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Chapter 10

Modeling the Spread of
Influenza Among Cities

James M. Hyman∗ and Tara LaForce†

10.1 Introduction
Every year influenza kills thousands of Americans and millions are stricken ill. Despite
attempts to vaccinate high-risk populations the cost of influenza in terms of lost life and
lost productivity is still high. Mathematical models can provide insight into how influenza
spreads between individual people within a community and across the United States. This
insight can potentially help guide health care workers anticipate the number of influenza
cases each year and identify anomalies that might foretell an unexpected new or stronger
epidemic.

Weekly data on the mortality and morbidity attributed to influenza and pneumonia (P/I)
is collected by the Center for Disease Control and Preventions (CDC) Epidemiology Branch
Office for each of 122 cities in the United States. We analyze this data search for correlations
between the number of cases in a city and other epidemiological parameters, such as the
population of the city, the infectiousness of the disease, and the transmission from city to
city during an epidemic. We also searched for possible precursor cities that might herald the
start of a new season.

The simplest Susceptible-Infected-Recovered (SIR) model, developed in 1927 by Ker-
mack and McKendrick [9] assumes random mixing of the population. Models for the initial
spread of infectious agents through nonrandom mixing populations where people move be-
tween groups in a single population is needed to predict the early spread of a disease [13].
However, after the short initial growth of an epidemic in a city, the random mixing assumption
can be used for the spread of diseases, such as influenza, within a city.

The mixing between the cites still needs to be modeled to predict the spread of a disease
between cities when their populations are unevenly spread over a large geographic area. In
the 1985, Rvachev and Longini published the first of a series of papers modeling the spread
of influenza from city to city around the world during the 1968–1969 pandemic [8, 12].
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216 Chapter 10. Modeling the Spread of Influenza Among Cities

They developed a multi-city model in which air-travel was used to approximate the spread
of the pandemic from its (assumed) origins in Hong Kong to 51 other major populations
centers worldwide. The structure of our model is similar to the one developed by Longini
and Rvachev.

We model the spread of the disease in each city by a system of deterministic differential
equations. The susceptible and infected people are assumed to mix randomly within a city.
We assume that the nonrandom mixing of the population among the cities between the major
cities is captured in the model by the air travel. We also assume that people continue to travel
when they are infectious. This assumption restricts the current model to specific diseases,
such as influenza, where people are asymptomatic or only mildly ill while infected. Our
model could be extended to account for people who change their travel plans due to the
severity of the disease by adding another infection stage in the model.

The model parameters for the transmission and disease progression are estimated from
the literature [14, 1]. The rate that people move between the cities is based on airline data, as
was done in [12]. We were unable to estimate two parameters from the literature, the average
number of contacts a typical city person has during a day that could result in transmitting
the disease, and the seasonal change in the infectivity of influenza. We assumed that these
two parameters were the same for every city and estimated them by a least squares fit to the
CDC data. We fit the parameters on several different cities. The fits on the cities with the
best data provided similar estimates for these parameter values.

After defining the model and parameters, we compare the results of the model with
the data collected by the 122 Cities Mortality Reporting System and reported to the CDC
and conclude that this model approximates the magnitude and fluctuation of the influenza
seasons for 1996–2001. This simple model did remarkably well at predicting the yearly
influenza epidemic.

The SIR transmission model for a single city is then extended to predict the spread of the
virus among multiple cities. We provide details on how we estimated the model parameters
and data for the population and traffic between the cities. We provide a simple analysis for
the reproductive number and the sensitivity of the model predictions to small changes in the
parameter estimates. Finally, we provide a comparison of the model predictions with the
CDC data for several representative cities.

10.2 MultiCity Transmission
We first define and analyze the single city model, then add a term to account for the return to
susceptibility of an infected person and an emigration/migration term. Next, we generalize
the model to a multi-city transmission model where the epidemic is spread through the
network of cities by the migration of infected people.

10.2.1 Single City Transmission Model

By dividing a fixed population into susceptible(S), infected(I) and recovered(R) individuals,
the simple SIR model

dS/dt = −λS (10.1a)

dI/dt = λS − αI (10.1b)

dR/dt = αI (10.1c)
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can predict the spread of the single outbreak of a disease. Here the susceptible population is
infected at a rate λ > 0, and the infected population recovers from illness at the rate α > 0.
For a randomly mixing population, the infection rate, λ can be estimated by the product of
three terms

λ = rβ
I

N
(10.2)

.
The average number of contacts per individual per unit time, r > 0, is assumed to

be constant for large populations. A contact is defined as an encounter between people that
could transmit the disease. When defining r, we have assumed the contacts in the population
are random and that the number of contacts per unit time is independent of the population
size. This is an appropriate assumption for large cities, but for smaller populations or villages
it might be more appropriate for r to be proportional to the total population, N = S+ I +R,
of the city. That is, if the population of the village increased by 10%, then a typical person
would have 10% more contacts. This is not true for large cities.

The next factor in λ accounts for the probability of transmitting the disease in a contact.
This factor, β > 0, is proportional to the average infectiousness of an infected person times
the average susceptibility of a susceptible person. Influenza is more likely to spread in the
winter than the summer [17, 18, 19, 20]. This may be caused by an increased infectiousness
of the disease, an increased susceptibility of people, or an increased number contacts with
others that might result in transmitting the infection during the winter. For example, people
may spend more time indoors. Because r and β only occur as a product in the model, we
can approximate both of these effects by allowing the product rβ to vary through the year.

rβ = β̂r̂[1+ ε sin(2πt/365)] (10.3)

Here ε < 1 is the fluctuation in infectivity between seasons and will be determined by a
fitting ε, the seasonal variation of the model to CDC influenza data. We assume that ε is the
same in all of the cities.

The final factor (I/N) in λ reflects that the probability a randomly chosen contact
infected is equal to the fraction of the population that is infected.

10.2.2 Loss of Immunity

Once entering the recovered state, people slowly return to being susceptible to the currently
circulating strain of the virus. This can happen because the small mutations in genetic code
in the surface antigens allow influenza to drift in ways that eventually allow it to evade
the immune system defenses from an earlier infection. We partially account for the loss of
immunity by including a new state between the recovered state and the susceptible state in
which people have partial immunity to the current strain of the disease. We define the constant
rates ηR for return to partial immunity and ηP for a full return to susceptibility. We include the
state by modifying the SIR model, S → I → R, to an SIRP model, S → I → R→ P → S,
where P is the stage of partial immunity. To fully account for the drift of the virus requires
a multistrain model, and is beyond the scope of this study.

We also extend the model to account for people entering and leaving the population
either through birth/death or by leaving the network of cities in the model. We define the
migration term in a form where S0 is the stable susceptible population in the absence of
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infection. In this simple model, we do not explicitly include a term to account for the
increase in mortality due to influenza.

The resulting single city transmission SIPR model is

dS/dt = −λSS + ηP P + µ(S0 − S) (10.4a)

dI/dt = λSS + λP P − αI − µI (10.4b)

dR/dt = αI − ηRR − µR (10.4c)

dP/dt = ηRR − ηP P − λP P − µP (10.4d)

Both susceptible and partially immune people can be infected. As before, the infection
rate the fully susceptible population is λS = βSr(I/N), where βS is the susceptibility of a
person in S. Similarly, partially immune people are infected with the rate λP = βP r(I/N).
Because people in the partially immune state are less likely to be infected in a single contact
we assume βS > βP . The total population is now defined as N = S + I + R + P .

10.2.3 Multi-city Transmission Model

We begin by modeling two cities (city 1 and city 2) with people traveling between them. The
epidemic is modeled within each city by the single city model. We use subscripts to indicate
the city number and define mij to be the number of people traveling from city i to city j per
unit time. The equations for city 1 and city 2 are:

dS1/dt = −λS
1S1 + ηP P1 + µ(S0

1 − S1)+m21S2/N2 −m12S1/N1 (10.5a)

dI1/dt = λS
1S1 + λP

1 P1 − αI1 − µI1 +m21I2/N2 −m12I1/N1 (10.5b)

dR1/dt = αI1 − ηRR1 − µR1 +m21R2/N2 −m12R1/N1 (10.5c)

dP1/dt = ηRR1 − ηP P1 − λP
1 P1 − µP1 +m21P2/N2 −m12P1/N1 (10.5d)

dS2/dt = −λS
2S2 + ηP P2 + µ(S0

2 − S2)+m12
S1

N1
−m21

S2

N2
(10.6a)

dI2/dt = λS
2S2 + λP

2 P2 − αI2 − µI2 +m12
I1

N1
−m21

I2

N2
(10.6b)

dR2/dt = αI2 − ηRR2 − µR2 +m12
R1

N1
−m21

R2

N2
(10.6c)

dP2/dt = ηRR2 − ηP P2 − λP
2 P2 − µP2 +m12

P1

N1
−m21

P2

N2
(10.6d)

Now λS
j = βSr

Ij

Nj
and λP

j = βP r
Ij

Nj
for j = cities 1, 2 and i = S, P .

The populations of the two cities are constant if m21 = m12. In this simple model
with only one infection stage, we assume that infected people continue to travel with the
same rate as the uninfected population. Thus the fraction of people traveling from city 2 to
city 1 that are infected is equal to the fraction of people in city 2 who are infected, (I2/N2).
Consequently, the number of infected people entering city 2 from city 1 is I1 m21(I2/N2).

Figure 10.1 is a schematic of how people move through the stages of illness in a four
city model. To generalize the two-city model to a multi-city model with n cities we first
generalize the migration matrix M for the number of people traveling between cities;
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Figure 10.1. A schematic of how people travel through the stages of the illness and
between the cities for a four city system. S—susceptible, I—infected, R—recovered(immune)
P—partially susceptible. mi,j —the number of people traveling from city i to city j per day.

M =




m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mn,1 mn,2 · · · mn,n




Here mij is the number of people per unit time who travel from city i to city j . We
have assumed that the simulation will be used for a short enough time that the migration
matrix is constant. If the model is modified to allow the populations of the cities change, then
the migration matrix must be recast as a function of the city populations. In our simulations
M is symmetric, mij = mji , and therefore the population of each city remains constant.
The diagonal terms, mii , account for all the non-travelers do not explicitly appear in the

equations. The number of susceptible people entering city k is
n∑

j=1
mjk

Sj

Nj
and the number of

susceptible people leaving city k is
n∑

j=1
mkj

Sk

Nk
.
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The resulting multi-city model is

dSk/dt = −λS
k Sk + ηP Pk + µ(S0k − Sk)+

n∑
j=1

mjk

Sj

Nj

−
n∑

j=1

mkj

Sk

Nk

(10.7a)

dIk/dt = λS
k Sk + λP

k Pk − αIk − µIk +
n∑

j=1

mjk

Ij

Nj

−
n∑

j=1

mkj

Ik

Nk

(10.7b)

dRk/dt = αIk − ηRRk − µRk +
n∑

j=1

mjk

Rj

Nj

−
n∑

j=1

mkj

Rk

Nk

(10.7c)

dPk/dt = ηRRk − ηP Pk − λP
k Pk − µPk +

n∑
j=1

mjk

Pj

Nj

−
n∑

j=1

mkj

Pk

Nk

(10.7d)

Where rates of infection are λS
k = βSr Ik

Nk
and λP

k = βP r Ik

Nk
for each city k = 1, . . . , n.

This is a generalization of an earlier model studied by Hyman and Laforce [6].

10.3 Model Parameters
We establish model parameters appropriate for influenza virus in this section. Where possible,
the parameters were obtained for strains of H3N2, the dominant strain of flu for the majority
of our data set. The average illness lasts 1/α days. We assume that rate of recovery from
illness, α per day, is the same for all cities, regardless of location or season. We fix the
duration of the infectious period to be 4.1 days, therefore α = 0.2439 [1].

We assume that the infectiousness of an average infected person, the susceptibility
of an average susceptible person, and the average number of contacts, is the same in all
of the cities. All infected people are equally infectious and all fully susceptible people are
equally likely to contract the illness. In a single person, infectivity is also assumed to be
constant through the course of the illness. The infectiousness of an individual is higher in the
winter than in the summer, regardless of the climate of the city. This may be do to increased
infectiousness of the disease (β), or a change contact pattern of the average individual. This
is reflected in the model by allowing the product rβ to be dependent on the season.

We define β̂S as the mean infectivity per contact. Stilianakis et al. estimate the trans-
mission rate as β ≈ 6 × 10−4 in a randomly mixing population in the absence of drug
resistance for a sub-clinical infection in [14]. We will use this as our baseline infectivity
parameter. Sub-clinical infection is defined as an infection where a person is asymptomatic,
but still infectious, and account for approximately 75% of all H3N2 infections [10].

Including a mechanism for previously infected people to return to susceptibility is a
simple mechanism to account for the loss of immunity caused by the natural genetic drift
of the virus away from the strain with which a person was infected, as opposed to an actual
loss of immunity to a specific strain of the virus within a person. That is, we assume that
the genetic strain of virus drifts at a constant rate, and that previously infected people slowly
become susceptible to the currently circulating strain. The rates of return to partial and full
susceptibility after illness are ηR and ηP . Frank et al. [4] reported no recorded cases of
people becoming reinfected with H3N2 in the same season as a primary infection. Thus
ηR ≤ 1/365days. That is, people are fully immune for at least a year.

Partially immune people are infected at a rate that is a fraction of the rate at which
fully susceptible people are infected. Following full immunity, we allow a person to become
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partially susceptible to similar circulating strains of influenza. A person may have a partial
immunity to the circulating strain of influenza for several years, or none at all, depending
on the rate of drift of the virus. We define the time a person becomes partially immune
when their susceptibility is the ratio σ = (βP /βS) less than the susceptibility of people who
have never been infected. In our simulations, we used a threshold of σ = 0.55 to define
partially immune population. The average length of time a person is partially immune is
unknown and we, arbitrarily, assign the period of partial immunity to be ηP = 1/720days.
We also assume that the length of time a person is infected is the same for both susceptible
and partially immune people. In Section 10.5.1 we will show that the model is not sensitive
to either of these parameters.

The model is insensitive to the rate µ at which people leave a city either by moving
away or dying. We assigned the value µ = 0.0003days−1, or that people live in a single
city for approximately ten years before moving.

meaning parameter baseline suitable range

rate of recovery (1/days) [1] α 0.2439 [0.07, 0.5]
mean transmission probability per β̂S 6× 10−4 [5× 10−4, 6× 10−3]
contact(fully susceptible)
(1/contacts) [14]

mean transmission probability per β̂P = σ β̂S σ = 0.55 [0.3, 0.7]
contact (partially susceptible)
(1/contacts)

seasonal fluctuation of ε 0.0210 [0.007, 0.026]
transmission probability
(dimensionless)

number of contacts r 410.38 [42, 625]
per unit time (contacts/day)
number of adequate contacts rβ 0.246 [0.24, 0.26]
per unit time (contacts/day)
removal rate of people µ 0.0002740 [0.000027, 0.25]
from population in the
absence of infection(1/days)
rate of return to partial ηR 0.00274 [0.00137, 0.00274]
susceptibility (1/days) [4]
rate of return to full ηP 0.00137 [0, 0.00549]
susceptibility(1/days)

Table 10.1. Model parameters, dimensions, baseline values used in the simulations,
and estimated ranges of validity. Most of these parameters are assigned values estimated
from the epidemiology literature. The two parameter, r and ε, whose values are unknown
were determined by a least-squares fit so the model best matches the influenza data. The
ranges for the average number of adequate contacts per day to transmit the disease, rβ, and
ε was chosen to reflect the differences between in the least-squares fit for different cities. The
range for r was determined by dividing rβ by β.
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10.3.1 Estimation of rβ and ε

Two parameters must be estimated by fitting the available data. The number of adequate
contacts a person has per day sufficient to transmit the disease, rβ, and the amount which
infectivity varies with the seasons, ε, are assumed to be the same for all of the cities. We fix
β = 6× 10−4 (the baseline value) and simultaneously estimate ε and r to fit the CDC data.

The CDC cities weekly mortality data set required some additional analysis before it
could be used to estimate r and ε. We will also describe some of the variations and anomalies
that had to be accounted for based on individual cities. To account for missing data in weeks
where it was not reported, we estimated the number of cases for non-reporting weeks as the
average value neighboring weeks that did report cases. For the purpose of fitting parameters,
a weighting system wi was used in which non-reporting weeks are assigned the value wi = 0
and all other weeks are assigned the value wi = 1.

Finally, the data is presented as weekly mortality while the model predicts daily mor-
bidity. In order to make a comparison between the two, the mortality is assumed to be 1%
of the morbidity and the number of deaths per week is divided up into an even number of
cases every day. This assumption is a simple scaling parameter that can be accounted for by
a simple multiplicative factor in the model predictions.

We define modelt as the value predicted by the model at time t and datat is the CDC
data as defined in the last section. The residual

error =
n∑

t=1

wt |datat −modelt | (10.8)

was then minimized in the l1 norm using an alternating line search over ε and r until r

converged to five significant figures of accuracy and ε converged to within three significant
figures of accuracy. The l1 norm is chosen because it minimizes the effect of outliers as
compared with the l2 norm.

To reduce the effect of outliers, we fit the data after smoothing it with a Hamming
filter, di ← (di−1 + 2di + di+1)/4, three times. We observed that the minimizing values
for ε and r , shown in Table 10.2, were not sensitive to the filtering process. We believe that
the insensitivity to prefiltering the data may be because of the smoothing properties already
inherent in the l1 norm minimization procedures.

Because of uncertainties in the data, we chose to minimize the number of free param-
eters in the model and elected to find one value for ε and r for the entire data set. In order
to choose these average values the cities Denver, San Francisco, Portland, Kansas City and
Cincinnati were used because they had the smallest residuals. The model was then fitted
over these five cities simultaneously to establish r = 410.38 and ε = 0.0210 values for the
entire data set.

Because in the model r always appears as a product with β, fitting r to data is equivalent
to fitting the baseline value for the average number of adequate contacts per day to transmit
the disease, rβ. Therefore in the process of fitting the model to r , we also were correcting
for uncertainty in β. The best fit for r is based on dividing the best fit for rβ by the baseline
value for β = 6× 10−4 [14]. This gives the baseline value r = 410.38, which seems to be
high. If β = 6× 10−3, then r = 41.038 average contacts per day.

The reproductive number is linearly related to the product rβ. Thus this fit indirectly
establishes a reproductive number consistent with the data. The model is more sensitive to
the transmission rate rβ, than to ε. Figure 10.2 illustrates the sensitivity of the least squares
fit for r and ε. This will be discussed more in Section 10.5.1.
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Figure 10.2. The residual in the l1 norm over five cities for ε = [0.01, 0.03] with
r = 410.38 and β = 6×10−4. The residual for r = [410, 411] is plotted for with ε = 0.0210
and β = 6 × 10−4. Note that if β = 6 × 10−3, then the best fit range for the number of
contacts per day would be r = [41.0, 41.1].

10.3.2 Population and Mobility

The population of each of the cities in Table 10.2 is based on the Census 2000 data [16]. In
some instances, we combined the two major cities to account for the population in the area
covered by the reporting station. There is some inconsistency in our population estimates
because the population reporting to a CDC reporting station in a major city may be smaller
than the population that uses the airport in the same city.

Migration between cities is approximated by airline flight data for the third quarter
of 2000 as posted on the US Department of Transportation web-site [11] in the Air Travel
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min over entire time
City Population r ε

New York, NY 9314235 411.05 0.0154
Los Angeles, CA 9519338 409.89 0.0189
Chicago, IL 8272768 410.49 0.0093
Philadelphia, PA 5100931 410.49 0.0106
Washington, DC∗∗ 4923153 N/A N/A
Detroit, MI∗∗ 4441551 N/A N/A
Houston, TX 4177646 412.230 0.0119
San Francisco–Oakland, CA 4123740 410.12 0.0185
Atlanta, GA∗∗ 4112198 N/A N/A
Dallas, TX 3519176 410.49 0.0200
Boston, MA 3406829 410.52 0.0216
Phoenix–Mesa, AZ 3251876 409.98 0.0236
Minneapolis–St Paul, MN 2968806 412.21 0.0240
Cleveland–Akron, OH 2945831 409.89 0.0251
San Diego, CA 2813833 411.57 0.0126
St. Louis, MO∗∗ 2603607 N/A N/A
Baltimore, MD 2552994 412.17 0.0203
Seattle–Tacoma, WA 2414616 410.49 0.0129
Tampa–St. Petersburg, FL 2395997 412.76 0.0168
Pittsburgh, PA∗∗ 2358695 N/A N/A
Miami, FL 2253362 410.49 0.0092
Denver 2109282 410.84 0.0207
Portland–Vancouver, OR 1918009 410.44 0.0269
Kansas City, MO–KS 1776062 409.89 0.0202
Cincinnati, OH–KY–IN 1646395 411.79 0.0147
Orlando∗, FL 1644561 N/A N/A
Sacramento, CA 1628197 415.89 0.0180
Fort Lauderdale∗, FL 1623018 N/A N/A
Indianapolis, IN 1607486 412.39 0.0069
San Antonio, TX 1592383 413.53 0.0249
Las Vegas, NV– AZ 1563282 412.60 0.0257
Columbus, OH 1540157 413.89 0.0179
Milwaukee–Waukesha, WI 1500741 411.64 0.0173
Totals: 107620755 411.1965 0.01368

Table 10.2. Populations of 33 largest cities in the US based on the 2000 census
data and optimal r and ε fit for each city. ∗This city does not participate in the 122 Cities
Mortality Reporting. ∗∗This city’s data was too noisy to obtain a parameter fit [16].

Consumer Report. The estimates are for the average number of one-way passenger trips per
day between two cities. Thus for a city with more than one airport, such as New York, the
flight statistics are for all of the airports combined. Some of the airline data is in Table 10.3.

Since the flight data is the total flights per day, half the flights are assumed to be going
in each direction in the migration matrix in the model. This leads to a symmetric migration
matrix where the same number of people enter and leave the city each day and a constant
population for each city.

10.4 The 1996–2001 Influenza Seasons
The model assumption that there is only one strain of influenza circulating in the population
is justified for the 1996–1997 influenza season through the 1999–2000 season, when the
influenza A subtype H3N2 dominated. However the 1995–1996 and the 2000–2001 seasons
were not decisively dominated by any one strain. In the 1997–2000 influenza seasons the
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epidemic threshold was exceeded for at least six weeks [2, 17, 18, 19]. In the 2000–2001
season the epidemic threshold was never reached, although this may be because the epidemic
threshold was adjusted upward before this season [20]. The CDC data is summarized in
Table 10.4.

The 122 Cities Mortality Reporting System is a volunteer system run by the partici-
pating cities. The cities each use their own system to count the P/I deaths and report the data
directly to the CDC. There are inconsistencies in the data set due to changes in the volunteer
staff and because there are often insufficient people to keep up with reporting during the
peak of the influenza season [5]. The data also shows that some cities are more thorough in
reporting than others. Also, there is uncertainty in the undercounting and what portion of P/I
deaths may be attributed to influenza [5]. For the purposes of the model we assume that all
influenza deaths are recorded and that all P/I deaths are attributable to influenza.

The data contains weeks in which no cases were reported. Frequently the unreported
cases in one week are accounted for cumulatively in a single later report. Also, there is a
lag time between the actual death dates and the report sent to the CDC. This lag time can be
several weeks and tends to be longer in the winter than in the summer [5]. The CDC reports
indicate that the office visits for influenza and P/I deaths peak with the mortality between 1
and 4 weeks after the morbidity peaks. The mean time between the morbidity peak and the
mortality peak is 3 weeks. The reporting delay accounts for some of the time lag between
the recorded peak of the epidemic as estimated through the physicians surveillance network
and the peak of the CDC 122 cities influenza mortality epidemic [2, 17, 18, 19, 20]. We did
not account for the time lag in our simulations and assumed that it was the same for all the
reporting cities. If the reporting accuracy is estimated, then this could be used to adjust the
data before defining the parameters. For example, to account for an estimated three-week
time lag, a first order correction of the model is obtained by shifting the predictions back by
the same time.

Influenza Week influenza Week influenza Predominant Percent which Number of weeks
Season morbidity mortality strain are predominant epidemic threshold

peaked peaked strain exceeded

1995–1996 Jan 6-13 Jan 20 A(H1N1) 50 6
1996–1997 Dec 28 Jan 25 A(H3N2) 78 10
1997–1998 Feb 7 Feb 28∗ A(H3N2) 99.5 11
1998–1999 Feb 6-27 March 13 A(H3N2) 76 12
1999–2000 Jan 1 Jan 22 A(H3N2) 96.5 22
2000–2001 Feb 3-10 Feb 24∗ A(H1N1) 52 0

Table 10.4. Summary of the data reported by the CDC in their Surveillance for
Influenza reports for 1995–1996 through 2000–2001 influenza seasons. Note that the in-
fluenza mortality peaks about three weeks after influenza activity [2, 17, 18, 19, 20]. ∗The
week in which influenza mortality peaked was not provided in the report, so the week in
which influenza activity peaked + three weeks is used.

10.5 Model Threshold Conditions
The reproductive number, R0, is the number of secondary infections that result from a single
primary infection in a fully susceptible population. In a simple SIR model with no migration,
time dependence on transmission probability or return to susceptibility, as outlined in Section
10.2.1 R0 = rβ/α. If R0 > 1, then the epidemic spreads within the population to a stable
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equilibrium value. If R0 < 1, then the only stable equilibrium is the zero equilibrium and
the epidemic dies out.

For more complex models, the reproductive number is determined by the dominant
eigenvalue of the Jacobian matrix at the infection free equilibrium [7]. The reproductive
number for the network of n cities can be found by solving the eigenvalues of the 4n × 4n

Jacobian matrix for the multicity model (10.7). As the parameters change, the eigenvalues
must be recalculated for each case.

Often a simple analytic formula for the threshold conditions (T0) estimating when the
epidemic will take off and when it will die out can give more insight into the behavior of
an epidemic than computing the reproductive number for a specific set of parameters. We
found it useful to analytically calculate the reproductive number for each city assuming that
it is isolated and then to use this as a guide to estimate a threshold reproductive number for
the entire population.

An upper bound for R0k for the k-th city is limited by the maximum of the time
dependent infectivity, β = βmax . That is R0 = max[rβk/(φk + α)]. Here 1/(φk + α) is the
average time a person is infected and remains in the k-th city. To account for the natural
removal rate, µ, and the migration of people from the population in a city addition to the

fraction of people who leave city k for other cities per unit time, we define φk = µ+
n∑

i=1
Dk,i .

We define an upper bound for threshold condition for the multicity system by defining
it to be the maximum reproductive number of any of the cities, because if the epidemic
spreads in one city then it will persist in the entire population. That is,

T0 = max(R0k) for k = 1, . . . ,n.

While only a threshold value, not a reproductive number, T0 provides an accurate
indication if an epidemic in a multi-city population will persist or die out. For the baseline
parameters in Table 10.1, the T0 = 1.02 and occurs in Pittsburgh. Because R0 ≈ T0 ≈ 1, the
model is sensitive to small changes in βr . If ε > 0.02, then effective reproductive number
of the system falls below one in the summer seasons, indicating that influenza cannot persist
long under summer conditions. We were surprised at how closely our model and estimated
parameters resulted in predicting that the annual influenza epidemic is perched precariously
close to being able to sustain itself.

Because T0 and R0 depend linearly on the number of contacts per day, this implies
that one of the most effective strategies to slowing the initial outbreak of an epidemic with
R0 ≈ 1, like influenza or SARS, would be for people to limit the number of adequate contacts
with other individuals during the epidemic. When this approach is applied in the early stages
of and epidemic, as the World Health Organization did for SARS in Toronto [3], then there is
a good chance to contain the early spread of epidemic. The dependence on the connectivity
φ to other cities on threshold conditions is less obvious.

10.5.1 Sensitivity Analysis

The relative sensitivity of the model prediction to small changes in each parameter can
help determine the most important parameters in slowing the epidemic. The normalized
sensitivity of five quantities (Imax , Imin, Icumulative, Smax , and Smin) with respect to each of
the eight parameters is approximated by
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dQ

dp

1

Q0
≈ [Qp(1+δ) −Qp(1−δ)]/Q0

[p(1+ δ)− p(1− δ)]/p0
(10.9)

where δ is the percent change in each of the parameters, Q = (Imax , Imin, Icumulative, Smax ,
and Smin and p = r , βS , βP , α, µ, ηR , ηP , and ε. The factor 1/Q0 normalizes the importance
of each parameter with respect to Q so the relative importance of the parameters can be
compared.

The parameter α, the rate of recovery from infection, is the most important single
parameter in every quantity we evaluated. For the baseline case, a 1% change in α results
in a 122% change in peak of the infected population and a 1.5% change in the susceptible
population.

The model is also sensitive to changes in βS and r , the mean infection rate per contact
for fully susceptible people and the number of contacts per unit time, respectively. The two
quantities always appear in a product and have approximately equal importance in the model.
A 1% change in either parameter yields approximately a 120% change in the peak of infected
population and a 1.5% change in the susceptible population.

The infection terms Imax , Imin and Icumulative are three orders of magnitude less sensitive
to βP , ηR and ηP than they were to βS and r . A 1% change in βP , ηR or ηP results a [0.53%–
0.35%] change in the infected population. A 1% change in these parameters yields only a
0.002% change in the susceptible population.

The epidemic is also relatively insensitive to ε. A 1% change in ε results in a 0.3%
change in Imax and Imin. None of the other measurements are significantly affected by this
parameter.

For simulations of a couple of years, the predictions are insensitive to changes in the
migration/natural death rate, µ. These terms have such a small impact that they could be
eliminated without significantly effecting the results.

In the model, the peak of the epidemic does not occur at the same time as the peak
in the infectivity. The time lag follows from the seasonal variation in the infectivity and
can be estimated from an approximate solution for the infected stage in a single city model.
When the multi-city model is in periodic equilibrium the same fraction of people are infected
in each city. Therefore, the same number of infected people are entering a city as leaving,
and the migration terms balance. When the multicity model is at equilibrium, the reduced
equation for the infected stage in a city is

dI

dt
= λSS + λP P − αI − µI (10.10)

or, in terms of the basic parameters,

dI

dt
= I (β̂S r̂(

S

N
+ σ

P

N
)(1+ εsin(τ t))− (α + µ)) (10.11)

To simplify notation, we define

a(t) = β̂S r̂(
S(t)

N
+ σ

P (t)

N
) (10.12a)

b = −(α + µ) (10.12b)

and rewrite the equation as

dI

dt
= I (a(t)(1+ εsin(τ t)+ b) (10.13)
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After some time t̂ , the model with the baseline parameters settles down into a solution
with period τ . In this periodic solution, the difference between the maxima and the minima
of the number of people in the susceptible and partially susceptible populations changes by
approximately one percent and t̂ a(t) ≈ a is constant. The simplified equation

dI

dt
= I (a(1+ εsin(τ t)+ b) (10.14)

and solution

I = Ce(a+b)t e−
aε
τ

cos(τ t) (10.15)

accounts for the τ/4 lag in the peak of the infection every year provided that e(a+b)t is
bounded.

For the baseline parameters, we verified that a(t) ∈ [0.2445, 0.2447] for t > t̂ days.
Therefore (a + b) ∈ [−7.66× 10−5, 7.25× 10−5], and

I ≈ Ce−
aε
τ

cos(τ t) (10.16)

which is periodic with period τ . This provides an accurate estimate for time lag between the
peak of the infectivity and the peak of the epidemic. This time lag might be an important
factor that should be considered when studying the theory on the influence of the cold weather
on the survival of the virus. That is, changes in people behavior during the winter months
may give the virus a window of rapid transmission, the effects of which are not felt until
much later.

10.6 Numerical Simulations
The model equations were integrated numerically with a variable order Adams-Bashforth-
Moulton Matlab solver, ode113. The parameters were set to the baseline values in Table
10.1 with the network of the 33 cities listed in Table 10.3, unless otherwise noted.

The influenza subtype H3N2 first became a dominate strain in the pandemic of 1968
[15]. We assumed that recent infections for this strain is close to a periodic equilibrium and
used it as the benchmark data to be compared with the simulated model periodic equilibrium.

A small initial infection was introduced into the model and the solution was integrated
until it reached periodic equilibrium. The timing for the model was set by the time that
the largest fraction of people in each city is infected. In the periodic equilibrium, the same
percent of people are in each stage in each city. At the peak of the epidemic, we observed
98.76% of people susceptible, 0.005731% of people infected, 0.4503% of people recovered
and 0.7854% of people partially immune. The solution of the model, shown in Figures 10.3,
10.4, 10.5, 10.6, and 10.7, illustrate that some of the cities report data close to the model
predictions, while others differ greatly. The smooth curves in the figures are the model
predictions, while CDC P/I data plotted is highly variable.

The magnitude of the epidemic in Los Angeles, and Kansas City is slightly over
estimated by the model, however the prediction is quite good. The data for New York City
is fit quite nicely by the data, although the number of cases is slightly underestimated by
the model. The over estimates occur in the first two seasons, then for the last two influenza
seasons the model fit is reasonable. The data for San Francisco/Oakland, Boston, Phoenix,
Denver and Portland are well predicted by the model. In all five cities the seasonal variation
in the number of cases is greater than that predicted by the model.
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Neither Chicago nor Philadelphia were cities used to fit the parameters in the model.
Even so, they were two of the cities where the magnitude and seasonal fluctuation of the
yearly epidemic was well approximated by the model.

Indianapolis, Milwaukee, and Cincinnati are all slightly underestimated by the model.
Note that Indianapolis and Milwaukee seem to have very little seasonal variation in the
number of P/I deaths, unlike most of the other cities posting consistent data, this is surprising
as the cold weather in these cities would be expected to increase the seasonal variation in the
epidemic.

The influenza mortality for Minneapolis, San Diego and Las Vegas is underestimated
by the model. This is likely because of differing (or more comprehensive) data collection
techniques employed in these cities.

The model prediction of the mortality for Houston, Baltimore, Tampa, Sacramento,
San Antonio and Columbus is substantially lower than the actual data. There are a number of
potential reasons for this. One is that the population base used for the data collection is of the
metro area, as opposed to the city proper, as was assumed in the model. Another is that these
cities collect more complete data than the other cities or that they have a more liberal criteria
for classifying cause of death as P/I. We did not identify any correlation between the reported
data and the climate in these cities. However, it could be significant that four of these cities
are among the six smallest in the model. This might indicate that even in populations as
large as the these cities, the size of the population might still affect the number of contacts.
Recall that the model predictions are sensitive to the number of contacts per day for a typical
individual.

The CDC mortality is inconsistent for Detroit, Dallas, Cleveland, Seattle and Miami.
In the last two years these cities reported significantly more influenza deaths. Whether this
is because of a new method of data collection, a larger population base being used, or a
genuine change in the number of P/I deaths is unknown. As none of the other cities showed
a substantial increase in reported P/I deaths in this time frame it seems likely that a change
in data collection took place. What is significant is that in all five cases the higher estimates
were similar with what the model predicted. It seems likely that the new data collection
method was comparable with that of the cities which the model was fitted to, thus a good
prediction was obtained.

The data for Washington, St. Louis,Atlanta (Not Shown) and Pittsburgh is substantially
lower than predicted by the model. These four cities turned in very low estimates for the
five years of the data set compared to the other cities we studied. This could be because they
were using a small subset of the population to approximate the whole, or because they had
a very stringent definition of what was recorded as a P/I death. Atlanta was included in the
model as the ninth largest city in the US, however the fit is not shown because they stopped
collecting data for most of 1999 and 2000.

The data does not support a correlation between climate and number of influenza
deaths. It was anticipated that, since the infectivity and contact rate are constant for all of
the cities, the model would underestimate the number of influenza cases in the cities with
harsher climates. In fact two of the cities for which the model underestimates the number of
deaths the most are Houston, TX and Sacramento, CA both of which have warm climates.

10.6.1 Initial Stages of an Epidemic

In the initial outbreak the size of the network of cities has a substantial impact on the early
spread of the epidemic. We formulated the model on a subset of the major cities of the
United States. At the periodic equilibrium, running the reduced models yields the same
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results as the full model because the same percentage of people in each city are infected.
Therefore the same number of infected people are leaving each city as entering. This is not
true for the transient epidemic before it reaches the equilibrium. The recent SARS epidemic
demonstrated how quickly an infection can spread from a local outbreak to a global problem.
For these simulations the epidemic is assumed to start in a single city (New York) and spread
outward from there.

In our simulation, the epidemic is started with 1000 people ill, as it would take a
reasonably large number of people getting infected before an emerging epidemic is identified.
We investigated how the size of the subset of cities in the network affects the spread of the
epidemic. We observed that the smaller the network is, the faster the epidemic approaches
equilibrium. Also, in smaller networks it spreads in the city of the initial outbreak because
of the larger reproductive number resulting from fewer people migrating into and out of the
city. The Figure 10.8 shows the initial outbreak for an epidemic that emerged on the day of
highest infectivity (in November).

The severity of the initial epidemic is dependes on when the epidemic emerges. The
Figure 10.9 shows the initial outbreak for an epidemic that emerged one three months earlier
than the day of highest infectivity (in August).

10.7 Discussion
We defined a modified SIR model for the spread of influenza that accounts for non-random
mixing among a discrete network of 33 cities. The nodes of the network were weighted by
the population of the city and the bonds between the nodes represented the daily movement
of people among the data as estimated by airline flight data. Data from the influenza trans-
mission studies, and the reported mortality data attributed to influenza and pneumonia were
used to define the model parameters. Despite noise in the 122 Cities data from the CDC,
similar estimates for fluctuation in infectivity and number of contacts (and thus reproductive
numbers) are obtained for each city.

The essential features of the yearly influenza epidemic approximated the influenza
and pneumonia mortality data reported by Centers for Disease Control and Prevention. The
magnitude and fluctuation of the yearly epidemic is well matched by the prediction of the
model at the periodic equilibrium. At the endemic equilibrium the travel terms in this model
are not important.

We observed that the threshold reproductive number for the network of cities is very
close to one and that the model predictions are most sensitive to α and rβ. That is, the most
effective approaches to slowing an epidemic is to treat the ill to reduce the length of the
infectious stage (α), to reduce the number of contacts an infected has in a typical day (r),
and to reduce the probably of transmission in a typical contact (β). These are precisely the
measures taken in Toronto to contain the initial spread of SARS and were demonstrated to
be highly effective [3].

There is a substantial time lag between the peak of the infectivity and the peak of the
epidemic, which is accounted for by deriving an approximate solution to the differential
equation of the infected stage.

We also used the model to predict the initial spread of a new infectious agent when it
is introduced into one of the cities. In the initial stages of the epidemic, the number of cities
in the network and the timing of the outbreak determine how the epidemic spreads within
and among each of the cities.

One area of primary concern in the model is the assumption of random mixing of
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Figure 10.8. Initial outbreaks for various size systems of cities when the outbreaks
starts at the time of peak infectivity. Subfigure 1 is for New York alone. Subfigure 2 is for the
largest four cities in the US on a network of the largest five cities in the US. Subfigure 3 is
the results of the largest four cities in the US on a network of the largest ten cities in the US.
Subfigure 4 is the results of the largest four cities in the US on the entire 33-city network.

the populations within the cities. However, people within cities have groups, based or age,
geographic, socio-economic, or religious affiliation, that they mix with regularly and have
fairly few contacts with people outside of them. Additionally, a small portion of the citizens
of a city will do the majority of the traveling. This suggests the development of a model which
has non-randomly mixing groups called a small world model within each city in addition to
the travel between cities. Some of the groups would travel more often than others. A first
step in this direction would be to have a model with two groups in each city, travelers and
non-travelers. We have observed in more detailed biased mixing models that after a brief
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Figure 10.9. Initial outbreaks for various size systems of cities when the outbreak starts during the
lower infectivity season. Subfigure 1 is for New York alone. Subfigure 2 is for the largest four cities in the US on a
network of the largest five cities in the US. Subfigure 3 is the results of the largest four cities in the US on a nework
of the largest ten cities in the US. Subfigure 4 is the results of the largest four cities in the US on the entire 33-city
network.

startup period, the random mixing assumption is fairly accurate.
In the model the same fraction of people in each city are susceptible, infected, immune

and partially susceptible to the epidemic at periodic equilibrium. This is a result of the
contact rate and infectivity being the same for each city. This assumption has been used
in other multi-city SIR models [12] with good results. However uniform contacts is not
an appropriate assumption for the early stages of an epidemic because of the nonrandom
mixing of the population, variations in the population density, and availability of public
transportation in different cities. A better approach would be to fit contact rates to the data
for subsets of cities based on availability of public transportation or population density.
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The populations of the cities was kept constant by not including any increased mortality
due to influenza. As long as we are concerned only with the endemic equilibrium and
the annual influenza epidemic this assumption is reasonable. However for longer term
simulations, or more severe epidemics, the increased mortality due to influenza must be
accounted for.

The current model accounts for a slight drift in the genetic code for one strain of
influenza by allowing a previously infected person to gradually lose immunity to the currently
circulating strain of the virus. This is a reasonable assumption in a simulation of two or three
years if the annual influenza epidemic is decisively dominated by a single strain. It will not
predict the impact of a major shift in the virus. A straight forward extension of the model
could account for multiple strains. However, there is very little data on the strain that causes
a particular infection or the variation of the susceptibility of the population to different stains
needed to validate the model.
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