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Compacton solutions in a class of generalized fifth-order Korteweg–de Vries equations
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Solitons play a fundamental role in the evolution of general initial data for quasilinear dispersive partial
differential equations, such as the Korteweg–de Vries~KdV!, nonlinear Schro¨dinger, and the Kadomtsev-
Petviashvili equations. These integrable equations have linear dispersion and the solitons have infinite support.
We have derived and investigate a new KdV-like Hamiltonian partial differential equation from a four-
parameter Lagrangian where the nonlinear dispersion gives rise to solitons with compact support~compactons!.
The new equation does not seem to be integrable and only mass, momentum, and energy seem to be conserved;
yet, the solitons display almost the same modal decompositions and structural stability observed in integrable
partial differential equations. The compactons formed from arbitrary initial data, are nonlinearly self-
stabilizing, and maintain their coherence after multiple collisions. The robustness of these compactons and the
inapplicability of the inverse scattering tools, that worked so well for the KdV equation, make it clear that there
is a fundamental mechanism underlying the processes beyond integrability. We have found explicit formulas
for multiple classes of compact traveling wave solutions. When there are more than one compacton solution for
a particular set of parameters, the wider compacton is the minimum of a reduced Hamiltonian and is the only
one that is stable.

DOI: 10.1103/PhysRevE.64.026608 PACS number~s!: 41.20.Jb, 05.45.2a, 47.20.Ky, 52.35.Sb
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I. INTRODUCTION

Solitary waves with compact support~‘‘compactons’’!
were recently found in various generalizations of t
Korteweg–de Vries equation. The original class of equati
studied by Rosenau and Hyman@1,2# possessed solution
that were compact solitary waves with remarkable propert
Upon scattering they reemerged with almost the same co
ent shape. The energy that was lost reappeared in the for
compact solitary waves~compactons and anticompactons!.
~An ‘‘anticompacton’’ is one with a negative amplitude tra
eling in the opposite direction to the compacton.! Initially
localized packets upon evolution broke up into a series of
compactons. Thus the compactons were robust in that
arbitrary pulse eventually ended up as compactons.

One of our main interests is the light that understand
the dynamics of the compactons will shed on the theory
solitons. These particlelike waves exhibit both elastic a
nearly elastic collisions that are similar to the soliton int
actions associated with completely integrable partial diff
ential equations~PDEs! supporting an infinite number o
conservation laws.

The equations investigated by Rosenau and Hyman@1,2#,

ut1~um!x1~un!xxx50, ~1.1!

have several conservation laws but since it was not deriv
from a Lagrangian@except for the special case of the origin
Korteweg–de Vries~KdV! equation#, it did not possess the
usual conservation laws of mass and energy. We thus tho
that by finding a similar class of equations derivable from
Lagrangian we might be able to prove integrability using o
of the standard methods.
1063-651X/2001/64~2!/026608~13!/$20.00 64 0266
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Because of certain scaling properties of the generali
KdV equation that we will derive below, there always exis
a subclass of solutions that have the interesting property
the width of the solitary wave is independent of the amp
tude. For the above equation when 1,m5n<3, wherej
5x2ct and2p/2<dj<p/2, the solutions of the form

A@cos~dj!#2/(m21) ~1.2!

have this property.
Unlike classical solitons, the compactons are nonanal

solutions. The points of nonanalyticity at the edge of t
compacton correspond to points of genuine nonlinearity
the differential equation and introduce singularities in t
associated dynamical system for the traveling waves.
et al. @3#, and Li and Olver@4,5# have shown the connectio
between nonlinear dispersion and the existence of these
classical solutions. They identify the compactons
pseudoclassical solutions and demonstrate how they ca
characterized as the limiting case of a classical analytic
lution.

By starting with the first order Lagrangian@6,7#

L~ l ,p!5E S 1

2
wxw t1

~wx!
l

l ~ l 21!
2a~wx!

p~wxx!
2Ddx,

~1.3!

we derived and studied a generalized sequence of KdV e
tions of the form

ut1ul 22ux1a$2upuxxx14pup21uxuxx

1p~p21!up22~ux!
3%50, ~1.4!

where the usual fieldu(x,t) of the generalized KdV equation
is defined byu(x,t)5wx(x,t). For 0,p<2 and l 5p12,
©2001 The American Physical Society08-1
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FRED COOPER, JAMES M. HYMAN, AND AVINASH KHARE PHYSICAL REVIEW E64 026608
these models admit compacton solutions for which the wi
is independent of the amplitude.

These equations have the same terms as the equa
considered by Rosenau and Hyman but the relative wei
of the terms are different. Using the underlying Hamiltoni
structure, one can show@8# using linear stability analysis a
well as Lyapunov stability criterion that the compacton
whose width is independent of the amplitude, are stable
der perturbations.

We have been unable to determine if there are exam
within this class of equations that are integrable. In our p
vious work@6#, we attempted to repeat the induction proof
the existence of an infinite number of conservation laws
following the strategy used in the KdV equation of assum
the conservation laws to obey a recursion relation. We
sumed that the conserved momentumP could be identified
with a second Hamiltonian and Poisson bracket struct
The method of generating all the conservation laws from
bi-Hamiltonian structure is discussed in@9–11#. However,
when applied to this problem, the iteration method fail
after a few iterations in generating further conservation la
except for the special case of the original KdV equatio
Since integrability is connected with having true soliton
one of the purposes of this paper is to present numer
evidence that the systems described by our Lagrangian
not integrable since the collision of the solitary waves lea
behind a small wake.

In this paper we further generalize both the usual K
Lagrangian and our previously generalized KdV Lagrang
to preserve the invariance of the action under time, and sp
translations as well as the shift of the field by a const
(w→w1a):

L~p,m,n,l !5E dxF1

2
wxw t1a

~wx!
p12

~p11!~p12!

2b~wx!
m~wxx!

21
g

2
wx

nwxx
l wxxx

2 G . ~1.5!

Note that the generalization includes an extra term w
higher derivatives. Recently, it has been shown in the con
of higher-order KdV equations which admit soliton sol
tions, that the higher-order derivative terms improve
range of stability of these soliton solutions@12,13#. In this
paper, we will investigate the stability of the compacton s
lutions of the resulting equation for the Lagrangian~1.5!

ut1
a

p11
]xu

p112bm]x~um21ux
2!12b]xx~umux!

1
gn

2
]x~un21ux

l uxx
2 !2

g l

2
]xx~unux

l 21uxx
2 !

1g]xxx~unux
l uxx!50. ~1.6!

This new four-parameter family of nonintegrable PD
preserves energy, momentum, and mass by Noether’s t
rem. Most of the previously studied nonintegrable PDEs w
soliton solutions are known to be near an integrable PD
For most of the parameter range, Eq.~1.6! is far from any
02660
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known integrable PDE. We investigate compacton solutio
of this higher-order generalized KdV equation with spec
emphasis on the cases where the width of the compacto
independent of the amplitude~note that in the third-order
generalized KdV case, these compactons have been show
be stable!. We also study the scattering properties of t
compactons numerically to determine if they behave si
larly to those found by Rosenau and Hyman and to se
they shed any light on the integrability of these equation

While we do not have a rigorous proof, Eq.~1.6! seems to
have only a finite number of local conservation laws and
it exhibits a behavior similar to that usually associated w
integrable equations with an infinite number of conservat
laws. A wide initial pulse will break into a train of compac
tons all having the same width but different amplitudes. T
compactons almost remain coherent when they collide~but
for the creation of a low-amplitude oscillatory wave!.

In Sec. II we will discuss the Hamiltonian structure
these classes of theories and determine the equation sat
by a traveling wave. We use scaling arguments to show
there are solutions with the width of the solitary wave bei
independent of the amplitude whenp5m5n1 l .

In Sec. III, we obtain exact compacton solutions of t
form A cosr d(x2ct) and verify that the relations among th
global variables obtained using the variational approach
exact. Often there are two different compacton solutions
a single set of parameters having this same generic fo
When this is the case, the wider solution is found to
numerically stable. By studying a class of solutions with
bitrary width parameterd variationally, we find that the
stable solution is the minimum of the reduced Hamiltonia
So it seems that one can use a simple variational metho
check for stability without carrying out a complete stabili
analysis.

In Sec. IV, we give numerical results for the scattering
two compactons as well as for the breakup of an arbitr
wave packet into several compactons.

In the Appendix we discuss a variational approach
obtaining approximate and exact solutions. We obtain
relationship between energy and momentum satisfied by
solitary waves and show that most of the exact solutions
well as the criteria for their stability could be obtained b
assuming the exact compacton ansatz and minimizing
action on that class of functions. When there are multi
exact traveling wave solutions, we find that the narrow so
tions are the maxima of the effective Hamiltonian and a
numerically unstable in our simulations.

II. GENERALIZED KdV EQUATION AND PROPERTIES

The generalized KdV equation, Eq.~1.6!, has the con-
served Hamiltonian,

H5E dxF2a
up12

~p11!~p12!
1bumux

22
g

2
unux

l uxx
2 G ,

~2.1!

whereu(x,t)5wx(x,t). We notice that the Lagrangian give
by Eq. ~1.5! is invariant under the transformations~i!
8-2
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COMPACTON SOLUTIONS IN A CLASS OF . . . PHYSICAL REVIEW E 64 026608
w(x,t)→w(x,t)1c1; ~ii ! x→x1c2; and ~iii ! t→t1c3 ,
wherec1 , c2, andc3 are constants. By a direct application
Noether’s theorem this leads to the three conservation l
of massM, momentumP, and energyH whereH is given by
Eq. ~2.1! andM andP are given by

M5E u~x,t !dx, P5 1
2 E u2~x,t !dx. ~2.2!

The equation of motion, Eq.~1.6!, is also invariant under the
transformations given by

u→ku, x→kax, t→kbt

provided that

n1 l 2p

l 14
5a5

m2p

2
, b5a2p.

We thus obtain the following scaling relation between spe
width, and the amplitude of the traveling wave:

u~x2ct!5~l!1/(b2a)u$~l!a/(b2a)@x2lct#%. ~2.3!

In the special case ofm5p5n1 l , a50. It then follows that
the soliton width is independent of the amplitude. Also w
would like to point out that all the compactons so far disco
ered with width independent of amplitude have the prope
that the field equations are invariant under

u→ku, x→x, t→kbt.

The canonical structures of these theories is similar
those found in@6# in that by postulating thatu(x) satisfy the
Poisson bracket structure@11#

$u~x!,u~y!%5]xd~x2y! ~2.4!

we obtain that

ut5]x

dH

du
5$u,H%, ~2.5!

with H being given by Eq.~2.1!. We also find that with our
definition of P given by Eq.~2.2!, P is indeed the generato
of the space translations

$u~x,t !,P%5
]u

]x
. ~2.6!

Since our equation is a generalization of the equation
cussed in@6#, one is also not able to show the existence o
bi-Hamiltonian structure using the conserved momentum
a possible second Hamiltonian as was done for the ordin
KdV equation@9,10#. So on these grounds one expects t
our general Lagrangian may not correspond to an exa
integrable system, except for the original KdV equation ca
Our numerical results on scattering where there is some
ergy going into compacton pair production following scatt
ing supports this expectation.
02660
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Equation for solitary waves

If we assume a solution of Eq.~1.6! in the form of a
traveling wave

u~x,t !5 f ~x2ct![ f ~y!, ~2.7!

one obtains on integrating once

c f5
a

p11
f p112bm~ f m21f y

2!12b]y~ f mf y!

1
gn

2
~ f n21f y

l f yy
2 !2

g l

2
]y~ f nf y

l 21f yy
2 !1g]yy~ f nf y

l f yy!

1c1 , ~2.8!

where c1 is a constant of integration. This equation nee
several more integrations before a solution in terms
quadrature is obtained unlike the previous equation we s
ied where two integrations were sufficient. Thus an expl
solution in terms of quadratures is not available and o
must use an ‘‘educated’’ guess ansatz to find exact solutio
Some properties of the solitary waves can be obtained be
obtaining exact solutions.

In obtaining exact solutions, we found some values of
parameter where analysis is much simplified. From Eq.~2.3!
we find that this occurs at the special valuesp5m5n1 l ,
where the solitary wave solutions have compact support
the feature that their width is independent of the amplitu
By considering trial variational wave functions of a pos
Gaussian type, as done in@6# and sketched in the Appendix
one finds that the solitary waves withp5m5n1 l obey re-
lations of the form

H52
2c

p12
P. ~2.9!

The variational approach leads to solutions that corresp
to c150. When this relation is satisfied, the above conn
tion between the conserved quantities is found to be true
the exact solution. For the special cases whenc1Þ0 this
relation is no longer true. We also find that many of t
solitary wave solutions found by the variational method a
unstable in that they are stationary values of the Hamilton
that are not minima as a function of the variational para
eters. We have found numerically that the exact solit
waves associated with these variational ones will be unst
whenever the variational ones are unstable. This sugg
that stability in the subspace of the variational parameter
a useful guide for understanding the results of our numer
simulations.

Before proceeding with our study of solitary waves, w
just remind the reader that atg50 the Lagrangian we are
studying reduces to the previously generalized KdV probl
we studied@6# so that these equations include all the Kd
solitons and compactons that we discussed earlier as a
cial case. In this paper, we will find exact solutions of E
~2.8! by inserting the ansatz

f ~y!5A cosr~dy! ~2.10!
8-3
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FRED COOPER, JAMES M. HYMAN, AND AVINASH KHARE PHYSICAL REVIEW E64 026608
and determining the parametersA, r, andd by a consistency
argument. In the appendix we show that the stability of
solutions can be inferred~but not proven! by studying the
behavior of the energy as a function of the parameterd.

III. EXACT COMPACTON SOLUTIONS

Our variational calculations described in the Append
suggest that at the particular case wherep5m5n1 lÞ0,
which corresponds to compactons whose width is indep
dent of amplitude, the analysis simplifies greatly, so we w
restrict our attention to this case, which already has qui
rich structure. Assuming a solution of the form

u~x,t !5A cosr@d~x2ct!#,
2p

2
<d~x2ct!<

p

2
,

~3.1!

u~x,t !50, ud~x2ct!u.
p

2
,

we look for consistent solutions forA, r, c, and din terms of
a, b, g, andc1 that are real. Having found these solutio
we then check whether these solutions are the maxima o
minima of the effective Hamiltonian defined in the Append
as a function of the width parameterd. When the effective
Hamiltonian is a maximum, these narrower solutions turn
~by numerical investigation! to be unstable at the leadin
edge of the soliton. This numerical instability of the narro
solitons continues to be observed even after extensive
refinement. Thus the effective Hamiltonian method prese
a simple way of checking stability. It is also true that t
more general variational approximations are either stabl
unstable depending on whether the effective Hamiltonian
minimum with respect to the variational parameters.

Now let us look at various cases.

A. pÄmÄn and lÄ0 case

For the casep5m5n and l 50 it is possible to find a
general class of solutions for arbitraryp. Inserting a trial
solution of the form Eq.~2.10! into Eq. ~2.8! we obtain the
consistency equation

0523c112Acxr1A11px241r 1rp~12r !r d4g

3~12210r 12r 2211rp15r 2p12r 2p2!

12A11px221r 1rprd2~2212r 1rp !

3~2b12 d2g22r d2g1r 2 d2g2r d2gp12r 2d2 gp!

1A11pr 2d2~21p!~2b2r 2 d2g22r 2 d2gp!xr 1rp

2
2

11p
A11pa xr 1r p. ~3.2!

Herex5cos(dy). All the powers ofx must have zero co
efficient for the trial solution to be an actual solution. Th
leads to various conditions depending on the values ofr and
p. If r (11p)54 then there can also be solutions withc1
02660
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being nonzero. First let us consider the case whenc150. In
that case for consistency we need eitherrp52 or rp54.

1. rpÄ2

When rp52 Eq. ~3.2! tells us that eitherg50 or r 51.
When g50, we get the solution we found in our earlie
work @7#, namely,

d25
a p2

4 b~11p!~21p!
,

Ap5H c~11p!~21p!

2 a J .

WhengÞ0 we instead get the solutionr 51 (p52), and

A25
c

2 b d226 d4g

and two possible solutions for the width

d25

12b6A144b22120a g

60g
.

which means that we also can write the equation forA2 as

c5
A2

5
~a22bd2!.

Thus whengÞ0 ~andpr52) one only gets a solution whe
p52. A particular case of this solution isa56, g53, and
b54. Then there are two solutions. The first is

u5A3c/2 cosS x2ct

A3
D . ~3.3!

The conserved quantities for this solution are

M53A2c, P5
3

8
A3cp, H52

3

16
A3c2p,

which satisy the relationship~2.9!.
The second solution

u5A25c

22
cos

x2ct

A5
~3.4!

has as its conserved quantities

M55A10c

11
, P5

25A5cp

88
, H52

25A5c2p

176
.

Thus, again the relationship~2.9! is satisfied.
We can check whether these solutions are the maxim

the minima of the reduced Hamiltonian discussed in the A
pendix. Inserting the trial wave function
8-4
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COMPACTON SOLUTIONS IN A CLASS OF . . . PHYSICAL REVIEW E 64 026608
u5A cos@dy#, 2
p

2
<dy<

p

2
, y5x2q~ t ! ~3.5!

into the action and using the relationship

A25
4dP

p

and also the above values ofa, b, andg, we obtain for the
effective Hamiltonian

H5
P2

p
~29d518d323d!. ~3.6!

The solitary wave solutions are the stationary points of
actions and are, therefore, also stationary values of
Hamiltonian. These stationary values ared251/5, which is
the minimum of the energy andd251/3, which is the maxi-
mum of the energy. We have confirmed numerically that
narrower compacton withd251/3 is unstable. We have als
shown numerically~see below! that if we start with initial
compact data that is wider than the compacton withd2

51/5 it breaks up into a number of these compactons.

2. rpÄ4 case

Let us now consider the caser 54/p, with c150. When
g50, one of the consistency conditionsAc50 can only be
satisfied for static solutions. WhengÞ0 the consistency con
ditions lead to

d25
b

g~r 216r 22!
,

~3.7!

Ap5
c

~r 21!r 2~51r !d4g
,

with the parameters also obeying the constraint

a5
~21r !~41r !~2414 r 1r 2!b2

~2216 r 1r 2!2g
. ~3.8!

Let us look at two examples from this class of solutions.
~i! p5m5n51, l 50. The solution is of the form

u5A cos4~dy!.

Choosing, for example,g51/38 andb51, the above rela-
tions yieldd51, A519c/216, anda5672/19. Thus the so
lution is

u5
19c

216
cos4~x2ct!. ~3.9!

For this solution we have that the global quantities are

M5
19cp

576
, P5

12 635c2p

11 943 936
, H52

12 635c3p

17 915 904

so that the relationship~2.9! is again exact. We show in th
Appendix that this solution can also be found by minimizi
02660
e
e

e

the effective action using the compacton ansatz. In that c
one also gets another solution withd25 77

18 , which is the
maximum of the Hamiltonian withd251 being the mini-
mum as a function ofd.

~ii ! p5m5n52, l 50. In this case we obtain the cond
tions

r 52, d25
b

14g
, A25

c

28d4g
. ~3.10!

Choosingb51, g5 1
14 , anda5 96

7 , we obtainc52A2 and
the solution is

u5Ac

2
cos2~x2ct!. ~3.11!

For this choice of parameters we obtain for the conser
quantities

M5
pAc

2A2
, P5

3pc

32
, H52

3pc2

64

so that the relationship~2.9! is again exact. For these param
eters, if we use the compacton form as the trial wave fu
tion then the effective Hamiltonian for the variational para
eterd is

H52
8P2

9p
~10d25d31d5!. ~3.12!

This Hamiltonian has two stationary points as a function
d, d51 ~minimum! andd5A2 ~maximum!. The second so-
lution is not a solution to the equation of motion.

Next, let us consider a particular special solution for t
casec1Þ0, p5m5n51, l 50. For this case we haver
52. Assuming a solution of the form

u~y!5A cos2~dy!

we get the consistency equations

c1526A2 d4g, ~3.13!

d25
1

12g
@b6~b22ag!1/2#, ~3.14!

A5
c

8d2~b28gd2!
. ~3.15!

For the special choice ofa55, b53, andg51, there
are two real solutions ford2 corresponding tod251/12 and
d255/12. The first solution, which is stable and which w
will discuss further in our section on numerical simulation
is

u5
9c

14
cos2S x2ct

A12
D . ~3.16!

This solution has for its constants of motion
8-5
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M5
9A3pc

14
, P5

243pc2A3

1568
, H5

2349c3p

21 952
.

Thus we obtain

H

P
5

29c

42
.

This shows a failure of the relationship~2.9!.
The second solution, which we found to be numerica

unstable, is

u52
9c

10
cos2FA 5

12
~x2ct!G , c.0. ~3.17!

The conserved quantitiesH, M, andP are given by

M52
9pcA3

10A5
, P5

243pc2A3

800A5
,

~3.18!

H52
81pc3A3

1600A5
.

Thus we again find the breakdown of the relationship
given by Eq. ~2.9!. It may be noted here that the spec
solutions withc1Þ0 are not obtainable from a variation
calculation. In any case, these are a very restricted clas
solutions.

B. pÄmÄ l and nÄ0 case

For this case inserting a trial solution of the formu
5A cosr dy usually leads to an overdetermined set of eq
tions. For example forp51,r 52 we obtain conditions tha
have only a trivial solution. Forp52 the situation is simpler
and one obtains, whenr 51, the two relations

A25
c

2 b d215 d6g

and

0518d6g112d2b2a.

These equations can have two or even three positive
lutions for d2. One particular case isa5216, b521, and
g522. In this case we get two positive solutions ford2,
namely,d51 leading to

~ i! u5
Ac/2

4
cos~x2ct!, ~3.19!

where the constants of motion are

M5
1

2
Ac/2, P5

cp

128
, H52

pc2

256

andd252 giving the solution
02660
s
l

of

-

o-

~ ii ! u5
Ac

2
cosA2~x2ct! ~3.20!

and we obtain for the conserved quantities

M5Ac/2, P5
cp

16A2
, H52

pc2

32A2
.

Thus both these solutions again obey the relationship
given by Eq.~2.9!. The second solution withd252 turns out
to be numerically unstable.

For p52 andr 52 we get the relations

c158A3 d6g,

c52208A2 d6g

2a148bd211152d6g50 ~3.21!

as well as one constraint among the parameters

b5248d4g.

Eliminating the constraint, we obtain for the width

d652
a

1152g
. ~3.22!

As an example, if we chooseg523 anda53456 then we
haved51 and for our solution

u5
1

4S c

39D
1/2

cos2~x2ct!.

We have not exhausted all possible solutions for this ca
but the method for finding them should be clear to the rea
by now.

C. Some other general cases

When l 1n5p5m, we instead have one-parameter fam
ily of solutions depending on the velocityc. That is, for fixed
a, b, and g there is a solution of different amplitude fo
different velocitiesc. In some special cases there is the po
sibility for two different solutions with the same value ofc.
However, in general, for a givena, b, andg there is only
one solution with a fixed velocityc. To illustrate this fact, let
us consider the case

p5n, m5 l 50.

Inserting a trial solution of the form

u5A cos2/p@d~x2ct!#, pÞ2 ~3.23!

into Eq. ~2.8!, we obtain, for example, forg51, b51, and
a521/2 the conditions
8-6
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d5
p

2
@~p11!~2p214p13!#21/4,

Ap5
8b

~42p2!
@~p11!~2p214p13!#1/2, ~3.24!

c5
2b~p218p14!

~42p2!A~p11!~2p214p13!
.

Choosing, for example,p5n51, l 5m50, g51, and a
521/2 we get the single solution

u58A2 cos2F S x2
13A2

9
t D

2~18!1/4
G . ~3.25!

The constants of motion for this case are

M58p~2!3/4A3, P548p~2!1/4A3, H52
400p~2!3/4

3A3

so thatH/P5225c/39, which not unexpectedly does n
obey relation~2.9!. Note that in this case the width of th
compacton solution is not independent of its amplitude.

For the special case whenp5n52, one obtains

u5A cosdy.

Whenm5 l 50, we find

d452
a

30g
, A25

150g

a2 S c1
ab

15g D .

Choosing furtherb5a51 andg521/30, and we obtain

u5A102c cosy.

So, again for this special case we get a continuous famil
solutions as long asc,10. The constants of motion are no

M52A102c, P5
p

4
~102c!, H5

p

40
~102c!~302c!

and relation~ 2.9 ! is again not obeyed.
For any particular value ofp, m, n, and l one can always

find the consistency condition on the parametersa, b, g, A,
d, q, and c so that solitary wave solutions of the form
A cosq(dy) exist. However we do not have a simple expre
sion for these parameters for allp, m, n, and l and have
instead looked at some simple cases above.

IV. NUMERICAL STUDY OF THE GENERALIZED KdV
EQUATION

A. Numerical method

In our calculations, we approximated the spatial deri
tives with a pseudo-spectral method@14# using the discrete
Fourier transform~DFT! @15#. The equations were integrate
02660
of

-

-

in time with a variable order, variable timestep Adam
Bashford-Moulton method using the method of lines a
proach as described in detail by Schiesser@16#. The numeri-
cal errors were monitored by varying the number of discr
Fourier modes between 128 and 512 and varying the e
mated time error per unit step between 1026 and 1029 to
ensure that the solutions were well converged to within 1024

in the L2 norm. Also, the mass and momentum were co
served to an accuracy of at least 1024 and the Hamiltonian
was conserved to an accuracy of better than 1022 in all the
calculations.

The numerical approximation must respect the delic
balance between the nonlinear numerical dispersion term
the equation. For example, when the third term in Eq.~1.6! is
expanded, it has a diffusionlike term 2bm(um21ux)uxx . On
the trailing edge of the compactonux.0 and this term acts
like a destabilizing backward diffusion operator. The soluti
would be unstable if it were not for the stabilizing nonline
dispersion. This balance is easily lost in numerical appro
mation if the aliasing, due to the nonlinearities, is n
handled carefully. The loss of this delicate balance in v
steep fronts may be the reason that the numerical simulat
break down for very narrow initial data.

To identify numerical artifacts due to aliasing and oth
discrete effects, we solved the equations with the nonlin
terms expanded in different formulations. We compared
solutions of Eq.~1.6! when they were differenced in diver
gence form and when the derivatives in the nonlinear te
were expanded. Although the numerical solutions in all th
formulations were qualitatively similar, in very long integra
tions we found that integrating Eq.~1.6! in divergence form
was more stable and preserved the conservation laws b
than the approximations where the nonlinear terms were
panded.

The lack of smoothness at the edge of the compac
introduces high-frequency dispersive errors into the calcu
tion. These dispersive errors can destroy the accuracy o
simulation unless they are explicitly damped. To reduce th
errors while preserving as much accuracy as we could for
lower frequency modes in the solution, we explicitly add
an artificial dissipation~hyperviscosity! termdDxFuxx to the
right side of Eq.~1.6!. The high-pass filterF was defined in
Fourier space to eliminate the lowest 1/3 Fourier modes
leave the highest 1/3 modes unchanged and was a li
transition between the two regions. Thus the dissipation
no direct effect on the lower 1/3 of the Fourier modes of t
solution and only introduces dissipation into the high
modes. We also experimented in solving the equation w
other artificial dissipation terms based on fourth spatial
rivatives and mixed space time derivatives. All the solutio
behaved qualitatively the same, but the filtered hypervisc
ity approach preserved the conserved quantities better
any other approach we tried and was the most stable for
widest range of problems. This is the same hypervisco
term used in the original Rosenau-Hyman calculations. T
modified PDE with the artificial dissipation no longer pr
serves the Hamiltonian and we chose the parameterd experi-
mentally to minimize the aliasing errors, while conservi
the Hamiltonian to within 1%. The momentumL2 norm of
8-7
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the solution was also monitored and converged wit
0.01%.

We used a local average of2ut /ux to estimate the loca
traveling wave velocity and computed the quant
(u1/r)xx /u1/r , with r 51, 2, and 4 to verify the shape of th
solution. Both these quantities are constant for travel
wave solutions of the form Eq.~2.10!. This approach allowed
us to estimate the velocity of the wave and the paramete
Eq. ~2.10! within 0.1%.

In the simulations shown here we usedd510, solved the
divergence form of the equations with 128 DFT modes a
specified a time error of 1028 per unit time.

B. Numerical investigations

For the original Rosenau and Hyman compacton eq
tions numerical investigations showed some remarka
properties, namely, whatever initial compact data was giv
it eventually evolved into compactons. When two comp
tons scattered, any energy not in the original pair of comp
tons emerged as compacton-anticompacton pairs. We
find that the compactons of this fifth-order generalized K
equation have similar properties to those previously found

FIG. 1. Pulse with an initial width four times that of the com
pacton of Eq.~3.16! pertaining to the parametersp5m5n51, l
50, and a55,b53,g51, namely,u05

9
14cos2@(x230)/(4A12)#.

The initial wide pulse breaks into compactons that collide nea
elastically. Note the phase shift of the slower pulse after collid
with a faster, higher compacton.

FIG. 2. The decomposition of an initial pulse for the paramet
p5m5n52,l 50, anda56,b54,g53 relevant to Eq.~3.4!. An
initial compact wave ~solid line! u05A(25/22) cos@(x230)/6#
wider than a compacton width breaks into a string of compact
with the shapeA cos@(x2ct)/A5#.
02660
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the studies of Rosenau and Hyman in their third-ord
generalized KdV equation. However, unlike the Rosen
Hyman equation withm5n52, the momentum is conserve
in Eq. ~1.6!. Therefore, when a compacton-anticompact
pair is created in a collision the compactons must necess
leave their momentum behind and the collision cannot
elastic.

The first generic feature of these equations is that a
trary initial compact data, as long as the width of the pac
is larger than that of the compacton, evolve into several co
pactons with the number depending on the initial energy.
remark that when the initial pulse was much narrower th
the compacton that minimizes the reduced Hamiltonian,
numerical solutions were unstable at the leading edge of
pulse. This instability was independent of the number
Fourier modes used in the numerical simulation.

We show the decomposition of a wide intial pulse for tw
different cases. The first case is related to the compacto
Eq. ~3.16!. We start off with an initial pulse, which is fou
times the width of the compacton and watch it evolve. This
shown in Fig. 1.

In Figs. 2 and 3 we show the same phenomena for
compacton system described by Eq.~3.4!, again starting
from initial data wide compared to the compacton solutio

In Figs. 4 and 5 we show similar features of the break
of a compact wave for the compacton Eq.~3.9!.

Then next generic feature is what happens when two c
pactons of different speeds collide. The compactons rem
coherent and experience a phase shift. This is shown in

y
g

s

s

FIG. 3. A different graphical view of break up of the initia
conditions shown in Fig. 2 decomposing into compactons.

FIG. 4. Break up of a compact wave with four times the wid
of the compacton:p5m5n51,l 50, anda5

672
19 ,b51,g5

1
38. An

initial compact wave~solid line! u052 19
216cos4@(x27.5)/4# breaks

into a string of compactons with the shapeA cos4(x2ct) by time t
510 ~dashed line!.
8-8
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6 for the compactons described by Eq.~3.16!.
There are significant differences between the collision

namics of the compactons and the solitons in integra
equations. The main difference is that in an integrable s
tem, the infinite number of conservation laws only allow f
time delays and the final product of scattering does
change the shape at all. Here, the resulting solitary wa
have slightly reduced amplitude, but otherwise maintain th
shape after scattering. Unlike the soliton collisions in an
tegrable system, the point where two compactons collid
marked by the creation of a low amplitude (,5%) compact
oscillatory ripple. This ripple does not disperse but becom
compacton-anticompacton pairs. These resultant compac
also have exactly the same shape~apart from their ampli-
tudes! as the initial ones. After the collision, the origin
compactons emerge intact, just like classical, integrable s
tons, indicating that the remarkable stability of the solita
waves lies deeper than mere integrability. The first collis
shown in Fig. 6 creates a ripple, shown in Fig. 7, that
composes into compacton-anticompacton pairs.

In an earlier numerical study of nonlinear wave pheno
ena@17# in generalized KdV equations it was also found th
following the scattering of solitary waves a ripple or wa
was left behind. However these authors did not have eno
resolution to show if this wake turned into solitary waves
whether the wake dispersed.

When a compacton and an anticompacton collide as w
as when one starts with initial data that is narrower than

FIG. 5. Gray scale contour plot of the evolution of the comp
tons in Fig. 4.

FIG. 6. Collision of two solitons for the casep5m5n51,l
50, and a55,b53,g51. Two compactons described by E
~3.16! collide. One has speedc52 and the other has speedc51.
Note the phase shift in the slower compacton after the collis
These compactons remained coherent, even after dozens mor
lisions.
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width of the stable compacton, one finds numerically, bl
up at later times. The numerical simulations converge up
the blowup time as the grid is refined. However, although
believe the blow up is a property of the differential equatio
it is not certain that it is not a numerical artifact. This effe
is shown in Fig. 8 for the same compactons as in Figs. 6
7.

V. SUMMARY

We have generalized the Lagrangian for the KdV equat
to the one that supports a wide class of KdV-like equatio
and preserves the invariance of the action under time
space translations as well as the shift of the field by a c
stant. We have derived explicit formulas for the traveli
waves for this equation and demonstrated in numerical
periments that the traveling waves exhibit solitonlike beh
ior. Even though the equation is most likely not integrab
and satisfies only a handful of conservation laws, our
merical experiments indicate that the compactons for th
equations play the role of nonlinear local basis functio
Positive compact initial data~wider than a compacton! de-
composes into a train of nonlinearly stable compactons.
robustness of these compactons makes it clear that there
fundamental mechanism underlying the process that does

-

.
col-

FIG. 7. A ripple~solid line! is created when the compactons fir
collide in Fig. 6. This ripple was extracted from the solution at
525 and used as an initial condition. By timet5500, the ripple
~dashed line! has separated into compactons traveling in oppo
directions. These compactons have a shape proportiona
A cos2(y/A12).

FIG. 8. Possible blowup after a compacton-anticompacton
lision. p5m5n51,l 50, anda55,b53,g51. Two compactons
described by Eq.~3.16! with speedc511 andc521 collide. The
numerical solution breaks down slightly aftert515. It is not clear if
the break down is due to the steep gradients in the solution
because there is a true singularity that develops in the equatio
8-9
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FRED COOPER, JAMES M. HYMAN, AND AVINASH KHARE PHYSICAL REVIEW E64 026608
require the equation to be integrable.
Following the initial research presented in this paper, D

@18# considered a slightly different version of the fifth-ord
KdV-like equation and obtained compacton solutions that
similar to solutions described here. Our future study of th
nonlinear PDEs will aim at understanding the nonline
mechanism that causes these structures to be so robus
search into this mechanism has the potential of opening
doors in our understanding of the central role of solitons
nonlinear dispersion.
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APPENDIX: VARIATIONAL APPROACH

Our time-dependent variational approach for study
solitary waves is based on the principle of least action.
previous works@6,19–21#, we introduced a post-Gaussia
variational approximation, a continuous family of trial vari
tional functions more general than Gaussians, which can
be treated analytically. We assumed a variational ansat
the form

uv~x,t !5A~ t !exp@2b~ t !ux2q~ t !u2s#.

The variational parameters have a simple interpretation
terms of expectation values with respect to the ‘‘probabilit
P̄,

P̄~x,t !5
@uv~x,t !#2

2P
, ~A1!

where the conserved momentumP is defined as above,

P[
1

2E @uv~x,t !#2 dx. ~A2!

We haveq(t)5^x&,

G2s[^ux2q~ t !u2s&5
1

4sb
~A3!

and

A~ t !5
P1/2~2b!1/4s

FGS 1

2s
11D G1/2. ~A4!

Extremizing the effective action for the trial wave functio
uv leads to Lagrange’s equations for the variational para
eters. We find that for all values of the parameters (l ,m,n,p)
the dynamics of the variational parameters lead to solit
waves moving with constant velocity and constant wid
02660
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e
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However the solutions found are often maxima or sad
points of the action. We find from our numerical experimen
that when this happens, our computer simulation of the ex
solitary wave solution is unstable. In particular, the nume
cal simulation of the exact narrow traveling wave, and in fa
any compact initial conditions that are significantly narrow
than the stable wider compacton, blow up at the leading e
of the pulse. We do not know if this blowup is due to
numerical instability or to an inherent instability in the equ
tions.

For the special case ofp5m5n1 l , a simple variational
calculation using these trial wave functions similar to tho
that found in @6# tells us that the width of the soliton i
independent of the amplitude and velocity. For this case
also obtain the relationship

H52
2c

p12
P. ~A5!

The exact solitary wave solutions satisfy this relationship
long as the integration constantc1 of Eq. ~2.8!, is zero.

The starting point for the variational calculation is th
actionG5*L dt, whereL is given by Eq.~1.3!. Inserting the
trial wave functionuv we obtain

G~q,b,P,s!5E dt@2Pq̇2He f f#, ~A6!

where He f f is the Hamiltonian evaluated using the vari
tional wave functionuv . The effective Hamiltonian is a
function of the variational paramersP,b,s. The parametersb
ands are determined by finding the stationary points of t
action. This leads either toH being either a minimum, maxi-
mum, or saddle point as a function of these variables. O
the approximate solitary waves corresponding to a minim
of the effective Hamiltonian turn out to correspond to sta
exact solitary wave solutions of the compacton variety.

1. Exact variational ansatz

Now we would like to ask the question, to what extent w
could recover from the variational ansatz the exact solit
wave solutions we have discovered earlier by trial and er
That is, if we assume solutions of the form

A~ t !cosr@b~ t !$x2q~ t !%#,
2p

2
<b$x2q~ t !%<

p

2

for compact solitary waves and

A~ t !sechr@b~ t !$x2q~ t !%#

for ordinary solitary waves, would we recover all the exa
solutions? We also want to make the suggestion that the
bility of the solitary wave solutions found in this manner
determined by whether these solutions are minima of
effective Hamiltonian as a function of the parameterb(t).
8-10
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First let us show that for the KdV equation and for t
generalized KdV equation we investigated earlier, we ind
obtain the exact solution. The Lagrangian for the KdV eq
tion is

L5E dxF1

2
wxw t2~wx!

32
1

2
~wxx!

2G .
The conserved Hamiltonian is given by

H5E dxF ~wx!
31

1

2
~wxx!

2G .
Assuming the trial wave function

wx5u~x,t !5A~ t !sech2@b~ t !$x2q~ t !%#, ~A7!

we find that the reduced action is

G52Pq̇2H@A~P!,b#, ~A8!

where

P5E 1

2
u2 dx5

2A2~ t !

3b
~A9!

and

H5
8

15
A2S 2A

b
1bD . ~A10!

We can rewriteH in terms of A as follows:

H5
4

5
P$6~6bP!1/21b2%, ~A11!

where we have used the two possible solutions

A56S 3bP

2 D 1/2

.

Since the Hamiltonian is independent ofq, P is conserved.b
is a variable of constraint and is eliminated by the equat

]H

]b
5056S 6P

b D 1/2

12b. ~A12!

Only the negative choice ofA in terms ofP yields a positive
solution forb, namely,

b5
~6P!1/3

42/3
. ~A13!

Eliminating b, the reduced action is

G52Pq̇1
~3P!5/3

5
. ~A14!

Varying the action we find the velocity is a constant,

q̇5~3P!2/35c.
02660
d
-

n

ThusA52c/2 and we get the usual exact answer

u~x,t !52
c

2
sech2Fc1/2

2
~x2ct!G . ~A15!

We also find that

H5
4

5
P$2~6bP!1/21b2% ~A16!

has a minimum at the exact value ofb for fixed P.
Next we consider the class of exact compact solit

waves that we found for the generalized KdV equation
Ref. @7#. In this case the Lagrangian is

L5E dxF1

2
wxw t1a

1

p~p11!
~wx!

p122bwx
p~wxx!

2G
and the Hamiltonian is

H5E dxF2
a

p~p11!
~wx!

p121bwx
p~wxx!

2G .
Now we assume a solution of the form (r 52/p)

wx5u~x,t !5A cos2/p@d~ t !$x2q~ t !%#, ~A17!

We obtain for the reduced action

G52Pq̇2H@A,d#, ~A18!

where now

P5
A2ApG~1/212/p!

2d~ t !G~112/p!
, ~A19!

H5

A21p$4bd2~213p1p2!2a~4p1p2!%ApGS 1

2
1

2

pD
2 dp2~11p!~21p!GS 21

2

pD .

~A20!

On using the relation as given by Eq.~A19! we obtain

H5~2d!p/2P11p/2

3

$4bd2~213p1p2!2a~4p1p2!%Gp/2S 11
2

pD
~2 p15 p214 p31p4!pp/4Gp/2S 1

2
1

2

pD .

~A21!

We determine the constraint variabled by ]H/]d50, and
obtain

d25
ap2

4b~p11!~p12!
. ~A22!

Lagrange’s equations give
8-11



r,

ble

f

ed

a-

FRED COOPER, JAMES M. HYMAN, AND AVINASH KHARE PHYSICAL REVIEW E64 026608
q̇5c52
]H

]P
52

p12

2 H H

PJ . ~A23!

We then have that

Ap5
c~p11!~p12!

2a

and recover our previous exact result@7#

u~x,t !5Fc~p11!~p12!

2a G1/p

cos2/pH p~x2ct!

@4a~p11!~p12!#1/2J .

~A24!

As a function ofd for fixed P, H is a minimum at the con-
straint equation value ofd. As an example, whenp51,P
51, andb51/2,a51 one obtains forH@d#

H5
2

9 S d

3p D 1/2

~25112d2!,

which has a minimum atd251/12.
Now let us look at our generalized equation whengÞ0.

For the special casep5m5n,l 50 considered in this pape
we have the Lagrangian as

L~p5m5n; l 50!5E dxF1

2
wxw t1a

~wx!
p12

~p11!~p12!

2b~wx!
p~wxx!

21
g

2
wx

pwxxx
2 G .

~A25!

We introduce a trial variational function of the form

u5A cosr @d~ t !$x2q~ t !%# ~A26!

with r 54/p and the constraint

a5
~21r !~41r !~2414r 1r 2!b2

g~221r 216r !2 . ~A27!

Using the fact that

P5A2Ap
G~1/21r !

2 d G~11r !
.

.

02660
to eliminateA in favor of P, we again find we can write the
reduced action as

E dt$2Pq̇2H@P,d#%, ~A28!

where

H5~2d!2/r P112/r r 2G@11r #112/r~12b218bd2g232d4g2

120b2r 232bd2gr 1176d4g2r 219b2r 2232bd2gr 2

2172d4g2r 2224b2r 31152bd2gr 32152d4g2r 3

24b2r 4150bd2gr 42152d4g2r 414bd2gr 5

240d4g2r 523d4g2r 6!

3$4gp1/r~2216r 1r 2!2G@31r #G@1/21r #2/r%21.

~A29!

From the equation that eliminates the constraint varia
d, ]H/]d50, we find there are two solutions ford2. One
solution

d25
b

g~r 216r 22!
~A30!

is a minimum ofH@d# for fixed P and is an exact solution o
the generalized KdV equation. The other solution ford2

d25
b~312 r !~2414 r 1r 2!

g~2216 r 1r 2!~814 r 13 r 2!
~A31!

is a maximum of the energyH@d# for fixed P and is not a
solution of the equation of motion. An example discuss
earlier is the casep5r 52 with b51, g51/14, anda
596/7. In that case we have

H@d#52
8P2

9p
~10d25d31d5!, ~A32!

with two extrema:d51, which is a minimum ofH and
yields an exact solutionu5Ac/2 cos2(x2ct) and d5A2,
which is a maximum and leads tou5A3c/2 cos2A2(x2ct)
that is not a solution of the original generalized KdV equ
tion.
-

@1# P. Rosenau and J.M. Hyman, Phys. Rev. Lett.70, 564 ~1993!.
@2# P. Rosenau, Phys. Rev. Lett.73, 1737 ~1994!; Phys. Lett. A

211, 265 ~1996!; 230, 305 ~1997!; also see P.J. Olver and P
Rosenau, Phys. Rev. E53, 1900~1996!.

@3# A.Y. Li, P.J. Olver, and P. Rosenau, inNonlinear Theory of
Generalized Functions, Vienna, 1997@CRC Res. Notes Math
401, 129 ~1999!#.

@4# A.Y. Li and P.J. Olver, J. Discrete Continuous Dyn. Syst.3,
419 ~1997!.

@5# A.Y. Li and P.J. Olver, J. Discrete Continuous Dyn. Syst.4,
159 ~1998!.
@6# F. Cooper, H. Shepard, and P. Sodano, Phys. Rev. E48, 4027

~1993!.
@7# A. Khare and F. Cooper, Phys. Rev. E48, 4843~1993!.
@8# B. Dey and A. Khare, Phys. Rev. E58, R2741~1998!.
@9# F. Magri, J. Math. Phys.19, 1156~1978!.

@10# P.J. Olver,Applications of Lie Groups to Differential Equa
tions ~Springer, New York, 1986!.

@11# A. Das, Integrable Models ~World Scientific, Singapore,
1989!.
8-12



ry

g

n-

sica

hys.

COMPACTON SOLUTIONS IN A CLASS OF . . . PHYSICAL REVIEW E 64 026608
@12# V.I. Karpman, Phys. Lett. A210, 77 ~1996!.
@13# B. Dey, A. Khare, and C.N. Kumar, Phys. Lett. A223, 449

~1996!.
@14# B. Gustafsson, H-O Kreiss, and J. Oliger,Time Dependent

Problems and Difference Methods~Wiley, New York,1995!.
@15# J.M. Hyman and M. Staley, Los Alamos National Laborato

Report No. LA-UR-97-2174, 1997~unpublished!.
@16# W.E. Schiesser,Computational Mathematics in Engineerin

and Applied Science : ODEs, DAEs, and PDEs~CRC Press,
02660
Boca Raton, FL, 1993!.
@17# B. Fornberg and G.B. Whitman, Philos. Trans. R. Soc. Lo

don, Ser. A289, 373 ~1978!.
@18# B. Dey, Phys. Rev. E57, 4733~1998!.
@19# F. Cooper and H. Shepard, Phys. Lett. A194, 246 ~1994!.
@20# F. Cooper, H. Shepard, C. Lucheroni, and P. Sodano, Phy

D 68, 344 ~1993!.
@21# F. Cooper, C. Lucheroni, H. Shepard, and P. Sodano, P

Lett. A 173, 33 ~1993!.
8-13


