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Abstract

We present a method for estimating transmission matrices that describe the mixing

and the probability of infection between age groups. Transmission matrices can be used

to estimate age-dependent forces of infection in age-structured, compartmental models

for the study of infectious diseases. We have analyzed the social network generated by

bipartite graphs for the synthetic city of Portland and identified mixing patterns. Our

results show that children interact most frequently with other children close to their own

age, while adults interact with a wider range of age groups and the durations of typical

adult contacts are shorter than typical contacts between children.
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1 Introduction

A major difficulty in understanding the spread of diseases is our lack of data on the mixing

patterns in the population. It is important to appropriately account for the occurrence of

contacts to accurately understand disease spread and develop control measures. Correctly

accounting for the mixing patterns in a population may be crucial to accurately predict the

path of a disease and thus where the outbreak could be intercepted most effectively.

Mathematical models often estimate the likelihood of a disease outbreak based on the basic

reproductive number. The basic reproductive number is the average number of secondary cases

produced by a “typical” infectious individual during its infectious period (van den Driessche

and Watmough, 2002). The rate at which infectious individuals spread the disease depends on

the number of adequate contacts (i.e. contacts that would result in infection) between infecteds

and susceptibles. Thus, if we determine the mixing patterns in the population, we can obtain

better estimates of the basic reproductive number. This result can help modelers predict the

severity of an outbreak and the best means of containing it.

Because of the recognition that heterogeneous contact patterns govern sexually transmitted

diseases (STDs), several techniques have been developed to incorporate heterogeneous mixing

in mathematical models for STDs. However, not much effort has been channeled into incorpo-

rating heterogeneous mixing for other infectious diseases. Numerous models have studied the

effects of different mixing functions or mixing matrices in the form of compartmental models

for STDs (Anderson et al., 1990; Blythe and Castillo-Chavez, 1989; Hethcote and Yorke, 1984;

Hyman and Stanley, 1989; Hyman and Li, 1997; Hyman et al., 1999; Knolle, 2004). Some
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of the techniques developed that incorporate non-random mixing into epidemic models include

restricted mixing (Jacquez et al., 1988), proportionate mixing (Hethcote and Van Ark, 1987;

Nold, 1980), preferred mixing (Hethcote and Yorke, 1984), selective mixing (Koopman et al.,

1989), and non-proportionate mixing (Anderson and May, 1991). These techniques involve

defining a form for the n × n matrix, the elements of which represent adequate contacts be-

tween individuals in age group i and age group j. However, estimating the entries in these

matrices require knowledge of the forces of infection and the steady states of the endemic dis-

ease. The forces of infection are usually estimated using serological data, but these data are

often not available for many diseases.

Survey studies of mixing patterns can be useful tools in understanding disease spread.

Edmunds et al. (1997) studied a survey of a sample of 65 individuals and estimated contact

patterns that could lead to the spread of airborne infections. They concluded that older adults

mix with themselves and all other age groups at the same rate, and that younger adults do

not. They also found that people have a different mixing pattern during the weekend than

on weekdays. However, some of the limitations of this study are the sample size, the lack of

quantification of duration of contact, and the fact that all the participants were adults, even

though a great number of diseases are transmitted by children. A review article by Wallinga

et al. (1999) discussed the use of networks in developing contact patterns and the spread of

airborne infectious diseases. They noted that more studies are needed to better understand

contact patterns to predict disease spread.

Any realistic model for the spread of infectious diseases must take into account the mech-
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anism of its transmission, the heterogeneities of risk between individuals, the spatial and local

nature of interactions among the population, and the probability of transmission per contact

(Isham and Medley, 1996; Grenfell and Harwood, 1997; Wallinga et al., 1999). However,

some standard compartmental models assume homogeneously mixing populations and thus

ignore many of these important properties that are crucial for the modeling of human disease-

transmission. Therefore, while traditional compartmental models have proved to be useful in

developing theoretical epidemiological insights, the complex nature of the mixing patterns in

the population and transmission routes could have severe implications.

Diseases are often spread through social contact; thus, contact information is key to control-

ling an epidemic. Network modeling can be traced back to the work of Erdös and Renyi in the

1960s, which introduced the idea of random networks. A more recent application of network

modeling developed to study the spread of disease is social networks (Meyers et al., 2004; New-

man, 2002; Zaric, 2002; Read and Keeling, 2003). In social network modeling, the structure

of a community is represented by a graph consisting of nodes, representing people, and edges,

representing contact between two people. Social networks allow for more realistic representa-

tion of populations and their social contact structure, which are crucial in understanding and

modeling infectious disease spread.

Here we use a social network generated by the synthetic population of Portland, Oregon,

consisting of more than 1.6 million individuals to determine mixing patterns between age groups.

We analyze the simulated movement of these individuals to estimate the likelihood of contact

and infection. A transmission matrix is estimated based on the mixing patterns observed in
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the population. This matrix can be used in mathematical models to determine age-dependent

forces of infection.

2 Realistic Social Networks

EpiSimS (Epidemic Simulation System) is a discrete-event, stochastic simulation model used

for the spread of disease in large urban populations (Barret et al., 2005; Chowell et al., 2003;

Eubank, 2002, Eubank et al., 2004, Eubank et al., To appear). The original EpiSimS model

was based on the city of Portland, Oregon, in which the simulated movement of more than

1.6 million individuals was constructed. Every person in the simulation was created according

to actual demographic distributions drawn from the 2000 census data, so that the synthetic

population matched the correct demographics (e.g. age distribution, household statistics, and

residential population density). The city of Portland was mapped into 181,230 locations such

as households, schools, and shopping centers. Information on the number of actual physical

locations in Portland were obtained from the Enhanced Census TIGER data set. All physical

locations were aggregated by census block and 2 locations were generated per street.

Schedules of daily activities were obtained from activity surveys based on thousands of

households. Each person in the simulation was assigned a sequence of daily activities based on

their demographics and their role within their household. The activities consist of: working,

staying at home, shopping, visiting, socializing, going to school, going to college, and other.

Then, routes were assigned to each person in order to satisfy the set of activities that they

carried out throughout the day.
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Finally, the movement of people along their chosen routes in the synthetic city of Portland is

simulated. The simulation starts by creating a network represented as a bipartite graph, GPL,

where P describes people and L locations (Figure 1). Each person-location is represented

as a vertex in the network and the edges represent the movements of individuals between

locations. Each edge in GPL has different weights, which represent the duration in each

location. Because for some locations such as large buildings, thousands of individuals may

go to the same location, EpiSimS creates an ad-hoc model for mixing within a location. For

example, schools are divided into classrooms and shopping malls are divided into stores. In

this “sub-location” model, people are assigned to rooms based on activity type. Assignments

overlap, so a “worker/teacher” may have a contact with a student. In each room a person is

represented as a vertex and each contact between two people is represented as an edge (Figure

1). The simulation keeps track of every single individual on a second-by-second basis and is

therefore able to determine the contacts, including identities of those in contact, the location,

the duration of the contact, and the nature of the activity where the contact took place.
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Figure 1: Schematic representation of EpiSimS social contact network. A bipartite graph GPL

with two types of vertices representing five people and four locations. The edges connecting the

people and the locations represent movement of individuals between locations throughout the

day. The thickness of the edges represents the time spent at different locations. A location is

divided into rooms and each contact between two people in a room is represented by an edge.

The result is GP , a person-person social network.

EpiSimS integrates all of this information into a computer model in order to simulate disease

transmission in the social network and it also provides estimates of physical contact patterns

for large human populations. Because we are interested in human contact patterns and their

impact on the spread of infectious diseases, we focus on GP , a graph containing only people

(Figure 1). The simulation generates time dependent person-person social contact networks
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based on the sequence of activities each person carries out throughout the day.

We begin by analyzing some of the properties of the social contact network, GP , generated

by the synthetic population of Portland. The GP graph consists of 1,615,860 nodes and

13,143,900 edges. Figure 2 shows the degree distribution of GP aggregated over one day. We

observe that the distribution decays as two power laws, P (k) ∝ k−γ with γ = 3.4 for the range

65 to 135 and γ = 5.16 for the range 112 to 365. The GP graph is not fully connected, but has

a giant component with 1,591,010 people and an average degree of 16.27. We also estimated

the average number of contacts per day per person in each age group (Figure 3). In general,

older adults have fewer contacts than children and middle-aged adults. The average number of

contacts generated by the synthetic population of Portland, Oregon is consistent with previous

studies (Edmunds et al., 1997). The average number of people contacted per day per person,

the probability of transmission per contact, and the duration of infection could give us an

estimate of how many secondary cases could potentially acquire infection from one index case.
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Figure 2: The number of people who have k contacts per-day in the population on log-log scale.

The distribution decays as two power laws, P (k) ∝ k−γ with γ = 3.4 for the range 65 to 135

and γ = 5.16 for the range 112 to 365.

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

22

Age j

A
ve

ra
ge

 N
um

be
r 

of
 C

on
ta

ct
s 

pe
r 

P
er

so
n 

in
 A

ge
 G

ro
up

 j

Figure 3: Average number of contacts per person per-day in age group j. The average number
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of contacts per person is defined by dividing the total number of contacts made by age group

j by the size of age group j.

Although the parameter values used to estimate the average number of people per room

were obtained from survey data, there is still some uncertainty in their values. Thus, we

performed sensitivity analysis to determine the effects of changes in the “sub-location” model

on the simulation results. We found that the average degree (average number of contacts per

person) is sensitive to variations in the number of people allowed into each room per day. That

is, when the number of people allowed into each room increases, the average degree increases

and vice versa. However, the mixing structure is not sensitive to changes in the “sub-location”

model. For example, the shape of Figure 3 remains the same regardless of the parameter values

used in the “sub-location” model.

2.1 Population

EpiSimS uses a synthetic population that resembles the real population of Portland, Oregon in

the course of carrying out their daily activities over one randomly chosen day. The population

consists of 1,615,860 individuals of ages ranging from 0 to 90 years. Figure 4 shows a his-

togram of the age distribution of the population. Portland is somewhat unusual because of the

disproportionately large population of young adults, resulting in a double-hump distribution.
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Figure 4: Age distribution of the synthetic population for the city of Portland. The population

consists of 1,615,860 individuals of ages ranging from 0 to 90 years. The population is described

by a double-hump distribution with mean of 34.37 and median of 33.

3 Estimating the Transmission Matrix

Here we demonstrate how the EpiSimS results can be used to estimate a transmission matrix.

The force of infection λi is the relative rate at which susceptibles of age i acquire infection.

Homogeneous mixing means that contacts of a person are randomly distributed among all others

in the population. One immediate implication of the assumption of homogeneous mixing is

that the force of infection is same for all ages. However, for heterogeneous mixing, the forces

of infection reflect the age-related differences in the degree of mixing and contact, within and

among age groups.
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Empirical evidence of age-related differences in λi have been documented for childhood in-

fections by Anderson and May (1982, 1991) and Grenfell and Anderson (1985). They estimated

forces of infection as a function of age using serological data or records of case notifications.

These studies suggest that the age-related differences in the force of infection are important

factors in modeling infectious diseases. The most direct evidence against the homogeneous

mixing assumption comes from studies showing that for human diseases the force of infection

λi, tends to increase with age up to about 5-15 years, and then to decrease in later years

(Anderson and May, 1991).

A standard method used in mathematical models to take account of age-dependent mixing

patterns of the population is to define a transmission matrix or WAIFW (Who Acquires In-

fection From Whom) matrix (Anderson and May, 1991). The WAIFW matrix describes how

individuals mix with other age groups. The elements of the WAIFW matrix, βij , represent the

rate at which an infective of age j will infect a susceptible of age i. However, this technique

requires knowledge of the forces of infection, the form of the WAIFW matrix, and the steady

states of the endemic disease. The forces of infection are estimated using serological data, but

these data are often not available for many diseases (Anderson and May, 1991). Furthermore,

the pre-judgment of the form of the mixing matrix may be unrealistic, so that the data leads

to mixing matrices with negative entries. Therefore, there is a great need to develop new

methods to estimate age-dependent forces of infection.

We use the social network for the city of Portland to estimate a transmission matrix and,

consequently, age-dependent forces of infection. We assume that the population is demo-
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graphically divided into different age groups that can progress through various infection stages

(Hyman et al., 1999). For this model, we consider 91 age groups and m infection stages.

We define the force of infection λi as the rate of disease transmission from infected people

in all age groups to susceptibles in age group i. That is, λi is the sum of the rate of disease

transmission from all infection stages k with 1 ≤ k ≤ m in all age groups j with 1 ≤ j ≤ 91 to

the susceptible group Si. This means that a susceptible person in age group i can get infected

by a person in any infection stage in any age group. Thus,

λi =

91
∑

j=1

m
∑

k=1

λijk(t). (1)

Where, λijk is the rate of disease transmission from the infected people Ijk in infection stage

k of age group j to the susceptibles in age group i. We calculate λijk in (1) as the product of

the number of contacts per unit time that each individual in age group i has with age group j;

the probability of disease transmission per contact between an infected in stage k of age group

j and a susceptible in age group i; and the fraction of those contacts that are infected. That

is,

λijk =
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In terms of the EpiSimS data, we can define the force of infection λijk as the product of the

average number of contacts, γij ; the probability of disease transmission, which is the product

of the susceptibility (αi) of a susceptible in age group i, the infectivity (ξjk) of an infective in

stage k of age group j, and the probability of transmission Pij based on the average duration
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of contacts between age groups i and j, and the fraction of contacts that are infected. That is,

λijk(t) = (γij(t)) (αiξjkPij)
(

Ijk(t)

Nj(t)

)

, (2)

where Ijk is the number of people in infection stage k of age group j and Nj is the size of age

group j.

Let σ be the mean number of transmission events per hour of contact between fully infectious

and fully susceptible people. For events that occur randomly in time, the number of occurrences

in a period of time of length t obeys a Poisson probability law with parameter σt. Thus, the

probability of no occurrences in time interval t is e−σt and the probability of at least one

occurrence is 1− e−σt. Using the mean duration Tij of contacts between a person in age group

i with people in age group j, we assume that the probability of transmission in this time interval

Tij is given by

Pij = 1 − e−σTij . (3)

For example, using σ = 8 in equation (3) and the average durations of contact per pair,

Tij from EpiSimS data, we obtain the probabilities of transmission, Pij shown in Figure 5.

Since children and others are more likely to spend time with others of similar ages, the av-

erage durations of contact are larger among people of similar ages. Thus, the probabilities

of transmission are higher along the diagonal for all age groups. Furthermore, observe the

weak coupling between middle-aged adults and young individuals, possibly due to child-parent

duration of contact.
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Figure 5: Pij , probability of transmission based on duration of contacts between a susceptible

in group i and an infected in group j. Notice that there is a high probability of transmission

along the diagonal for all age groups.

Lastly, we define βij as the adequate contact rate between a susceptible in age i with

people in age j, which is the product of the average number of contacts, the susceptibility, the

infectivity, and the probability of disease transmission, that is, βij = γij ∗ αi ∗ ξjk ∗ Pij . Using

γij from EpiSimS data, αi = 1, ξjk = 1, and Pij from equation (3) (Figure 5), we estimate a

transmission matrix βij (Figure 6), for the given social network. For simplicity, we assumed

in this example that all age groups are equally susceptible (αi = 1), and that all infected

individuals are equally infectious (ξjk), regardless of the infection stage or age group. The
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transmission matrix, βij shows the rate at which an infected person in age group j will infect a

susceptible person in age group i. The transmission matrix in Figure 6 exhibits two blocks of

mixing, young individuals (< 20 years) and adults (> 20 years). This matrix is consistent with

the prevailing opinion that the probability of disease transmission between children is high.

Adults are described as likely to acquire infection from a wider range of age groups, mainly

middle-aged groups. Also, observe that there is a weak coupling between middle-aged adults

(parents) and children.
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Figure 6: Transmission matrix βij (WAIFW) for the synthetic population of Portland. Observe

that children and teenagers are more likely to acquire infection than the rest of the population.
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We now partition the population into 9 categories: 1-10, 11-20, 21-30, 31-40, 41-50, 51-

60, 61-70, 71-80, and 81-91, and aggregate the elements of each category using the data that

generated Figure 6. Table 1 shows the average values for the transmission rates among the

aggregated age groups. The transmission rates represent the daily probability that an infected

person of age j will transmit the disease to a person in age group i in a fully susceptible

population.

The transmission matrix βij can be used to obtain the forces of infection needed in a

mathematical model with age structure. In order to estimate the force of infection for a specific

disease using equation (1), one would need to estimate the contact rates (γij), the susceptibilities

(αi) for each age group, the infectivities (ξjk), and the transmissibility parameter (σ) for the

disease.
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Table 1: Transmission Matrix (WAIFW) of the daily number of adequate contacts per person

between the aggregated age groups.

Age 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-91

1-10 3.06 2.21 0.63 1.13 0.37 0.10 0.06 0.03 0.01

11-20 2.21 1.54 0.38 0.68 0.68 0.21 0.10 0.04 0.01

21-30 0.63 0.38 0.79 0.81 0.70 0.38 0.18 0.06 0.02

31-40 1.13 0.68 0.81 0.71 0.52 0.26 0.13 0.04 0.01

41-50 0.37 0.68 0.70 0.52 0.50 0.23 0.11 0.03 0.01

51-60 0.10 0.21 0.38 0.26 0.23 0.24 0.10 0.03 0.01

61-70 0.06 0.10 0.18 0.13 0.11 0.10 0.11 0.03 0.01

71-80 0.03 0.04 0.06 0.04 0.03 0.03 0.03 0.06 0.01

81-91 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02

4 Discussion and conclusions

Contact patterns play an important role in determining the progression of epidemics. We have

introduced a method for obtaining useful information on the mixing patterns of a social contact

network, which might lead to the spread of airborne infections. We argue that mathematical

models that use contact matrices based on social networks will be better able to capture age-

specific infection patterns of infectious diseases than models that use transmission parameters

based on homogeneous mixing or ad-hoc assumptions.

Estimating forces of infection is crucial when using models for specific infectious diseases.
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The forces of infection determine the rate of disease transmission and are based on the age-

related differences in the degree of mixing and contacts within the population. We used the

average number of contacts and a probability distribution based on the average duration per

contact to estimate a transmission matrix. With the appropriate specification of disease-related

parameters of susceptibility and infectivity, this matrix can be used to estimate age-dependent

forces of infection for any disease.

Our results based on EpiSimS data show that in general there are two main blocks of mixing

within the population: young individuals (< 20 years) and adults (> 20 years). Furthermore,

we observe a weak coupling between children and middle-aged adults, probably due to child-

parent contacts. The transmission matrix in Figure 6 shows that school children are more likely

to become infected than the rest of the population. This may be due to the longer duration of

contacts children have with other children at school. In contrast, adults interact with a wider

range of age groups, but their duration of contact is shorter.

Although parameter values for the “sub-location” model were estimated using survey data,

there is still uncertainty associated with their values. We found that the average degree is most

sensitive to the “sub-location” model. However, the mixing patterns within the population are

not sensitive to changes to the “sub-location” model. That is, we observed the same mixing

structure (two blocks of mixing) regardless of the parameter values used in the “sub-location”

model.

Our study is limited because the current version of EpiSimS does not stratify classrooms

by age and therefore the probability of having a contact with any age group in each school is
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the same for all children. However, children attending elementary schools mix more in their

classrooms with other school children of their own age than with children of other ages. The

spread of many childhood diseases is governed by the pattern of contact among children and

therefore it is important to incorporate realistic mixing patterns. While recognizing some of the

limitations in the current EpiSimS simulation model, EpiSimS represents a potentially powerful

resource for estimating mixing pattern parameters in the face of an actual outbreak.

For mathematical models of infectious diseases to be useful in guiding public health policy,

they must consider age-dependent forces of infection. Individual behavior is crucial for the

spread of infectious diseases and predicting disease spread is difficult. Therefore, new tech-

niques such as the one developed here using social networks are needed as alternative tools when

aggregate behavior cannot be applied to the population. The transmission matrix developed

here is useful in providing estimates of the age-dependent forces of infection for mathematical

models. However, much more needs to be known about the interactions between people that

lead to infection before it will be possible to accurately predict an epidemic.
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