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INTRODUCTION

In this chapter we extend previous work on the spread of human immunodeficiency
virus (HIV) in homosexual populations to study the spread of HIV infection in a
purely heterosexual population. In this model the male and female populations are
distributed continuously in risk. We study the impact of population structures and
biases in sexual partner selection on the spread of the epidemic. As in the homosex-
ual model, the epidemic is extremely sensitive to assumptions about sexual partner
selection, as well as to the distribution of infectiousness over the duration of infec-
tion. Additionally, under strongly assortative mixing, waves of infection form and
spread as in the homosexual model, although there tends to be significantly more
cross-risk spread and wavefronts are broader than in the homosexual case. We show
how the ratio of infections in male and female populations changes with different
assumptions about male-to-female and female-to-male infectivity, and initial popu-
lation distributions over risk.

Heterosexual contact is the primary mode of HIV transmission in many develop-
ing nations, accounting for the largest number of infections in Africa (1). Even in
the United States, the fraction of AIDS cases attributable to heterosexual transmis-
sion is growing (2). The rate of spread appears to vary greatly from one region to the
next, perhaps because of differences in health (including nutrition or other sexually
transmitted diseases), sexual behavior, social structures, viral strains, or combina-
tions of many factors.

Modeling studies have shown that the AIDS epidemic is sensitive to both the
biological aspects of HIV infection and the human behaviors that spread HIV. Re-
sults from the simplest model vary greatly with the transmission probability, the
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mean duration of infection, and the rate of new sexual (or needle-sharing) partner
acquisition in the population. More sophisticated modeling studies have demon-
strated that the epidemic is sensitive to more subtle features of the biology of HIV
and of human behavior (3).

The acquisition of new sexual partners, which allows HIV to spread from person
to person, is a complex social phenomenon, varying across cultures and between
individuals, and over the life history of a given individual. The distribution of sex-
ual partner acquisition rates within a population and the amount of mixing between
behavioral levels has been found to be an important determinant of the rate and
extent of spread of many sexually transmitted diseases. This was first demonstrated
convincingly by the modeling work of Nold (4), Hethcote et al. (S), and Hethcote
and Yorke (6), who found that structuring the promiscuous population into two
activity levels was necessary to account for the spread of gonorrhea in a two-gender
model, and that the amount of contact between the high- and low-risk groups was an
important determinant of the spread. Anderson et al. (7) showed that the mean and
the standard deviation of the partner-acquisition rate in the population are equally
important determinants of the spread of HIV in homosexual populations. Hyman
and Stanley (8,9) and Jacquez et al. (10) showed that both the assamed distribution
of the population by partner-acquisition rates and the amount of mixing between
groups with different rates greatly influence the spread of HIV in homosexual popu-
lations.

The biology of HIV infection is complex. The survival curve (the fraction of the
population who have developed AIDS by duration of infection) is broadly distrib-
uted, with few people developing AIDS within the first 2 years after infection, and
with a mean of approximately 10 years (11). A number of studies have demon-
strated that models need to account adequately for the shape of this curve: either by
assuming that the progression to AIDS occurs via a staged Markov process with five
or more stages (10), or via a duration of infection variable (7).

HIV infectivity is another key determinant of the rate and extent of spread of the
epidemic. In our earlier papers we showed that the manner in which infectivity
varies with the course of the disease can greatly influence the pattern of spread of
HIV, even when the mean infectiousness over the course of the disease is un-
changed (8,9). In this chapter we show that the ratio between the male-to-female
and female-to-maie infectiviiies has a subsiantial, nonlincar impact on the male to
female ratio of infection.

There is likewise substantial evidence that the infectiousness and susceptibility of
people may be affected by the presence of cofactors, such as the presence of other
cocirculating sexually transmitted diseases. Many researchers have speculated that
infectiousness varies with the strain of HIV, which varies widely in genetic compo-
sition from one infected person to the next, and varies even more between regions
and continents. However, although these are important factors in spreading the
epidemic, we will neglect them in this model.

In this chapter we modify the homosexual model of Hyman and Stanley (8,9) to
account for heterosexual HIV transmission, and use numerical simulations to study
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its behavior. This model, which accounts only for spread between men and women
by sexual contact, allows us to focus on questions related to sexual partner selection
across risk levels and differences in infectivity between men and women. The
model neglects transmission into this purely heterosexual subpopulation from peo-
ple who have been infected through other means, such as intravenous drug use or
sex between men. As in the homosexual case, we neglect age, migration, and many
other important features of the epidemic.

In the next section we review the homosexual results and some preliminary re-
sults on the heterosexual model. Then we present the heterosexual transmission

model, discuss our parameter estimates, and present the results from our computer
simulations. ‘

PREVIOUS RESULTS

In the homosexual model of Hyman and Stanley (8,9), the population is distrib-
uted according to their partner acquisition rate (which we will refer to as their risk),
and divided into uninfected, infected-non-AIDS, and AIDS populations. The in-
fected population is distributed further according to duration of infection, and AIDS
cases are distributed according to duration of AIDS. There is a constant migration
into and removal from the uninfected population, which creates a single equilibrium
state in the absence of infection. The rate of infection of uninfecteds is determined
by the rates of contact with infected people of a given duration of infection and
partner acquisition rate (contacts with AIDS cases were neglected), multiplied by
the infectivity of the partner. The rate of contact with infecteds depends on the rate
of contact with people of a given risk, which can occur in a biased manner, and the
fraction infected with that risk. Infected people develop AIDS at a rate that depends
on their duration of infection, and people with AIDS di¢ at a rate that depends on the
duration of AIDS.

Using this model, we gained some interesting insights into the qualitative behav-
ior of the AIDS epidemic (see also ref. 12), and showed that mixing is a crucial
aspect of the spread. Random partner choice results in an exponentially growing
epidemic. When the infected population, I(¢,r), is plotted against risk, r, at a given
time, ¢, there is a single maximum in the infected population that remains at essen-
tially the same risk value thoughout the epidemic. This maximum in the infected
population occurs at the same risk level as does the maximum value of rN(0,r),
where N(0,r) is the initial population. This implies that, when partner selection is
random, the most likely risk value for an infected person is the same as the most
likely risk of a randomly chosen partner in the initial population. By contrast, self-
selective mixing results in a polynomially growing epidemic that at first infects
primarily high-risk people, and then sequentially moves into middle- and then low-
risk populations.

Since the epidemic first spread into the higher risk populations, self-selective
mixing results in an epidemic that is initially faster than random choice, but quickly
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becomes slower after the infection saturates these high-risk groups. In fact, the
initial epidemic grows exponentially under random mixing, and polynomially under
self-selective mixing.

Variable infectivity during disease progression also has a strong influence on the
growth rate of the epidemic. Changing the infectivity profile, while holding the
average infectivity constant, results in different transient dynamics, but similar as-
ymptotic states. Model results indicate that if there is a short burst of infectivity
before the development of antibodies, it creates a rapid spread of the infection in
populations that change partners on average once or more during the burst, but has
little effect on populations that change partners much less frequently. Similarly, a
long period of low infectiousness after infection delays the epidemic more in popu-
lations that change partners many times during this period than in those who change
partners less frequently.

To extend our results to the spread of HIV in heterosexual populations and ex-
plore the impact of biased mixing, we need a continuous model of partner selection
satisfying the heterosexual balance constraints. In Stanley et al. (13), we developed
a model for this that we call the low-risk rule, and in Hyman and Stanley (14) and
Stanley (15) we developed another model, the asymmetric rule [which is used in the
iwgAIDS code (15)]. Castillo-Chavez and Busenberg (16) have developed a
third heterosexual mixing model. Each of these three models uses an arbitrary func-
tion to set up desired mixing patterns.

In this chapter we compare the. behavior of a heterosexual model using the low-
risk and asymmetric rules. In Stanley et al. (13) and Hyman and Stanley (14) we
presented some preliminary numerical explorations of this model, using the low-
risk rule. Stanley (17) did numerical studies of the mixing that results from the
asymmetric rule under various choices of population structures and mixing func-
tions, finding that imbalances in the distribution of partners between male and fe-
male populations forces mixing across more risk levels than in homosexual popula-
tions. Kirschner (18) studied the behavior of this heterosexual HIV model with
asymmetric mixing in the asymptotic limit of an infinitely narrow acceptance func-
tion, finding that this situation is quite different from the homosexual case. As we
shall see, there are significant differences between homosexual and heterosexual
spread. ' _

A SIMPLE HETEROSEXUAL MODEL

Here we present the model of Hyman and Stanley (14). We consider a population
in which the primary mode of HIV transmission is heterosexual sex, and all other
modes can be neglected. We include in the modeled population all those who are at
risk of infection via this route: This encompasses all people who have sex outside of
mutually monogamous, lifetime relationships. The male and female at-risk popula-
tions are divided into uninfected people, those infected with HIV but who have not
yet developed AIDS, and the infecteds who have progressed to AIDS. We assume
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that the major factor affecting the probability of infection is the partner-acquisition
rate and distribute each of these populations according to a risk variable that deter-
mines this rate. Non-AIDS infecteds also are distributed according to their duration
of infection, and AIDS cases are distributed according to the duration of time since
their diagnosis. People mature into a given risk group and leave it only when they
become sexually inactive or die. Before the introduction of HIV, there was a bal-
ance between this constant maturation rate into each risk group and the constant rate
per individual of retirement or death out of the population.

Uninfected people become infected through contacts with infected partners of the
opposite sex. We assume that all contacts between individuals can be treated as
events that occur at a single point in time (this assumption is discussed in more
detail in the section on rate of infection). The transmission rate depends on the
gender and duration of infection of the infected partner. Infected people develop
AIDS at a rate that depends on the length of time they have been infected, but not on
gender and risk. Persons with AIDS are assumed to be sexually inactive and to die
at a rate that depends on the time since they were diagnosed. We thus model AIDS
as a state in which most individuals have had a serious HIV-related illness, and have
slowed or ceased sexual activity.

Unlike the homosexual model, the constraint that the number of partners be the
same betweer the sexes (so that there is mathematically one male and one female
member of each pair) implies that partner acquisition rates cannot remain fixed with
time. Instead, pairing rates must be allowed to change as the relative sizes of the
male and female populations, and their distributions over behavior, change. There-
fore, we define a risk variable that measures the relative partner acquisition rates of
two individuals of the same sex. For example, a woman with risk 10 will have twice
as many partners per unit time as a woman with risk 5. The actual number of
partners per year that is associated with a given risk level is then adjusted over time
to ensure that the male/female pairings match.

Letting the subscript g refer to gender (M and F refer to males and females,
respectively), we define

independent variables

t time (years)

T duration of infection
a duration of AIDS

r risk

T4 time from infection to AIDS for a given individual

popuiation sizes at time ¢, for risk r and gender g

Ug(t,r) . uninfecteds, distributed by risk

I(t,r,7) non-AIDS infecteds, distributed by risk and duration of infection

Aq(t,r,a) AIDS cases, distributed by risk and duration of AIDS

Ng(t,r)  total number of sexually active individuals, distributed by risk:
Ny(t,r)=Ugt,r)+ [o I (t,r,T)dT
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parameters
T8 per person rate of leaving the sexually active population

U.o(r) equilibrium distribution of the uninfected population of gender g over risk
r in the absence of HIV

ig(T) probability of infection per contact with an infected person of gender g

' who has been infected T years

cg(r,r') increased probability of transmission due to multiple contacts between a
person of gender g and risk  with one of the opposite sex and risk r/

V(1) per person rate of developing AIDS for those of gender g infected T years
ago

84,(c)  per person death rate due to AIDS for those of gender g diagnosed o years
ago

Si(r.s) function determining the mixing between a person of gender g, risk group
r, and a person of the opposite gender, risk group s

ica(T/v4) infectivity at T years after infection for a person of gender g who will

~ develop AIDS 1, years after infection

N o(r) initial total population of gender g with risk r

(rS initial mean risk for gender g

C,(t) the fraction of the population of gender g developing AIDS by 7 years

after infection
functionals
A Jt.r;U.I1  per person rate of infection at time ¢ for an uninfected person of gen-
der g and risk r
it r:N) partner-acquisition rate at time ¢ for a sexually active person of gender
g and risk r

. pglt.r.s;N]ds probability at time ¢ that the partner (of a person of gender g and risk
r) has risk in the risk interval (s,s -+ ds)
R[t;N] factor determining the partner-acquisition rates for a given gender at
time ¢

The risk variable r is assumed to be proportional to the partner-acquisition rate, and
continuously distributed. We assume that if male and female populations were iden-
tical, r would in fact be the partner-acquisition rate: however, as we show beiow,
the constant of proportionality between r and the partner-acquisition rate must vary
as the male and female populations change. Since partner-acquisition rates do not
have a fixed upper bound, in our model we allow risk to range from zero to infinity.
Likewise, we do not place an upper bound on the duration of infection and the
~ duration of AIDS, although for the purposes of numerical simulations, we place a
bound on each of these three variables.

Note that, since risk has the units partners/time, the distributions U(t,r) and
Ugo(r) have the units people-time/partners and the distributions I(t,r,t) and
Ag(t,r,a) have the units people/partners.

Based on our assumptions, we have the following equations for the changes in the
populations of gender g, risk r, at time ¢:
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aU,t,r)
ot

I, @,r,0) =\Jt,r;UJU (1.0,
al(t,r,7) + ol (t,r,7)

= F(UQO(") - Ug(ttr)) - xg[‘:r;v»’]ug(tvr)’

” Fea—— = (Yg(®) + P (8,7,7), (1]
A1, 0) =, v (t.r, D)7,
aA " » ) 9A " »
—-!(-a—tf-f‘— + —4(5;‘5-“—) = — (3,(0) + AL, ).

The first of these equations states that the rate of change of the uninfected popula-
tion of gender g equals the rate at which people enter the population, pU,o(r),
minus the rate at which they leave and the rate at which they are infected. The first
two terms in this equation ensure that, in the absence of infection, the equilibrium
uninfected population is U,(r). The second equation states that infection occurs at
7=0, and the number of new infections at time ¢ is equal to the rate of infection of
uninfecteds. The left-hand side of the third equation ensures that the duration of
infection increases continuously and uniformly with time, and the right-hand side
gives the departures from the infected population caused by the development of
AIDS and out-migration. Similarly, AIDS occurs at a =0 (fourth equation), and
duration of AIDS increases uniformly in time (fifth equation).

Rate of Infection

The above model assumes a per-partner probability of transmission. Since we
assume that the risk of infection from each new partner occurs instantaneously, the
rate of infection, A[t,r;U.1], is a product of the partner acquisition rates, . lt.r:Nl,
and the probability of infection per partner. The probability of infection from a
new partner depends on the risk level of the partner, which is determined by
p,lt.7.5;N], and the probability of infection by a partner from that risk group, inte-
grated over all possible risk groups of the partner:

MU = m0t,rN] [ pglt.r x:N] kglt.r xULT) dx. 2]

Here k [t,r,x;U,1] is the probability that a person of gender g, risk r, will be infected
at time ¢, given that he/she has a partner of risk x, whose infection status is un-
known:

It,x,7)
N(t,x)

The ratio ;(¢,x,7)/N;(t,x) is the probability that a person of gender j and risk x is
infected for a time 7, and c(r,x)i;(t) is the probability of infection transfer to an

uninfected person of gender g and risk r given that he/she has a contact with a
person of gender j and risk x who has been infected for a time 7. We account for

kelt.r x;U 0] = co(r ) [ if7)

dr, j+8. 13
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increased transmission due to multiple contacts within a single relationship by mul-
tiplying the probability of transmission due to a single contact by a factor Co(r.x).
Note that the factor c,(r,x) accounts only for increased transmission, and does not
account for some of the other features of long-term relationships, such as overlap
with other relationships. Note also that we do not account for increased suscep-
tibility and infectivity due to the increased prevalence of other sexually transmitted
diseases in higher risk individuals, although the factor c(r,s) could be used indi-
rectly to do this.

Partner-Acquisition Rates

Because each heterosexual pair involves a man and a woman, the total number of
female partners that men have per year equals the number of male partners that
women have per year. As populations change in size and structure, this balance has
to be maintained in our mathematical model, which is equivalent to requiring that

[o Tadlt.r; NWNp(e,) dr = [o wElt.iNINK(2,7) dr. [4]
The population structures in our model will change over time. We expect not only
that people with high values of » will be more likely to be infected sooner, but also
that the two sexes will be affected differently by the disease. The behavior in a
population will change as the epidemic proceeds, depending on its social structure
and the way in which the people in it view the epidemic. In this model, we do not
account for changes in risk of people who are already in the population, but we still
need to adjust the partner-acquisition rates in a manner that ensures that Equation
[4] holds at all times. We adjust the partner-acquisition rates by assuming that lower
risk people will change less in absolute numbers than higher risk people (going from
one partner per year to two is a bigger change than going from 50 to 51), and that
partner-acquisition rates are proportional to risk. This allows us to use a time-depen-
dent scaling factor, R [r;N], which adjusts the partner-acquisition rates for each
gender:
Tglt,r;N1 = R,[t;N]r , for g € {M,F} . [s)
The rescaling factor could be chosen in any way that would satisfy Equation [4],
although the partner-acquisition rates of each population should go to zero if the
other population vanishes. Indeed, there are many different ways that R,[t;N] could
be chosen (see ref. 19), and Le Pont and Blower (20) have shown that the manner in
which the adjustment occurs is important to the calculated spread of HIV. Unfor-
tunately, there is little information on the manner in which populations actually do
adjust casual sex partner selection. We assume that neither sex dominates, so that
the rescaling is symmetric. We keep the scaling mathematically simple by choosing
R(1;N] so that the total number of sex partners for each gender is equal to
the geometric mean of the total risks of men and women (where the total risk is
fo rN(t,r)dr):
R, (N1 =[] rNge.r) dr]' 2 [[3 rNt,9) dr] =12, for g + j, (6]

to ensure that Equation [4] holds at all times.
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Partner Selection

We next need to specify a model of partner selection across risk groups. Given
that the total number of partners balance, there are constraints on p,[¢,7,s;N]ds, the
probability at time ¢ that the partner (of a person of gender g and risk r) has a risk
value in the interval (s,s +ds). These are

, ]: plt.r.s; Nlds=1, ge{M,F}, (71
and

pult,r,s;Nlwplt,r; N] Npg(2,7) = pelt,s,r;Nlwelt,s; NIN£(1,s). (8]

The first constraint states that when a partner is chosen they have some risk value,
s. Equation [8] is the balancing condition ensuring that the number of partners that
men of risk r have from the group of women of risk s is the same as the number that
women of risk s have from the group of men of risk r.

Many alternative models could be used to specify the mixing functions. We ex-
plore two possibilities. Each model relies on acceptance functions for each gender
£(r.s), to determine who is paired with whom. These acceptance functions must be
nonnegative, but otherwise are arbitrary.

In the low-risk rule (13,14), those of lowest risk in both sexes pick first and
entirely determine what happens to those of higher risk:

For r<s:
AM=(1_[ i _Jg (r.s)m; [8,5:N] Ni(t,s)
pelt.r.s;N1 = (1 — [[ p,lt.r.x;N] dx) AT ATCT ey [9]
For r>s:
oylt,r,sN] = LS ENITLSNWGS) ooy oo j e (1,1, [10]

w[t,r;NIN(1,r)

The asymmetric rule [sec Hyman and Stanley (14) and Stanley (15,17)] is based
on the idea that one sex does all of the choosing, with low-risk individuals choosing
first. Letting the choosing sex be denoted by a superscript g:

(i - jo Pfit,s. XN ax) J(r.s)w;lt,s; NIN(1,5)

glt,r,s;N] = . 11
PHE.rsN] fofr.y (1 =15 pf [£,y,N] dx) ww/{t,y; NINAt.y) dy (i
of [1,r,5;N] = pElt,s,r;N] el 5 NIN,(1,5) for g #j € {M,F}. (12)

aw[t,r; NINAt,) °

Using this idea, we can create mixing functions using female-choice, male-
choice, or a linear combination of the two. In particular, a symmetric mixing func-
~ tion is obtained by averaging the rules for the two sexes:

Pg Slt,r.s;N) = %{pﬁ' [t,r,s;N] + pf[t,r,s;N]} , forge{M,F}. [13]
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Although the low-risk rule satisfies the constraints in Equation [7], the result-
ing partnership distribution, p,[z,7.s;N], may be discontinuous across the line r=s
because of the discontinuity in definition between Equations [9] and [10]. It is more
difficult to see that the asymmetric rule also satisfies the integral constraints on the
P, (see ref. 15), and experience has shown that numerical convergence is very slow
unless we restrict ourselves to functions f(r,s) that converge to a function of r alone
as r becomes large. This is equivalent to requiring that people at high risk must
choose their partners randomly from the available pool, after the low-risk people
have chosen [for both rules choosing an acceptance function that is independent of
the partner’s risk, i.e. f(r,s)=f(r), gives random mixing]. Despite these diffi-
culties, we can study a variety of mixing patterns by varying the functions f(r,s).

Equations [S] and [6] specify the partner-acquisition rates for each individual in
the population. It may be, as the two companion papers by Jacquez et al. (10) and
Koopman et al. (21) argue, that it is sociologically unrealistic to fix the partner-
change rate. However, a formulation that can allow us to impose specified part-
ner-change rates does have the advantage that we can match current data on partner-
change rates.

In the next section we give parameter specifications for this model. We need to
specify the initial conditions and immigration rates for each sex, the mixing behav-
ior, the number of contacts per partner, the infectivity per contact in each direction,
the conversion-to-AIDS rates, and the death rates.

MODEL PARAMETERS

Duration of Infection and Death Rates

We assume that the rate of developing AIDS and the death rate from AIDS are the
same for both genders, although there is some evidence that they may be signifi-
cantly different (22). We assume the Weibull distribution of Medley et al. (23), so
that the probability that a person of gender g develops AIDS 7 years after infection
is

dC(7)
dv
with p=2.4 and ¢=0.11. The term Cy(7)=1—e"'""" is the fraction developing

AIDS by 7 years after infection. The mean time to AIDS for this distribution is 8
years. The rate of developing AIDS is given by ‘

-_-_qu.‘-P—|e—(¢")“ , [14]

C(?) =pqPrP ", ge={M,F}

~ )= EE = v &' §, risi
Ygl’f') 1— C‘ @ » & v 112j
where the prime denotes differentiation. We assume that the AIDS death rate is

where
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dD(a) _=0.75a_ 75a Iro expl— X -0. 751 (17]

da l+005a l+005x

is the probability density of dying from AIDS a years following the development of
AIDS. This function was estimated from Centers for Disease Control (CDC) data
(see ref. 8). Finally, we fix the natural death rate for both sexes at

e =0.02 years ™', ge = {M.F}, | (18]

so that the mean amount of time spent in the at-risk, sexually active population is
assumed to be 50 years for both sexes in the absence of AIDS.

Infectiousness

It has been speculated that infected persons may have a burst of viremia just
before the development of antibodies (on average about 6 weeks after infection),
usually are not very infectious for many years, and then gradually become more
infectious as their immune systems begin to break down (11,24), either because of a
varying viral burden (25) or because of a more aggressive viral strain that dominates
toward the end of infection (26). A number of partner studies have found a correla-
tion between transmission and either low CD4 helper cell counts or disease symp-
toms in the originally infected partner (27,28). Circumstantial evidence for this
pattern of infectiousness also comes from studies of pregnant women (which cannot
be used as direct evidence because perinatal transmission is a different route than
sexual transmission). The hypothesis of an early burst of infectiousness is supported
by studies that have found that pregnant women are more likely to infect their fetus
when they become infected during pregnancy. Studies finding that women also are
more likely to infect their fetus when they begin to have a positive P24 antigen test,
indicating higher viral activity and/or lower CD4 numbers (29), provide support for
the idea that infectiousness increases as the immune system deteriorates, although a
recent paper that examined cell-free cervical secretions from women found no cor-
relation between a positive culture and disease stage (30).

In Equations {8] and [9] we showed that strong variations in infectiousness with
disease stage can change the epidemic substantially. To study the potential impact
of disease-linked infectiousness, we make the simple assumption that disease stages
progress at a linear rate with respect to time to AIDS: a person who develops AIDS
twice as fast spends half as much time in each disease stage. Thus, we assume that
an individual of gender g who develops AIDS 1, time units after infection has an
infectivity zM('r/'rA) at 7 time units after infection. In the appendix we show that this
assumption gives an average infectivity i (t) of the people of gender g infected for 7
units of time:

dC ('r)

e dvy, ge ={M,F}. [(19]

i(1) =[1—Cy(7)]™" F iga (T/Ty) ——4~
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In all of the simulations reported below we set
iea(x) = Bg iL(x), [20]

where iy (x) is a piecewise linear function connecting the points {(0,0), (0.013,0),
(0.05,1), (0.088,0.4), (0.625,0.4), (1,1)}. Thus, we have assumed that there is a
sharp peak in infectiousness shortly after infection, followed by a long noninfec-
tious period, and then a rise shortly before the start of AIDS. This gives a mean
value for i (1) of 0.068,. These points are chosen so that a person who takes 8 years
to develop AIDS spends 0.1 years before becoming infectious, reaches maximum
infectiousness 0.4 years after infection, reaches the low infectious period 6 months
after infection, and then begins to become infectious again S years after infection. A
plot of the function i(t) that results from this is given in ref. 8.

If male partners are much less likely to become infected than female partners, this
will affect the rates and pattern of spread of the epidemic. Most studies of couples
have found that this is true (31), although it is not clear how much larger iy (7) is
than ig(7) [in ref. 32, 1% of women and 20% of men have infected their partners,
whereas in the European Partner Study (28) 12% of women and 20% of men in-
fected their partners]. One theory proposed to explain the large female-to-male ratio
of heterosexual infections is that it is caused entirely by this difference in transmis-
sion. We will explore this through different choices of the multipliers, B,, in our
simulations.

Data on transmission indicate that multiple contacts with an infected person may
increase the probability of transmission (27,28). In studies of high-risk populations,
in which only a few contacts per partner are likely, transmission probabilities per
partner are on the order of a few per thousand (33). In contrast, the probability of
being infected through a large number of contacts with the same infected partner
(in studies with more than 20 couples) has ranged from 1% to 73% (27,28,31,32,
34,35).

On the other hand, in a number of cohort studies, the probability that both partners
are infected does not seem to be correlated with the number of contacts since the
first partner was infected (24,34). In some studies infection transfer is not occurring
in continuing relationships (e.g., refs. 36,37), whereas in others it is (38). This may
be because of the variable infectivity profile: a randomly chosen partner is unlikely
to be in the early viremic stage, whereas a contact during this stage with a long-term
partner who becomes infected during the relationship is likely. It also may be that
some people are never very infectious, either because of their own good health or
the strain of virus they carry, or that some people are not very susceptible to infec-
tion for unknown reasons.

We modulate the infectivity by the contact function, which is intended to account
for the increase in transmission with duration of the relationship. To keep this sim-
ple, in all but one simulation we use the following function for c(r,s), the increased
probability of transmission due to multiple contacts between a person of gender g
and risk r with one of the opposite sex of risk s:

c(r,s) =ci(s,r) =1+ 19¢ 00U+, [21]
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This function is chosen so that the probability of transmission in a long-term
relationship (assuming that a relationship between men and women who both have
risk O will be long-term) is 20 times that of a very short-term relationship (assuming
that a relationship between men and women who have high risk will be short). This
is intended to be consistent with the estimates given above, without overestimating
the impact of multiple contacts. We investigate the sensitivity of our results to this
decay (in the section on contacts per partner) by comparing the baseline scenario
with the case where c, is constant.

Initial Population Distributions

Many sexual behavior surveys [see, e.g., refs. 39—42 and the AIDS in Multieth-
nic Neighborhoods (AMEN) survey (43)] have been conducted over the past 10
years. Although most of these studies have flaws (such as being of nonrepresenta-
tive populations), they do yield some information about the distribution of popula-
tions by partner acquisition rates. One of the best surveys conducted in the United
States is the AMEN study (43), which used a random household-based design to
select participants from selected census tracts in San Fransisco. We have analyzed
data from this study to obtain reasonable distributions of the population over risk.

In the AMEN study, men who had ever had sex with a woman were asked their
number of partners in the past 10 years and in the past 1 year. A group of 747 men
reported having sex with women in the past 10 years. This group reported a mean of
2.4 female partners in the past year, with the most active man reporting 130 female
partners. We have estimated the distribution, 8(p), of these men over the number of
partners per year, p, by first calculating the cumulative sum to obtain the fraction,
O(p), of the men with less than or equal to p partners in the past year, and then
approximating the derivative of that fraction. The 747 men each reported one of 20
different values of p. Letting these 20 values be denoted by p;, for j=1,2 . . . ,20,
O(p) jumps at each of these 20 values. In Fig. 1 we used centered differences to
estimate 6(p) halfway between each pair of data points as

Pitpisr . OP;.1)— ()
6( > )= .
Pi+1—P;

-

[22]

In our simulations, we assume that the initial population distribution of both
- sexes decays according to r " for large risk, for some number n:

Ngr(ng — 1) (1 + (ng + V)rla,)
2a, (1 +ria"™*"

Here Ny is the total population of gender g. The parameters n, and a, determine
the mean risk and decay rate with increasing risk. For this dlstnbutnon, the initial
mean risk for gender g, which we denote by (r,), is

Neo () = [23]

3a,

=8 24
2, —2) [24]

(rdy=[, N (N dr [[g Neo (N dr] ™' =
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FIG. 1. The distribution of the population by risk for the AMEN study. Dots indicate the points
calculated from the data, as explained in the text. The curves were calculated from Equations
(23] and [24], with ay=2(ny—2) <ru> /3, where <r,> is the data mean of 2.4 partners/yr.
Solid line is the inverse cubic (ny,=3), dashed line the inverse quartic (N, =4).
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- In Fig. 1 we compare 0 from the data to our assumed distribution, Nyo(rVnar,
obtained by taking the mean to be 2.4 partners/year and using Equations [23] and
[24] to define Njpo(r). We consider the cases n,=3 and n, =4. This distribution
function is a reasonably good fit to the data, with n, somewhere between 3 and 4,
although the fitted functions both predict that a little more of the population would
lic between 7 and 20 partners per year than is seen in the data. Note that there are
some real difficulties involved in fitting the data: for one thing, the scatter in the
data at high partner numbers and the large intervals between data points imply that
the derivative estimates are difficult to interpret there; for another we have treated
the number of female partners in the past year in this data set as if it were the
number of new partners in the past year, and a lifetime habit. This is clearly not the
case. Further work to differentiate the number of partners and the partner-acquisi-
tion rate would give a much better sense of the actual distribution function. We have
noted as well only that the distributions are similar: we have not calculated the
goodness of fit.

Equation [4] implies that when male and female populations are the same size,
they must have the same mean partner-acquisition rates. However, population-
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based surveys usually find that the number of nonmonogamous women and their
mean number of male partners is lower than for the men surveyed. For example, in
a 1987 telephone survey in California of 839 men and 1,173 women, 14% of men
but only 5% of women responded that they had two or more partners of the opposite
sex in the past year, with a mean of five and three partners for the men and women,
respectively, with multiple partners (41). This apparent imbalance cannot be ex-
plained by the idea that there are more sexually active women than men, since more
women (25%) reported no sex partners of the opposite sex in the past year than men
(13%), and the fractions of women and men reporting one partner were roughly
equal (68% and 71%). Obviously, it is possible either that men are exaggerating and
women are underestimating their number of partners, or both. Another possibility is
that an important group of women is missed by surveys. This group may include
very young women, who are below the cutoff age for the survey (age 18 in ref. 41),
but it also may include highly active women, many of whom may not be part of
mainstream society. If there is a small subgroup of highly active women, then the
distributions of men and women over partner-acquisition rates are shaped differ-
ently, even though their means are similar. For example, if we behevc Equation
[24] for both men and women, then it may be that 7,,>n.

In our simulations, we examine the sensitivity of the model to the shape of the
distributions of males and females defined by Equations [23] and [24]. We choose
the parameters so that males and females have an initial mean risk of 3, and take the
total initial population size to be N = 1. Note that since mean risks between men
and women are balanced at the start of each calculation, and population sizes are the
same, the initial partner-acquisition rate is equal to the risk variable.

We found, in the homosexual case, that the spread of infection was fairly insensi-
tive to the risk distribution of the initial infected population, so we take the initial
distributions of infecteds and AIDS cases to be uniform in risk, and modulated by a
presumed distribution over duration of infection or AIDS. This presumed distribu-
tion assumes polynomial growth in infection over time before the start of the calcu-
lation, and keeps the 7- and a-dependence smooth at the start of the simulations:

10 ={o 107300 = for =10 [25]
A0,r,a) =(0.1) 1,0,r,a), for all a.

The initial susceptible population is then
U(0,r) = Noo(r) — 1,(0,r) — AL0,r), ge = {M,F}, (26}

where [,(2,7) is the integral over all 7 of I,(¢,7,7) and A(1,r) is the integral over all «
- of A (t,r,a). We take the immigration to be such that the equilibrium population in
the absence of HIV is No(r):

Ugo(r) = No(r) [27]




346 RISK-BASED HETEROSEXUAL HIV MODEL
Mixing
Who mixes with whom is determined by the acceptance functions and mixing
algorithm. For the mixing functions, we assume that people prefer to choose part-

ners who are similar to themselves, and let

r

FALN)) =[ 1+ 100 (r

—_— 311
7| -, 2

Unless otherwise specified, we use the asymmetric mixing formulation with fe-
male choice and the mixing function of Equation [28] in the calculations that fol-
low. Figure 2 shows the mixing functions for this case when both male and female
population distributions are given by Equation [23], with n,=3 and a,=2. Even
though both populations are identical, on average females of moderate risk pair with
males of slightly lower risk than themselves. The reasons for this are seen in the
male mixing function of Fig. 2B: a large fraction of moderate and high-risk men are
paired with low-risk women. This occurs because the population distribution drops
rapidly with risk, and women of very low risk occasionally pair with men at higher
risk than themselves: their large numbers imply that they use up many of the partner
slots available to the small numbers of high-risk men, and women at mid- to high
risk end up pairing with men of lower risk than themselves. This mixing thus ends
up being broader than in the homosexual case with the same mixing function (see
ref. 9).

Below (in the section on mixing rule) we examine the sensitivity of the model to
the choice of mixing rule. Figure 3 shows the initial mixing for these different rules.
Note that male choice in the asymmetric rule would simply reverse the labels on
Fig. 2 (given that the male and female populations are identically distributed), and
thus is not shown. Averaging male and female choice gives the average of Figs. 2A
and 2B for both males and females. Although this seems intuitively more realistic
than either male or female choice, when implemented mathematically it results in an
odd-looking multiple-humped mixing function, with broad mixing across risk
levels. The low-risk rule gives biased mixing when the populations are identical.
The discontinuities are the result of the discontinuity between the two equations ([9)
and [10]) that define the low-risk rule model.

SAMPLE CALCULATIONS

All calculations were run using a uniform grid in the r and 7 directions with a
100 % 40 grid. The maximum risk was 50 partners per year and the maximum 7 was
20 years. For the cases in which men and women were distributed differently in
risk, the initial risk had to be adjusted using Equation [4] to ensure balancing,
because of endpoint effects. The integrals were calculated using a trapezoidal rule,
and an Adams-Bashford-Moulton variable time-step method [from the SDRIV code
(44)] was used in time to maintain the error tolerance below 10~ per unit time.
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FIG. 2. The mixing functions obtained by assuming female choice and using the asymmetric
mixing rule. A: The distribution of male partners of women. Here r indicates the woman’s risk,
and the distribution is given for women of risk 12.5, 25, and 37.5. B: The distribution of female
partners of men, for men of risk 12.5, 25, and 37.5. The population distributions for males and
females are both given by Equations [23] and [24], with n,=1 and ag =2. The acceptance func-
tion is given by Equation [28].
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Baseline Calculations

For comparison purposes we set up a baseline simulation. We have tried to use
reasonable parameter estimates but, given the relative uncertainty about many of the
parameters and the simplicity of this model, the reader should exercise caution in
interpreting the numbers. The baseline is intended only for comparison purposes.
We take all male and female parameters to be identical, except the infectivities. We
assume that men are four times as infectious as women, and take the infectivity
multipliers in Equation [20] to be B,,=0.1 and Br=0.025, so that the mean infec-
tivity of men is 0.006 per contact. When multiplied by the factor c,(r,s) in Equation
[21], to account for the larger number of contacts within low-risk partnerships com-
pared with high-risk ones, the probability of transmission from an infected man to
an uninfected female partner ranges from a high of 12%, when both are very low
risk, to a low of 1.5% when both have risk 25, and transmission from women to
men is one-fourth of this. We take initial male and female populations to be identi-
cal, with n,=3, and a mean risk of three partners per year, giving ar=a,,=2. We
use the acceptance function of Equation [28], and the asymmetric rule with female
choice, so that the initial mixing functions are as shown in Fig. 2.

Figure 4A shows the change in the populations as a function of time for 25 years.
Note than more women are infected than men (about 1.5 women per man in the
ecarly stages). Initial growth of infection is nonexponential, as in the homosexual
model of ref. 8. The cumulative number of infecteds and AIDS cases initially grow
as t™, where m is between 2 and 3 (Fig. 4B). The infection eventually saturates, in
the sense that the number of infected people begins to decline, but the susceptible
population also continues to decline. AIDS cases remain a small fraction of the
infected population at all times.

Figure 4C shows the infection as a function of risk, for the times 5, 10, 15, and
20. For men, the infection appears as a “wave” traveling from high to low risk, as it
did in the homosexual model (9), although the wave is not as distinct. However, for
women the wave is not distinct: the infection moves earlier and more intensely into
the low-risk female populations than it does into the low-risk male populations. This
clearly occurs because there are a lot more cross-risk contacts set up with this partic-
ular heterosexual mixing formulation, as seen in Fig. 2, than in the homosexual case
(where assuming a narrow acceptance function created a situation in which most
contacts were between individuals with similar risk values). Thus, in this heterosex-
ual baseline, infected high-risk men are contacting and infecting low-risk women
(and vice versa), and the epidemic does not stay isolated within the extremely high-
risk groups. This mathematical cross-mixing may be an artifact of the asymmetric
mixing rule, in which case the more rapid spread into low-risk groups might not be
observed, or it may reflect the difficulty of the heterosexual partner-selection prob-
lem in the real world, in which case infections in low-risk women early in the
epidemic should be relatively common.

Figure 4D shows the distribution over 7 of the infecteds at different times. As
time increases, the numbers infected increase both in magnitude and in duration of
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FIG. 5. Sexual behavior changes for the baseline scenario of Fig. 4. A: Changes in the mean
are the most likely to dis of AIDS. B: The distribution of the male partners of women at time
t=25. C: The distribution of the female partners of men at t=25. The elimination of more high-
risk women than men causes an even larger fraction of high-risk men to be paired with low-risk
women than at the start of the simulation (see Fig. 2B). :




RISK-BASED HETEROSEXUAL HIV MODEL 353

0. 2500

E—. ' r=375
(L
a

0.0500 ]

0. 0000

infection. At large times, when saturation has begun, the number of newly infecteds
begins to decline, whereas the number of long-term infecteds continues to increase.

As the population changes, the sexual behavior of the two populations also
changes. The changes in mean risk are shown in Fig. 5A. We have scaled this plot
so that changes in the mean risk for the full population are visible. Thus, the early
behavior of the infected populations cannot be seen: what happens is that the initial
mean risk for infected men and women immediately jumps to about 50 and 43,
respectively, from the initial condition of 25 and then plummets as the infection
wave moves into lower risk groups. Since most infected people have not yet devel-
oped AIDS by the end of 25 years of our calculated epidemic, the population means
decline only slightly over this period. However, both the mean risk and the total
population of women declines more than that of men, causing the adjustment factors
given by Equation [6] to change significantly. The mixing at #=25 years is shown
in Figs. 5B and 5C. Note that the greater loss of women, at lower risk levels than
men, implies that more high-risk men pair with low-risk women than at the start of
the calculation. The adjustments made by this rule with this mixing function seem
somewhat unrealistic, because most of the partners of high-risk men are very low
risk. We examine the effect of this choice of mixing rule under the heading Mixing
Rule, below.
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The Effect of ig/iy

The relative magnitude of the infectivity of males, iy/(T), and of females i(7), is a
subject of much debate, although ir is known to be the smaller of the two (as
discussed earlier). Here we explore how this ratio affects our baseline scenario. We
hold all parameters fixed, except the mfectnvnty multipliers in Equation [20], 8,, and
Br. In Fig. 6A we show the case where B, is halved to 0.05 and B is left at the
baseline value, and in Fig. 6B we show the case where B, is left at baseline and B/
is halved. In both cases the epidemic is smaller than at baseline, and proceeds much
more slowly, with the number of infections beginning to slow only at 25 years.
However, these two cases have different effects on the epidemic. Halving the male
infectivity decreases the number of women infected before time 16 by a factor of
about 24, and roughly halves the number of men infected, so that the number in-
fected is more similar in the two populations. Halving the female infectivity has the
opposite effect, enhancing the difference between the two sexes. ‘

What if the infectivities were even smaller? Decreasing B, to the same value as
B~ gives an epidemic that is nearly identical in terms of numbers infected in both
male and female populations. The epidemic proceeds slowly, but nevertheless by
year 25 about 10% of the population is infected. If, instead, B,y is left at baseline
and B is taken to be one-quarter of baseline, the total fraction infected also is about
10%, but about three women are infected for every man (plots not shown).

. Population Distributions

In the baseline scenario we took the initial male and female populatnons to be
identical. Here we take the male population to be distributed as an inverse quartic
for large risk, with n,, = 4. The mean risk is still assumed to be 3, giving ay=4. We
thus have more low-risk and high-risk women than men, and more men lie in the
middle region. This subtle difference sets up a different kind of mixing, shown in
Figs. 7A and 7B, in which high-risk men are less prone to mix with low-risk women
than when the distributions were the same, since there are more high-risk women to
pair with. Having fewer men at high risk, but more at intermediate risk, creates a
faster epidemic than the baseline case. The men at intermediate risk have more
female partners at high risk than in the baseline case, acting as a bridge between
high- and low-risk populations. This epidemic reaches saturation sooner in both
sexes.

In all previous sections we have assumed strong like-with-like preferences in
partner selection. There are little data to support or contradict this assumption. If we

suppose that the acceptance function is a constant, we obtain proportionate mixing,
which is equivalent to the mixing from random partner selection, and results in the
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scenario shown in Fig. 8. This result is similar to that previously seen in proportion-
ate-mixing models of homosexual spread (8,9): the initial epidemic growth is expo-
nential, and thus early on the epidemic is slower than in the baseline scenario, but
quickly surpasses it. A much larger proportion of the population is affected, and the
population is depleted more rapidly. Additionally, the epidemic does not proceed as
a wave of infection from high to low risk, and a large fraction of moderate-risk
people, especially women, are infected early in the epidemic.

Mixing Rule

If mixing is biased, it is not clear how that bias operates between the sexes.
Because of the mathematical pairing constraints, we are forced to use a rule that is
somewhat artificial to create biased mixing. What is the impact of the female-choice
asymmetric mixing rule that we have been using? We ran the baseline scenario with
the female-choice mixing replaced by the low-risk rule (Equations [9] and [10], the
asymmetric rule (Equations [11] and [12]) with male choice, and the asymmetric
rule with an average of male and female choice (as in Equation [13]). The initial
mixing functions for these simulations are shown in Fig. 3. All the population sizes
are similar to the baseline case early in the epidemic, until about the 10th year, after
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which the low-risk rule and male-choice rule diverge with somewhat fewer people
infected. Since the plots are similar, we do not show them.

The infection waves are much clearer in the low-risk mixing rule calculations,
and the epidemic does not move as far into the low-risk population as in the baseline
case. This-is to be cxpected since the low-risk rule provides more strongly biased
mixing functions. It is less clear what is happemng in the male-chowe case to hold
down infections.

The mixing function for each of these cases changes with time as the populations
shift. Those of the low-risk rule change the most significantly, becoming highly
discontinuous with time, but maintaining much more strongly biased mixing than
any of the asymmetric rules. :

Contacts per Partner

We have assumed that the probability of transmission from an infected to an
uninfected partner decreases with the risk of both pariners, since the average num-
ber of contacts would decrease. As explained earlier, it is not clear that the transmis-
sion probability does increase with increasing numbers of contacts. Consider the
case where c,(r,s)= 10, where the probability of transmission within a high-risk
partnership is much higher than the baseline case, while being much lower within a
low-risk partnership. The epidemic is modified substantially by this change: it is
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initially much faster, but it is slower at long times. This slowdown occurs because
fewer low-risk people become infected than in the baseline case (plot not shown).

SUMMARY

In this chapter we have begun to explore a heterosexual model of the spread of
AIDS in which the population is distributed continuously according to partner-ac-
quisition rates and duration of infection. Mixing between groups with different risk
behavior was determined by partner availability and acceptability as specified by an
acceptance function, plus an algorithm that matches male and female contacts. The
growth rate of the modeled epidemic is determined largely by the social mixing
patterns and the infectivity of infected men and women. When individuals select
partners with behavior similar to their own, the epidemic proceeds as a “wave” from
high-risk to low-risk populations. When men are more infectious than women, more
women are infected than men.

The question of how to match contacts between risk groups when mixing is bi-
ased warrants a great deal of study. We have made assumptions, not based on data,
about how this is done. This choice of assumptions clearly has a large impact on the
model’s behavior. In the absence of a vaccine or cure for AIDS, it is furthermore
crucial to understand ways to change human behavior that are effective in slowing
or stopping the epidemic.

We have not attempted to address questions about the heterosexual epidemic in
the United States. To do this, we would need much more information about the
infectivity of HIV and the sexual behavior of the population. There are, however, a
multitude of other questions that remain unanswered .about the transmission dy-
namics of this epidemic that can be addressed-using models. These include the
impact of social structures, including age, sex, sexual partner-acquisition rates,
ethnicity, and religion, and the selection of sexual partners according to their char-
acteristics. Migration and behavior changes, either in response to the epidemic or
normal life fluctuations, also influence the epidemic spread. The interaction of these
sociological factors with biological factors, such as the long and variable duration of
infection, the variation of infectivity with disease progression, the impact of other
sexually transmitted diseases, and the increasing use of treatments for AIDS, are yet
more questions for continuing research.

APPENDIX: AVERAGE INFECTIVITY

In the text, we supposed that the infectiousness of an individual of gender g is
given by i (7/7,), where 7 is the time since infection and 7, is the total time from
infection to AIDS for this particular individual. We are assuming that the time to
AIDS, 14, is independent of the time, ¢, and thus is not affected significantly by the
development of new treatments. Here we show that this assumption implies that the
average infectiousness of an individual infected at time 7 is given by Equation [19].
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The following calculations hold for each gender separately, so we will ignore the
gender of the infectious individual, and leave off the subscripts. Let f(z,7,7,7,) be
the infected population at time ¢, distributed over time since infection, time to
AIDS, and risk. Then the average infectivity of a person of risk r at time ¢ who has
been infected T years is
i@, roe,m0)

I(t,r,7)
where the ratio of f(t,r,1,14) to I(t,r,7) is the probability that a person of risk r
infected for T years will develop AIDS at 74 years after infection. To show that
Equation [19] holds for each gender, we need to show that It.r,v, v )@, r,7) is zero
for 1,<t and that for 1,>7:

Ktramy)  C'(xa)
Iit,riv) (1-C()
for all r and ¢, where C(7) is the probability that a newly infected person will
develop AIDS within the first v years after infection. Since everyone with 7, <t will

already have developed AIDS and left the infected population, the first requirement
is obvious, that is,

i(t,r,7) = [ ia(v/74) dry [29]

(30]

I, re,74) =0, for T,<7. [31]

There are two ways to see that Equation [30] holds. First, note that the ratio of
I(t,r,1,74) to I(t,r,7) is the conditional probability that someone infected for T units
of time will develop AIDS after being infected 7, units of time, given that they have
not developed AIDS before T. When 7,>7, this is the probability of developing
AIDS at time 1,, divided by the probability of not developing AIDS before timeé 7.

The other way to see this is to note that if the duration of infection of a newly
infected person is independent of that of the person who just infected her/him,
newly infecteds are distributed by

2,r,0,%4) = Mt,r;U,NU(E,1)C' (34). [32]
We also assume that the initial infected population is distributed evenly in 7,:

a C '(T,A‘) »

I0,r,7,74) = 1—C() 10,r,7). [33]

Then I(z,r,7) satisfies Equation [1] and, for v<t,, (¢,7,7,74) satisfies

ai (t »r 'TaTA) ai (t o 91"7A)
A ferT) 34
at rL‘ A { g |

Solving this and the equation for the infecteds in system [1], we find that for t>7
I(t,r,7) = Nt — 7,r;,UNNU(t — 7,r)exp( — v — [5 v(x)dx)
= N[t — 7,r;U U@~ 1,r)e” " (I — C(7)), [35]
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and

It,r,1,74) = Nt — 7,1,U U@ — 1,1)C’ (T4)e ¥, [36]

whereas for 1<t:

I(¢,r,7) = 10,7 — t,r)exp( — pt — [ _, y(x)dx)

—u, 1-C(7)
E— — ""—-—-—-—-—-——
C'(ta) -
i W 9%y = - PRV w'
(t,r,1,14) =lg(v—1,r) I—Car—1 e [38]
Thus we have the desired relationship.
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