving city k is Z My ]‘f,’;
j=1
The resulting multi-city model is

- S,

dSp/dt = —MSSi + 0P Py + p(Sox — Si) + Z m]k— - Z iy (7a)
Jj=1 ] N
n Ik

dl/dt = XSSy + NP, — aly — ply, + Z mjk— ~ kay N, (7b)
dRy/dt = al, — "Ry — pRy + Z mjk Z Mgk N (7¢)

o P, < P
dPy/dt = n"Ry —n" Py — APy — uPy + Zm]k— kag (7d)

j=1 N;
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Where rates of infection are Ay = ﬂsr]{,—’; and A\l = ﬂpré—z for each city k =1,... ,n.

3 Model Parameters and Necessary Data

We establish model parameters appropriate for influenza virus in this section. Where pos-
sible, the parameters were obtained for strains of H3N2, the dominant strain of flu for the
majority of our data set. The average illness lasts 1/a days. We assume that rate of recovery
from illness, a per day, is the same for all cities, regardless of location or season. We fix the
duration of the infectious period to be 4.1 days, therefore a = 0.2439. [1]

We assume that the infectiousness of an average infected person, the susceptibility of an
average susceptible person, and the average number of contacts, is the same in all of the
cities. All infected people are equally infectious and all fully susceptible people are equally
likely to contract the illness. In a single person, infectivity is also assumed to be constant
through the course of the illness. The infectiousness of an individual is higher in the winter
than in the summer, regardless of the climate of the city. This may be do to increased
infectiousness of the disease (), or a change contact pattern of the average individual. This
is reflected in the model by allowing the product Gr to be dependent on the season.

We define ﬁAS as the mean infectivity per contact. Stilianakis et al. estimate the transmis-
sion rate as 3 ~ 6 x 107* in a randomly mixing population in the absence of drug resistance
for a sub-clinical infection in [12]. Sub-clinical infection is defined as an infection where a
person is asymptomatic, but still infectious. Subclinical infections account for approximately
75% of all H3N2 infections [8] and (hopefully) 100% of infected people who are flying. We
will use this as our mean infectivity parameter.

The return to susceptibility reflects to be the result of the natural genetic drift of the
circulating strain away from the strain with which a person was infected, as opposed to an
actual loss of immunity to a strain of the virus within a person. The virus is assumed to be
drifting from strain to strain at a constant rate, and to never drift back to an earlier strain.
The rates of return to partial and full susceptibility after illness are n® and n*’. Frank et. al
[3] reported no recorded cases of people becoming reinfected with H3N2 in the same season
as a primary infection. Thus n¥ < 1/365days. That is, people are fully immune for at least
a year.

Partially immune people are infected at a rate that is a fraction of the rate at which
fully susceptible people are infected. Following full immunity, we allow a person to become
partially susceptible to similar circulating strains of influenza. A person may have a partial
immunity to the circulating strain of influenza for several years, or none at all, depending on
the rate of drift of the virus. We define the time a person becomes partially immune when
their susceptibility is the ratio o = (87 /3%) less than the susceptibility of people who have
never been infected. In our simulations, we used a threshold of ¢ = 0.55 to define partially
immune population. The average length of time a person is partially immune is unknown
and we, arbitrarily, assign the period of partial immunity to be nf = 1/720days. We also
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assume that length of time a person is infected is the same for both susceptible and partially
immune people. In Section 5.1 we will show that the model is not sensitive to either of these
parameters.

The model is insensitive to the rate p at which people leave a city either by moving away

-1

or dying. We assigned the value pu = 0.0003days™", or that people live in a single city for

approximately ten years before moving.

‘ meaning ‘ parameter ‘ baseline ‘ suitable range ‘
rate of recovery (1/days) [1] a| 0.2439 [0.07,0.5]
mean transmission probability per BS | 6x107% | [1x1075 1 x 1073
contact(fully susceptible)

(1/contacts)[12]

mean transmission probability per | fF = o35 | 0 =0.55 [0.3,0.7]
contact (partially susceptible)

(1/contacts)

seasonal fluctuation of e | 0.0210 [0.007,0.026]
transmission probability

(dimensionless)

number of contacts r| 410.38 [409, 414]
per unit time (contacts/day)

removal rate of people | 0.0002740 [0.000027, 0.25]
from population in the

absence of infection(1/days)

rate of return to partial n® | 0.00274 | [0.00137,0.00274]
susceptibility (1/days) [3]

rate of return to full n” | 0.00137 [0,0.00549]
susceptibility(1/days)

Table 1: Model parameters, dimensions, baseline values used in the simulations, and estimated ranges of
validity. Most of these parameters are assigned values estimated from the epidemiology literature. The two
parameter, r and €, whose values are unknown were determined by a least-squares fit so the model best
matches the influenza data. The ranges for r and e are chosen to reflect the differences between in the
least-squares fit for different cities.

3.1 Estimation of r and ¢

Two parameters must be estimated by fitting the available data. The number of contacts a
person has per day, r, and the amount which infectivity varies with the seasons are assumed
to be the same for all of the cities. The r and € parameters are simultaneously estimated to
fit the CDC data.

The CDC 122 cities weekly mortality data set required some additional analysis before
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it could be used to estimate r and e. In We will also describe some of the variations and
anomalies that had to be accounted for based on individual cities. The data contains many
non-reporting weeks. Non-reporting weeks were assigned the average value of the last week
for which there was a report and the next week for which there was a report. For the
purpose of fitting parameters, a weighting system w; was used in which non-reporting weeks
are assigned the value w; = 0 and all other weeks are assigned the value w; = 1.

Finally, the data is presented as weekly mortality while the model predicts daily mor-
bidity. In order to make a comparison between the two, the mortality is assumed to be 1%
of the morbidity and the number of deaths per week is divided up into an even number of
cases every day. This assumption is a simple scaling parameter that can be accounted for
by a simple multiplicative factor in the model predictions.

We define model; as the value predicted by the model at time ¢ and data; is the CDC
data as defined in the last section. The residual

error = Z wy|data; — model,| (8)

t=1

was then minimized in the [; norm using an alternating line search over ¢ and r until r
converged to five significant figures of accuracy and e converged to within three significant
figures of accuracy. The [; norm is chosen because it minimizes the effect of outliers as
compared with the [s norm.

The values for € and r for each of the cities individually as shown in Table 2. We also fit
the data after smoothing it with a Hamming filter, d; < (d; 1 + 2d; + d;11)/4, three times,
to reduce the impact of outliers in fitting the data. The parameters were not sensitive to
the filtering process.

Because of uncertainties in the data, we chose to minimize the number of free parameters
in the model and elected to find one value for ¢ and r for the entire data set. In order to
choose these average values the cities Denver, San Francisco, Portland, Kansas City and
Cincinnati were used because they had the smallest residuals. The model was then fitted
over these five cities simultaneously to establish » = 410.38 and ¢ = 0.0210 values for the
entire data set.

In the model r always appears as a product with §. Thus fitting r to data is equivalent
to fitting the product of Br. Therefore in the process of fitting the model to r, we also
were correcting for uncertainty in 3. The reproductive number is linearly related to the
product (r. Thus this fit indirectly establishes a reproductive number consistent with the
data. The model is more sensitive to the transmission rate Gr, than to e. Figure 2 illustrates
the sensitivity of the least squares fit for » and e. This will be discussed more in Section 5.1.

3.2 Population and Mobility

The population of each of the cities in Table 2 is based on the Census 2000 data.[14] In
some instances, we combined the two major cities to account for the population in the area
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Error as a function of epsilon for optimized r

Error as function of r for optimized epsilon.
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Figure 2: The total error in the I; norm over five cities for the range of ¢ = [0.01,0.03] with r = 410.38
constant and the error for the range of r = [410,411] with ¢ = 0.0210 constant

covered by the reporting station. There is some inconsistency in our population estimates
because the population reporting to a CDC reporting station in a major city may be smaller
than the population that uses the airport in the same city.

Migration between cities is approximated by airline flight data for the third quarter
of 2000 as posted on the US Department of Transportation web-site [9] in the Air Travel
Consumer Report. The estimates are for the average number of one-way passenger trips per
day between two cities. Thus for a city with more than one airport, such as New York, the
flight statistics are for all of the airports combined. Some of the airline data is in Table 3.

Since the flight data is the total flights per day, half the flights are assumed to be going
in each direction in the migration matrix in the model. This leads to a symmetric migration
matrix where the same number of people enter and leave the city each day and a constant
population for each city.

4 The 1996-2001 Influenza Seasons

The model assumption that there is only one strain of influenza circulating in the population
is justified for the 1996-1997 influenza season through the 1999-2000 season, when the in-
fluenza A subtype H3N2 dominated. However the 1995-1996 and the 2000-2001 seasons were
not decisively dominated by any one strain. In the 1997-2000 influenza seasons the epidemic
threshold was exceeded for at least six weeks.[2] [15] [16] [17] In the 2000-2001 season the
epidemic threshold was never reached, although this may be because the epidemic threshold
was adjusted upward before this season. The CDC data is summarized in Table 4.

The 122 Cities Mortality Reporting System is a volunteer system run by the participating
cities. The cities each use their own system to count the P/I deaths and report the data
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min over entire time
City Population r €
New York, NY 9314235 411.05  0.0154
Los Angeles, CA 9519338 409.89  0.0189
Chicago, IL 8272768 410.49  0.0093
Philadelphia, PA 5100931 410.49  0.0106
Washington, DC** 4923153 N/A N/A
Detroit, MI** 4441551 N/A N/A
Houston, TX 4177646 412.230  0.0119
San Francisco-Oakland, CA | 4123740 410.12 0.0185
Atlanta, GA** 4112198 N/A N/A
Dallas, TX 3519176 410.49  0.0200
Boston, MA 3406829 410.52  0.0216
Phoenix—Mesa, AZ 3251876 409.98  0.0236
Minneapolis—St Paul, MN 2968806 412.21 0.0240
Cleveland—Akron, OH 2945831 409.89 0.0251
San Diego, CA 2813833 411.57  0.0126
St. Louis, MO** 2603607 N/A N/A
Baltimore, MD 2552994 412.17  0.0203
Seattle-Tacoma, WA 2414616 410.49 0.0129
Tampa—St. Petersburg, FL 2395997 41276 0.0168
Pittsburgh, PA** 2358695 N/A N/A
Miami, FL 2253362 410.49  0.0092
Denver 2109282 410.84  0.0207
Portland—Vancouver, OR 1918009 410.44 0.0269
Kansas City, MO-KS 1776062 409.89  0.0202
Cincinnati, OH-KY-IN 1646395 411.79  0.0147
Orlando*, FL 1644561 N/A N/A
Sacramento, CA 1628197 415.89 0.0180
Fort Lauderdale*, FL 1623018 N/A N/A
Indianapolis, IN 1607486 412.39 0.0069
San Antonio, TX 1592383 413.53  0.0249
Las Vegas, NV— AZ 1563282 412.60  0.0257
Columbus, OH 1540157 413.89  0.0179
Milwaukee—Waukesha, WI 1500741 411.64 0.0173
Totals: 107620755 | 411.1965 0.01368

Table 2: Populations of 33 largest cities in the US based on the 2000 census data and optimal » and e fit
for each city. *This city does not participate in the 122 Cities Mortality Reporting **This city’s data was
too noisy to obtain a parameter fit. [14]

directly to the CDC. There are inconsistencies in the data set due to changes in the volunteer
staff and because there are often insufficient people to keep up with reporting during the
peak of the influenza season [4]. The data also shows that some cities are more thorough
in reporting than others. Also, there is uncertainty in the undercounting and what portion
of P/I deaths may be attributed to influenza [4]. For the purposes of the model we assume
that all influenza deaths are recorded and that all P/T deaths are attributable to influenza.

The data contains weeks in which no cases were reported. Frequently the unreported
cases in one week are accounted for cumulatively in a single later report. Also, there is a lag
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time between the actual death dates and the report sent to the CDC. This lag time can be
several weeks and tends to be longer in the winter than in the summer.[4] The CDC reports
indicate that the office visits for influenza and P /I deaths peak with the mortality between 1
and 4 weeks after the morbidity peaks. The mean time between the morbidity peak and the
mortality peak is 3 weeks. The reporting delay accounts for some of the time lag between
the recorded peak of the epidemic as estimated through the physicians surveillance network
and the peak of the CDC 122 cities influenza mortality epidemic. [2] [15] [16] [17] We did
not account for the time lag in our simulations and assumed that it was the same for all the
reporting cities. If the reporting accuracy is estimated, then this could be used to adjust the
data before defining the parameters. For example, to account for an estimated three-week
time lag, a first order correction of the model is obtained by shifting the predictions back by
the same time.

Influenza | Week influenza | Week influenza | Predominant Percent which Number of weeks
Season | morbidity mortality strain are predominant | epidemic threshold
peaked peaked strain exceeded

1995-1996 | Jan 6-13 Jan 20 A(HIN1) 50 6
1996-1997 | Dec 28 Jan 25 A(H3N2) 78 10
1997-1998 | Feb 7 Feb 28* A(H3N2) 99.5 11
1998-1999 | Feb 6-27 March 13 A(H3N2) 76 12
1999-2000 | Jan 1 Jan 22 A(H3N2) 96.5 22
2000-2001 | Feb 3-10 Feb 24* A(HINT) 52 0

Table 4: Summary of the data reported by the CDC in their Surveillance for Influenza reports for 1995
1996 through 2000-2001 influenza seasons. Note that the influenza mortality peaks about three weeks after
influenza activity.[2] [15] [16] [17] . *The week in which influenza mortality peaked was not provided in the
report, so the week in which influenza activity peaked + three weeks is used.

5 Model Threshold Conditions

The reproductive number, Ry, is the number of secondary infections that result from a single
primary infection in a fully susceptible population. In a simple STR model with no migration,
time dependence on transmission probability or return to susceptibility, as outlined in Section
2.1 Ry = rB/a. If Ry > 1, then the epidemic spreads within the population to a stable
equilibrium value. If Ry < 1, then the only stable equilibrium is the zero equilibrium and
the epidemic dies out.

For more complex models, the reproductive number is determined by the dominant eigen-
value of the Jacobian matrix at the infection free equilibrium.[5] The reproductive number
for the network of n cities can be found by solving the eigenvalues of the 4n x 4n Jacobian
matrix for the multicity model (7). As the parameters change, the eigenvalues must be
recalculated for each case.

Often a simple analytic formula for the threshold conditions (7p) estimating when the
epidemic will take off and when it will die out can give more insight into the behavior of
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an epidemic than computing the reproductive number for a specific set of parameters. We
found it useful to analytically calculate the reproductive number for each city assuming that
it is isolated and then to use this as a guide to estimate a threshold reproductive number for
the entire population.

An upper bound for Ry for a single city is limited by the maximum of the time dependent
infectivity, 6 = Bae- That is Ry = rBae/(¢ + «). Here 1/(¢ + «) is the average time a
person is infected and remains in a city. To account for the the natural removal rate, p, and
the migration of people from the population in a city addition to the fraction of people who

n
leave city k for other cities per unit time, we define ¢ = p+ > Dy;.

We define an upper bound for threshold condition for the Zr_nlulticity system by defining it
to be the maximum reproductive number of any of the cities, because if the epidemic spreads
in one city then it will persist in the entire population. That is,

Ty = max(Ry) fori=1,... n

While only a threshold value, not a reproductive number, 7T provides an accurate in-
dication if an epidemic in a multi-city population will persist or die out. For the baseline
parameters in Table 1, the T; = 1.02 and occurs in Pittsburgh. Because Ry ~ Ty =~ 1, the
model is sensitive to small changes in gr. If € > 0.02, then effective reproductive number of
the system falls below one in the summer seasons, indicating that influenza cannot persist
long under summer conditions. We were surprised at how closely our model and estimated
parameters resulted in predicting that the annual influenza epidemic is perched precariously
close to being able to sustain itself.

5.1 Sensitivity Analysis

The relative sensitivity of the model prediction to small changes in each parameter can
help determine the most important parameters in slowing the epidemic. The normalized
sensitivity of five quantities (Lnaz, Imins Leumulative; Smaz, and Sy, ) with respect to each of
the eight parameters is approximated by

dQ 1 ~ [Qp(1+6) — @pa—-5)]/Qo
dp Qo [p(1+0) —p(1—10)]/po

where ¢ is the percent change in each of the parameters, Q = (Lnaz, Imins Leumulatives Smazs

)

and S, and p =1, 3%, B, a, u, n%, nF, and e. The factor 1/Qy normalizes the importance
of each parameter with respect to ) so the relative importance of the parameters can be
compared.

The parameter «, the rate of recovery from infection, is the most important single pa-
rameter in every quantity we evaluated. For the baseline case, a 1% change in « results
in a 122% change in peak of the infected population and a 1.5% change in the susceptible
population.
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The model is also sensitive to changes in 3° and 7, the mean infection rate per contact
for fully susceptible people and the number of contacts per unit time, respectively. The
two quantities always appear in a product and have approximately equal importance in the
model. A 1% change in either parameter yields approximately a 120% change in the peak
of infected population and a 1.5% change in the susceptible population.

The infection terms 1,42, Lnin and Iy muative are three orders of magnitude less sensitive
to Bp, nf and n° than they were to % and 7. A 1% change in Bp, nf or nf results a
[0.53%—-0.35%] change in the infected population. A 1% change in these parameters yields
only a 0.002% change in the susceptible population.

The epidemic is also relatively insensitive to e. A a 1% change in € results in a 0.3%
change in I,,,,, and I,,;,. None of the other measurements are significantly affected by this
parameter.

The model is so insensitive to changes in the migration/natural death rate, u, that for
simulations of a couple of years, this term could be eliminated without significantly effecting
the results.

In the model the peak of the epidemic does not occur at the same time as the peak in
the infectivity. The time lag follows from the seasonal variation in the infectivity and can be
estimated from an approximate solution for the infected stage in a single city model. When
the multi-city model is in periodic equilibrium the same fraction of people are infected in
each city. Therefore, the same number of infected people are entering a city as leaving,
and the migration terms balance. When the multicity model is in equilibrium, the reduced
equation for the infected stage in a city is

1
flt NS+ AP —al —pul (10)
or, in terms of the basic parameters,
ar - P
Sy 1 ) — 11
O~ 1(F0(5 + o)1+ esin(rt)) — (a+ ) (1)
To simplify notation, we define
- P
at) = W(% + a%) (12a)
b = —(a+p) (12b)
and rewrite the equation as
dl .
= = I(a(t)(1 + esin(Tt) + b) (13)

After some time £, the model with the baseline parameters settles down into a solution
with period 7. In this periodic solution, the difference between the maxima and the minima
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of the number of people in the susceptible and partially susceptible populations changes by
approximately one percent and ¢ a(t) =~ a is constant. The simplified equation

dl
= = I(a(1 + esin(1t) + b) (14)
and solution

I — Oe(a+b)t67%cos(7t) (15)

accounts for the 7/4 lag in the peak of the infection every year provided that e@+®? is
bounded.

For the baseline parameters, we verified that a(t) € [0.2445,0.2447] for t > i days.
Therefore (a + b) € [—7.66 x 107°,7.25 x 107°], and

T ~ Cef%cos(Tt) (16)

which is periodic with period 7. This provides an accurate estimate for time lag between the
peak of the infectivity and the peak of the epidemic. This time lag might be an important
factor that should be considered when studying the theory on the influence of the cold
weather on the survival of the virus. That is, changes in people behavior during the winter
months may give the virus a window of rapid transmission, the effects of which are not felt
until much later.

6 Numerical Simulations

The model equations were integrated numerically with a variable order Adams-Bashforth-
Moulton Matlab solver, odel13. The parameters were set to the baseline values in Table 1
with the network of the 33 cities listed in Table 3, unless otherwise noted.

The influenza subtype H3N2 for epidemic first became dominate in the pandemic of
1968.[13] We assumed that recent infections for this strain is close to a periodic equilibrium
and used it as the benchmark data to be compared with the simulated model periodic
equilibrium.

A small initial infection was introduced into the model and the solution was integrated
until it reached periodic equilibrium. The timing for the model was set by the time that
the largest fraction of people in each city is infected. In the periodic equilibrium, the same
percent of people are in each stage in each city. At the peak of the epidemic we observed
98.76% of people susceptible, 5.731 x 1073% of people infected, 0.4503% of people recovered
and 0.7854% of people partially immune. The solution of the model, shown if Figures 3,
4, 5,6 and 7, show that some of the cities report data close to the model predictions, while
others differ greatly.

The magnitude of the epidemic in Los Angeles, and Kansas City is slightly over estimated
by the model, however the prediction is quite good. The data for New York City is fit quite
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nicely by the data, although the number of cases is slightly underestimated by the model.
The over estimates occur in the first two seasons, then for the last two influenza seasons the
model fit is reasonable. The data for San Francisco/Oakland, Boston, Phoenix, Denver and
Portland are well predicted by the model. This result is unsurprising, as three of them were
used to fit the model parameters. It is important to notice that in all five cities the seasonal
variation in the number of cases is greater than that predicted by the model.

Neither Chicago and Philadelphia were cities used to fit the parameters in the model.
Even so, they were two of the cities where the magnitude and seasonal fluctuation of the
yearly epidemic was well approximated by the model.

Indianapolis, Milwaukee, and Cincinnati are all slightly underestimated by the model.
Note that Indianapolis and Milwaukee seem to have very little seasonal variation in the
number of P /I deaths, unlike most of the other cities posting consistent data, this is surprising
as the cold weather in these cities would be expected to increase the seasonal variation in
the epidemic.

The influenza mortality for Minneapolis, San Diego and Las Vegas is underestimated by
the model. This is likely because of differing (or more thorough) data collection techniques
employed in these cities.

The model prediction of the mortality for Houston, Baltimore, Tampa, Sacramento, San
Antonio and Columbus is substantially lower than the actual data. There are a number of
potential reasons for this. One is that the population base used for the data collection is
of the metro area, as opposed to the city proper, as was assumed in the model. Another
is that these cities collect more complete data than the other cities or that they have a
more liberal criteria for classifying cause of death as P/I. We did not identify any correlation
between the reported data and the climate in these cities. However, it could be significant
that four of these cities are among the six smallest in the model. This might indicate that
even in populations as large as the these cities, the size of the population might still affects
the number of contacts. Recall that the model predictions are sensitive to the number of
contacts per day for a typical individual.

The CDC mortality is inconsistent for Detroit, Dallas, Cleveland, Seattle and Miami. In
the last two years these cities reported significantly more influenza deaths. Whether this
is because of a new method of data collection, a larger population base being used, or a
genuine change in the number of P /I deaths is unknown. As none of the other cities showed
a substantial increase in reported P/I deaths in this time frame it seems likely that a change
in data collection took place. What is significant is that in all five cases the higher estimates
were similar with what the model predicted. It seems likely that the new data collection
method was comparable with that of the cities which the model was fitted to, thus a good
prediction was obtained.

The data for Washington, St. Louis, Atlanta (Not Shown) and Pittsburgh is substantially
lower than predicted by the model. These four cities turned in very low estimates for the
five years of the data set compared to the other cities we studied. This could be because
they were using a small subset of the population to approximate the whole, or because they
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had a very stringent definition of what was recorded as a P/I death. Atlanta was included
in the model as the ninth largest city in the U.S., however the fit is not shown because they
stopped collecting data for most of 1999 and 2000.

The data does not support a correlation between climate and number of influenza deaths.
It was anticipated that, since the infectivity and contact rate are constant for all of the cities,
the model would underestimate the number of influenza cases in the cities with harsher
climates. In fact two of the cities for which the model underestimates the number of deaths
the most are Houston, TX and Sacramento, CA both of which have warm climates.

6.1 Initial Stages of an Epidemic

In the initial outbreak the size of the network of cities has a substantial impact on the early
spread of the epidemic. We formulated the model on a subset of the major cities of the
United States. At the periodic equilibrium, running the reduced models yields the same
results as the full model because the same percentage of people in each city are infected.
Therefore the same number of infected people are leaving each city as entering. This is not
true for the transient epidemic before it reaches the equilibrium. For these simulations the
epidemic is assumed to start in a single city (New York, for convenience) and spread outward
from there. The epidemic is started with 1000 people ill, as it would take a reasonably large
number of people getting infected before an emerging epidemic is identified.

We investigated how the size of the subset of cities in the network affects the spread of the
epidemic. We observed that the smaller the network is, the faster the epidemic equlibriates.
Also, in smaller networks it spreads in the city of the initial outbreak because of the larger
reproductive number resulting from fewer people migrating into and out of the city. The
Figure 8 shows the initial outbreak for an epidemic that emerged on the day of highest
infectivity (in November).

The severity of the initial epidemic is dependes on when the epidemic emerges. The
Figure 9 shows the initial outbreak for an epidemic that emerged one three months earlier
than the day of highest infectivity (in August).

7 Discussion

We develop a differential equation model for the spread of influenza through a network of
isolated population centers with limited migration between them. The epidemic model is
applied to help better understand the spread of influenza among 33 major cities in the United
States. We estimate the basic epidemiological parameters for a simple Susceptible, Infected,
Recovered (SIR) model within each city by combining data from the influenza transmission
studies, the reported mortality data attributed to influenza and pneumonia, and a least
squares fit of the observed seasonal variation in the number of influenza cases. The epidemic
model is formulated on a discrete network with the cities at the nodes and the bonds between
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Figure 8: Initial outbreaks for various size systems of cities when the outbreaks starts at the time of peak
infectivity. Subfigure 1 is for New York alone. Subfigure 2 is for the largest 4 cities in the US on a network
of the largest 5 cities in the US. Subfigure 3 is the results of the largest 4 cities in the US on a network of
the largest 10 cities in the US. Subfigure 4 is the results of the largest 4 cities in the US on the entire 33 city
network.

the nodes representing movement of people between the cities. The nodes are weighted by
the population of the city it is identified with. We use data for the airline passengers flying
between the cities each day to approximate the number of people moving between the cities.
The SIR network model captures the essential features of the yearly influenza epidemic
estimated by Centers for Disease Control (CDC) and Prevention influenza and pneumonia
mortality data. The model is used to predict the initial spread of a new infectious agent
when it is introduced into one of the cities. We apply sensitivity analysis to identify which
parameters the model predictions are sensitive to. The numerical simulations demonstrate
that the approach has promise in predicting the spread of an infectitious agent spreading
through a network of cities connected by a highly mobile transportation system.
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Figure 9: Initial outbreaks for various size systems of cities when the outbreak starts during the lower
infectivity season. Subfigure 1 is for New York alone. Subfigure 2 is for the largest 4 cities in the US on
a network of the largest 5 cities in the US. Subfigure 3 is the results of the largest 4 cities in the US on a
nework of the largest 10 cities in the US. Subfigure 4 is the results of the largest 4 cities in the US on the

entire 33 city network.

Acknowledgements: We thank Lori Hutwagner, CDC Epidemiology Program for an-
swering questions about the 122 Cities Mortality Data, Lynetter Brammer, CDC Influenza
Branch for answering questions about the Physicians Surveillance Network and Leon Arriola
for help analyzing the model. We also thank Bill Sailor, Shilpa Khatri, Thomas Park and
Andy Perelson for their help and feedback on the paper and Mike McKay for his comments

on the sensitivity

analysis.



Draft LA-UR-01-4039 — August 25, 2001 27

References

1]

2]

[10]

[11]

[12]

C.L. Addy, I.M. Longini, and M. Haber. A generalized stochastic-model for the analysis
of infectious-disease final size data. Biometrics, 47(3):961 — 974, 1991.

T. Lynnette Brammer, Hector S. Izurieta, Keiji Fukuda, Leone M. Schmeltz,
Helen L. Regnery, Henrietta FE. Hall, and Nancy J. Cox. Surveillance
for influenza — United States, 1994-95, 1995-96, and 1996-97 seasons.
http://www.cdc.gov/epo/mmwr /preview /mmwrhtml/ss4903a2.htm, April 2000. CDC
compiled report for 1994-1997.

A.L. Frank and L.H. Taber. Variation in frequency of natural reinfection with influenza-
a viruses. Journal Of Medical Virology, 12(1):17-23, 1983.

Lori Hutwagner. Telephone conversation about 122 cities mortality reporting system.
Ms. Hutwagner works at the CDC Epidemiology Program, June 2001.

J.M. Hyman and J. Li. An intuitive formulation for the reproductive number for the
spread of diseases in heterogeneous populations. Mathematical Biosciences, 167(1):65 —
86, September 2000.

.M. Longini. A mathematical-model for predicting the geographic spread of new infec-
tious agents. Mathematical Biosciences, 90(1-2):367 — 383, 1988.

Denis Mollison, editor. Epidemic Models: Their Structure and Relation to Data. Cam-
bridge University Press, 1995.

Arnold S. Monto, James S. Koopman, and Ira M. Longini, Jr. Tecumseh study of illness
XIII: Influenza infection and disease. American Journal of Epidemiology, 121(6):811—
822, 1985.

Office of the Assistant Secretary for Aviation and International Affairs. Domestic
airline fares consumer report: Third quarter 1999 passenger and fare information.
http://ostpxweb.dot.gov/aviation/domfares/993web.pdf, May 2000. Flight stats.

L.A. Rvachev and I.M. Longini. A mathematical-model for the global spread of in-
fluenza. Mathematical Biosciences, 75(1):3 — 23, 1985.

L. Sattenspiel and C.P. Simon. The spread and persistence of infectious-diseases in
structured populations. Mathematical Biosciences, 90(1-2):341 — 366, 1988.

N.I. Stilianakis, A.S. Perelson, and F.G. Hayden. Emergence of drug resistance during
an influenza epidemic: Insights from a mathematical model. Journal Of Infectious
Diseases, 177(4):863 — 873, April 1998.



Draft LA-UR-01-4039 — August 25, 2001 28

[13]

[14]

S.B. Thacker. The persistence of influenza a in human-populations. FEpidemiologic
Reviews, 8:129 — 142, 1986.

Census 2000 PHC-T-3 ranking tables for metropolitan areas 1990 and 2000.
http://blue.census.gov /population/cen2000/phe-t3/tab01.pdf, April 2001. table of pop-
ulations according to 2001 census.

Update: Influenza  activity — United States and worldwide,  1997-
98  season, and  composition of the  1998-99  influenza  vaccine.
http:/ /www.cde.gov/mmwr /preview /mmwrhtml/00052002.htm, April 1998.  CDC
comiled report for 1997-1998.

Update: Influenza  activity — United States and worldwide, 1999—
2000  season, and  composition of the 2000-01 influenza  vaccine.
http://www.cde.gov/epo/mmwr /preview /mmwrhtml/mm4917a5.htm, 1999.  CDC
compiled report for 1999-2000.

Update: Influenza  activity -  United States and worldwide,  1998-
99  season, and  composition of  the  1999-2000 influenza  vaccine.

http://www.cde.gov/mmwr /preview /mmwrhtml/mm4818a2.htm, 1999. CDC compiled
report for 1998-1999.



