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Solitons play a fundamental role in the evolution of general initial data for quasilinear dispersive partial
differential equations, such as the Korteweg—de Vii€dV), nonlinear Schrdinger, and the Kadomtsev-
Petviashvili equations. These integrable equations have linear dispersion and the solitons have infinite support.
We have derived and investigate a new KdV-like Hamiltonian partial differential equation from a four-
parameter Lagrangian where the nonlinear dispersion gives rise to solitons with compact Gguppactons
The new equation does not seem to be integrable and only mass, momentum, and energy seem to be conserved,;
yet, the solitons display almost the same modal decompositions and structural stability observed in integrable
partial differential equations. The compactons formed from arbitrary initial data, are nonlinearly self-
stabilizing, and maintain their coherence after multiple collisions. The robustness of these compactons and the
inapplicability of the inverse scattering tools, that worked so well for the KdV equation, make it clear that there
is a fundamental mechanism underlying the processes beyond integrability. We have found explicit formulas
for multiple classes of compact traveling wave solutions. When there are more than one compacton solution for
a particular set of parameters, the wider compacton is the minimum of a reduced Hamiltonian and is the only
one that is stable.
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I. INTRODUCTION Because of certain scaling properties of the generalized
KdV equation that we will derive below, there always exists
Solitary waves with compact suppoftcompactons”  a subclass of solutions that have the interesting property that
were recently found in various generalizations of thethe width of the solitary wave is independent of the ampli-
Korteweg—de Vries equation. The original class of equationsude. For the above equation wher<in=n=<3, whereé¢
studied by Rosenau and Hymah,2] possessed solutions =x—ct and — w/2<d¢<m/2, the solutions of the form
that were compact solitary waves with remarkable properties. 2(m-1)
Upon scattering they reemerged with almost the same coher- Alcogdé)] 1.2
ent shape. The energy that was lost reappeared in the form
compact solitary wavescompactons and anticompactpns
(An “anticompacton” is one with a negative amplitude trav-
eling in the opposite direction to the compacjomitially
localized packets upon evolution broke up into a series of th
compactons. Thus the compactons were robust in that a
arbitrary pulse eventually ended up as compactons.

Rfave this property.

Unlike classical solitons, the compactons are nonanalytic
solutions. The points of nonanalyticity at the edge of the
compacton correspond to points of genuine nonlinearity for
The differential equation and introduce singularities in the
Mssociated dynamical system for the traveling waves. Li

One of our main interests is the light that understandin etal.[3], and|.L| and 'Olvet['4,5] havehshovyn the co][mhectmn
the dynamics of the compactons will shed on the theory o etween nonlinear dispersion and the existence of these non-

solitons. These particlelike waves exhibit both elastic and’ Isaesjcljcoac,!lasss(,)ilgzrlogosl.utigrr:seyangjzr:etrlr%n;?;tecﬁ?ﬁiﬁfnsc ar?sb e
nearly elastic collisions that are similar to the soliton inter-P y

actions associated with completely integrable partial dil,_fer_charactenzed as the limiting case of a classical analytic so-

. : i I lution.
ential equationgPDES supporting an infinite number of . . , .
conservation laws. By starting with the first order Lagrangid6,7]
The equations investigated by Rosenau and Hya, ()’

1
L(LD):J (§¢xfpt+m—a(¢x)p(¢xx)2 dx,

ut+(um)x+(un)xxxzov (11) (13)

we derived and studied a generalized sequence of KdV equa-
have several conservation laws but since it was not derivablgons of the form
from a Lagrangiahexcept for the special case of the original I—2 0 -1
Korteweg—de VriegKdV) equation, it did not possess the U U Ut a{2UP Uyt AP UPT Uy Uy
usual conservation laws of mass and energy. We thus thought +p(p—1)uP2(u,)® =0, (1.9
that by finding a similar class of equations derivable from a
Lagrangian we might be able to prove integrability using onewhere the usual field(x,t) of the generalized KdV equation
of the standard methods. is defined byu(x,t)=¢,(x,t). For 0<p<2 andl=p+2,
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these models admit compacton solutions for which the widttknown integrable PDE. We investigate compacton solutions
is independent of the amplitude. of this higher-order generalized KdV equation with special
These equations have the same terms as the equatioesphasis on the cases where the width of the compacton is
considered by Rosenau and Hyman but the relative weightsidependent of the amplitudgote that in the third-order
of the terms are different. Using the underlying Hamiltoniangeneralized KdV case, these compactons have been shown to
structure, one can shol8] using linear stability analysis as be stable We also study the scattering properties of the
well as Lyapunov stability criterion that the compactons,compactons numerically to determine if they behave simi-
whose width is independent of the amplitude, are stable unlarly to those found by Rosenau and Hyman and to see if
der perturbations. they shed any light on the integrability of these equations.
We have been unable to determine if there are examples While we do not have a rigorous proof, H§.6) seems to
within this class of equations that are integrable. In our prehave only a finite number of local conservation laws and yet
vious work[6], we attempted to repeat the induction proof of it exhibits a behavior similar to that usually associated with
the existence of an infinite number of conservation laws byintegrable equations with an infinite number of conservation
following the strategy used in the KdV equation of assuminglaws. A wide initial pulse will break into a train of compac-
the conservation laws to obey a recursion relation. We astons all having the same width but different amplitudes. The
sumed that the conserved moment&ntould be identified compactons almost remain coherent when they collmle
with a second Hamiltonian and Poisson bracket structurefor the creation of a low-amplitude oscillatory wave
The method of generating all the conservation laws from a In Sec. Il we will discuss the Hamiltonian structure of
bi-Hamiltonian structure is discussed [i@8—11. However, these classes of theories and determine the equation satisfied
when applied to this problem, the iteration method failedby a traveling wave. We use scaling arguments to show that
after a few iterations in generating further conservation lawghere are solutions with the width of the solitary wave being
except for the special case of the original KdV equation.independent of the amplitude wher=m=n+1.
Since integrability is connected with having true solitons, In Sec. lll, we obtain exact compacton solutions of the
one of the purposes of this paper is to present numericdbrm A cos d(x—ct) and verify that the relations among the
evidence that the systems described by our Lagrangian argobal variables obtained using the variational approach are
not integrable since the collision of the solitary waves leavegxact. Often there are two different compacton solutions for
behind a small wake. a single set of parameters having this same generic form.
In this paper we further generalize both the usual KdVWhen this is the case, the wider solution is found to be
Lagrangian and our previously generalized KdV Lagrangiamumerically stable. By studying a class of solutions with ar-
to preserve the invariance of the action under time, and spadstrary width parameterd variationally, we find that the
translations as well as the shift of the field by a constanstable solution is the minimum of the reduced Hamiltonian.

(p—p+a): So it seems that one can use a simple variational method to
p+2 check for stability without carrying out a complete stability
L(p.m,n |)=f I ER . i analysis.
R 2 P (p+1)(p+2) In Sec. IV, we give numerical results for the scattering of

two compactons as well as for the breakup of an arbitrary
_ m 2.7 n1 2 wave packet into several compactons.
Ble) (@)™ 2 ©xProxPxx - .9 In the Appendix we discuss a variational approach for
o _ obtaining approximate and exact solutions. We obtain the
Note that the generalization includes an extra term W“'Telationship between energy and momentum satisfied by the
higher derivatives. Recently, it has been shown in the conteX{gjitary waves and show that most of the exact solutions as
of higher-order KdV equations which admit soliton solu- we|| as the criteria for their stability could be obtained by
tions, that the higher-order derivative terms improve theassuming the exact compacton ansatz and minimizing the
range of stability of these soliton solutiof$2,13. In this  action on that class of functions. When there are multiple
paper, we will investigate the stability of the compacton so-gxact traveling wave solutions, we find that the narrow solu-
lutions of the resulting equation for the Lagrangidnb) tions are the maxima of the effective Hamiltonian and are
numerically unstable in our simulations.

« p+1 m—1,,2 m,
Uy + dyuP™ == Bmd,(u Uy ) + 280y, (uTuy)

P+l Il. GENERALIZED KdV EQUATION AND PROPERTIES
+7—nax(u”*1u'u)2(x)— y—laxx(u”u!(_luix) The generalized KdV equation, E€L.6), has the con-
2 2 served Hamiltonian,
¥y UUU) =0, (1.6 P+2 y
This new four-parameter family of nonintegrable PDEs HZJ dx —aer,Bumuf— Eu”u'xuix '

preserves energy, momentum, and mass by Noether’'s theo- (2.7
rem. Most of the previously studied nonintegrable PDEs with

soliton solutions are known to be near an integrable PDEwhereu(x,t)= ¢,(X,t). We notice that the Lagrangian given
For most of the parameter range, Ed.6) is far from any by Eq. (1.5 is invariant under the transformations)
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o(x,t)— (X, t)+cq; (i) x—x+cy, and (i) t—t+cg, Equation for solitary waves

wherec,, ¢,, andcs are constants. By a direct application of |t \we assume a solution of EqL.6) in the form of a
Noether’s theorem this leads to the three conservation 'aWt?aveIing wave

of massM, momentunP, and energyH whereH is given by

Eqg. (2.1 andM andP are given by u(x,t)y=f(x—ct)y=f(y), (2.7

1 ) one obtains on integrating once
M= | u(x,t)dx, P=3]| us(x,t)dx. (2.2

o
= P+1_ m—1¢2 m
The equation of motion, Eq1.6), is also invariant under the cf p+ 1f Bm(TTY) + 280y (T7y)

transformations given by

LAL 4 ~
u—ku, x—k&, t— kPt + 7(fn 1f|yf32/y)_ ?ay(fnfly 1f§y)+ '}’ayy(fnflyfyy)
provided that +cy, (2.8
n+l—p m—p wherec, is a constant of integration. This equation needs
14 =a= 5 b=a—p. several more integrations before a solution in terms of

quadrature is obtained unlike the previous equation we stud-
We thus obtain the following scaling relation between speedi€d Where two integrations were sufficient. Thus an explicit
width, and the amplitude of the traveling wave: solution in terms of quadratures is not gvallable and one
must use an “educated” guess ansatz to find exact solutions.
u(x—ct)=(\)Ye-ayf(n)@b-ax—)\ct]}. (2.3  Some properties of the solitary waves can be obtained before
obtaining exact solutions.
In the special case si=p=n+1, a=0. It then follows that In obtaining exact solutions, we found some values of the
the soliton width is independent of the amplitude. Also weparameter where analysis is much simplified. From @)
would like to point out that all the compactons so far discov-we find that this occurs at the special valygs m=n+I,
ered with width independent of amplitude have the propertyvhere the solitary wave solutions have compact support and

that the field equations are invariant under the feature that their width is independent of the amplitude.
By considering trial variational wave functions of a post-
u—ku, x—x, t—kPt. Gaussian type, as doneli6] and sketched in the Appendix,

one finds that the solitary waves wigh=m=n+1 obey re-
The canonical structures of these theories is similar tdations of the form

those found irf6] in that by postulating thai(x) satisfy the
Poisson bracket structuféi] 2c
H=- pr2 P. (2.9
{u(x),u(y)}=dx8(x~y) (2.9
The variational approach leads to solutions that correspond
to ¢;=0. When this relation is satisfied, the above connec-
tion between the conserved quantities is found to be true for
utzﬁxﬁz{u,H}, (2.5 the exact solution. For the special cases wle# 0 this
ou relation is no longer true. We also find that many of the
. ) . ] ) solitary wave solutions found by the variational method are
with H being given by Eq(2.1). We also find that with our  ynstable in that they are stationary values of the Hamiltonian
definition of P given by Eq.(2.2), P is indeed the generator that are not minima as a function of the variational param-
of the space translations eters. We have found numerically that the exact solitary
waves associated with these variational ones will be unstable

we obtain that

u(x,t) P}zﬁ_ (2.6) whenever the variational ones are unstable. This suggests

u

ax’ that stability in the subspace of the variational parameters is
a useful guide for understanding the results of our numerical

Since our equation is a generalization of the equation dissimulations.

cussed irf6], one is also not able to show the existence of a Before proceeding with our study of solitary waves, we

bi-Hamiltonian structure using the conserved momentum afst remind the reader that at=0 the Lagrangian we are

a possible lsecond Hamiltonian as was done for the ordinarytudying reduces to the previously generalized KdV problem

KdV equation[9,10]. So on these grounds one expects thaive studied[6] so that these equations include all the KdV

our general Lagrangian may not correspond to an exactlgolitons and compactons that we discussed earlier as a spe-

integrable system, except for the original KdV equation casegial case. In this paper, we will find exact solutions of Eq.
Our numerical results on scattering where there is some en2.g) by inserting the ansatz

ergy going into compacton pair production following scatter-
ing supports this expectation. f(y)=Acos(dy) (2.10
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and determining the parameteksr, andd by a consistency
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being nonzero. First let us consider the case when0. In

argument. In the appendix we show that the stability of thethat case for consistency we need eithger=2 orrp=4.

solutions can be inferretbut not proven by studying the
behavior of the energy as a function of the paramdter

IIl. EXACT COMPACTON SOLUTIONS

Our variational calculations described in the Appendix

suggest that at the particular case whprem=n+1+#0,

which corresponds to compactons whose width is indepen-
dent of amplitude, the analysis simplifies greatly, so we will

restrict our attention to this case, which already has quite
rich structure. Assuming a solution of the form

—ar

u(x,t)=Acos[d(x—ct)], 5

ar
sd(x—ct)sE,
(3.1

u(x,t)=0, [d(x— ct)|>g,

we look for consistent solutions fa, r, ¢, and din terms of

a, B, v, andc, that are real. Having found these solutions
we then check whether these solutions are the maxima or the

minima of the effective Hamiltonian defined in the Appendix
as a function of the width parametdr When the effective

1. rp=2

Whenrp=2 Eq. (3.2 tells us that eithery=0 orr=1.
When y=0, we get the solution we found in our earlier
work [7], namely,

ap?

d?=
4B(1+p)(2+p)’

2 c(1+p)(2+p)

2a

When y#0 we instead get the solutian=1 (p=2), and

C

2_
A - 2Bd°—6d%y

and two possible solutions for the width

128+ [144B°—120a y

60y

d2

Hamiltonian is a maximum, these narrower solutions turn oufVhich means that we also can write the equation/bras

(by numerical investigationto be unstable at the leading

edge of the soliton. This numerical instability of the narrow
solitons continues to be observed even after extensive grid

2

c=—+

: (a—2Bd?).

refinement. Thus the effective Hamiltonian method presents

a simple way of checking stability. It is also true that the Thus wheny#0 (andpr=2) one only gets a solution when
more general variational approximations are either stable op=2. A particular case of this solution i8=6, y=3, and
unstable depending on whether the effective Hamiltonian is #=4. Then there are two solutions. The first is

minimum with respect to the variational parameters.
Now let us look at various cases.

A. p=m=n and =0 case

For the casgg=m=n and|=0 it is possible to find a
general class of solutions for arbitrapy Inserting a trial
solution of the form Eq(2.10 into Eq. (2.8) we obtain the
consistency equation

0=—3c;+2AcX + AL Px 4P (1 —r)rd*y
X (12—10r +2r2—11rp+5r?p+2r?p?)
+2AL P 2P g2(— 24 21 +1p)
X (—pB+2d?y—2rd?y+r2d?y—rd?yp+2r3d? yp)
+AYPr2g2(2+p)(28—r2d?y—2r2 d2yp)x" P

_%pAlﬁ—pa,XH—rp_

(3.2
Here x=cos(y). All the powers ofx must have zero co-
efficient for the trial solution to be an actual solution. This
leads to various conditions depending on the valuasanfd
p. If r(1+p)=4 then there can also be solutions with

312 s(X_Ct) 3.3
u=+/3c/2co ) .
V3
The conserved quantities for this solution are
3 3
M=3\2c, P= g\/§cm H=— 1—6\/§C27T,
which satisy the relationshif®2.9).
The second solution
B [25¢c  x—ct 3.4
u= > cosf (3.4
has as its conserved quantities
- [10c _ 255c7 _ 25{5¢%7
N1 T 88 176

Thus, again the relationshi|2.9) is satisfied.

We can check whether these solutions are the maxima or
the minima of the reduced Hamiltonian discussed in the Ap-
pendix. Inserting the trial wave function
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the effective action using the compacton ansatz. In that case

o o
u=Acos[dy], -5 =dy=-, y=x-q(t) 35 one also gets another solution wittf=1j, which is the
maximum of the Hamiltonian witid?=1 being the mini-
into the action and using the relationship mum as a function oé.
(i) p=m=n=2, =0. In this case we obtain the condi-
A2:4d—P tions
a
r=2, d’= A 2 (3.10

and also the above values ef 8, andy, we obtain for the 14y’ A ~28d%y
effective Hamiltonian

5 ChoosingB=1, y= &, anda=%, we obtainc=2A? and
H= P—(—9d5+8d3—3d). (3.  the solution is
a

c
The solitary wave solutions are the stationary points of the u= \[Ecosz(x—ct). (3.11)
actions and are, therefore, also stationary values of the
Hamiltonian. These stationary values a*%_zl/?' which is o this choice of parameters we obtain for the conserved
the minimum of the energy ardf=1/3, which is the maxi- quantities
mum of the energy. We have confirmed numerically that the

narrower compacton wittl?=1/3 is unstable. We have also mc 3mc 37c2
shown numerically(see below that if we start with initial M=—-, P=§, H=- o4
compact data that is wider than the compacton with 2\2

=1/5 it breaks up into a number of these compactons. so that the relationshi2.9) is again exact. For these param-

eters, if we use the compacton form as the trial wave func-

. . tion then the effective Hamiltonian for the variational param-
Let us now consider the case=4/p, with c;=0. When  eterd is

y=0, one of the consistency conditioAx=0 can only be

2. rp=4 case

satisfied for static solutions. When# 0 the consistency con- 8p? _—
ditions lead to H=— 5 (10d—5d°+d”). (3.12
2_ B This Hamiltonian has two stationary points as a function of
Y(r+6r-2)’ d, d=1 (minimum andd= 2 (maximum. The second so-
(3.7 lution is not a solution to the equation of motion.
AP— c Next, let us consider a particular special solution for the
C(r=1)r3(5+r)d*y’ casec;#0, p=m=n=1, |=0. For this case we have

=2. Assuming a solution of the form
with the parameters also obeying the constraint
u(y)=A cog(dy)
_(@24n)(4+1n)(- 44471 +r2)B2

(—2+6r+r%)2y . 38  we get the consistency equations
Let us look at two examples from this class of solutions. c1=—6A%d%y, (3.13
(i) p=m=n=1, 1=0. The solution is of the form
/
u=Acog(dy). 127[,3“”(,3 —ay)¥, (3.19
Choosing, for exampley=1/38 andB=1, the above rela- c
tions yieldd=1, A=19c/216, anda=672/19. Thus the so- A= ——— . (3.15
lution is 8d°(B—8vyd?)
19 For the special choice ak=5, =3, andy=1, there
U= cog(x—ct). (3.9  are two real solutions fod? corresponding tal®=1/12 and

d?=5/12. The first solution, which is stable and which we
will discuss further in our section on numerical simulations,

For this solution we have that the global quantities are <
i

1% 12 63%%7 1263537

576’ | 11943936 ' 17915904 cos’-(x Ct) (3.16

V12
so that the relationshif2.9) is again exact. We show in the
Appendix that this solution can also be found by minimizing This solution has for its constants of motion
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9./37c 243mc?\3 2349c3m ) Jc
= 14 P_W, H—m. (i) U—7COS\/§(X—C'[) (32@
Thus we obtain and we obtain for the conserved quantities
H_2% cw mc?
P 42 M=\cl2, P=——, H=———

16y2" 322"
This shows a failure of the relationsh{@.9). . . _ .
The second solution, which we found to be numerically Thus both these solutions again obey the relationship as
unstable, is given by Eq.(2.9. The second solution with?=2 turns out
to be numerically unstable.

9c 5 For p=2 andr =2 we get the relations
u=—-——cos| \/==(x—ct)|[, c>0. (3.17
10 12 3 6
C]_ZSA d Y,
The conserved quantitidd, M, andP are given by
c=—208A%d°%y
_9mcy3  _ 243mc?\3
-~ 105°  800(5 — a+483d2+1152d5y=0 (3.21
3.1
81mc3\3 (3.18 as well as one constraint among the parameters
1600\/§ ,8: —48d4'y.

Thus we again find the breakdown of the relationship a
given by Eqg.(2.9. It may be noted here that the special
solutions withc;#0 are not obtainable from a variational

calculation. In any case, these are a very restricted class of dé=— ]
solutions. 1152y

%Iiminating the constraint, we obtain for the width

a

(3.22

As an example, if we choosg= —3 anda=3456 then we

B. p=m=I and n=0 case -
haved=1 and for our solution

For this case inserting a trial solution of the form
=Acos dy usually leads to an overdetermined set of equa- 1/2
tions. For example fop=1,r=2 we obtain conditions that u=—|==| cog(x—ct).
- . _ PP 4\ 39
have only a trivial solution. Fgp=2 the situation is simpler

and one obtains, when=1, the two relations . . .
We have not exhausted all possible solutions for this case,

c but the method for finding them should be clear to the reader
Al by now.
2B8d*+5d%y
and C. Some other general cases
Whenl+n=p=m, we instead have one-parameter fam-
0=18d°y+12d*8—a. ily of solutions depending on the velocity That is, for fixed
] N a, B, and vy there is a solution of different amplitude for
These equations can have two or even three positive Sjifferent velocitiesc. In some special cases there is the pos-
lutions for d®. One particular case i&=216, =21, and  sihility for two different solutions with the same value af
y=—2. In this case we get two positive solutions %,  However, in general, for a givea, 8, andy there is only
namely,d=1 leading to one solution with a fixed velocity. To illustrate this fact, let
us consider the case

) N[V
(i) u=Tcos(x—ct), (3.19 p=n, m==0.
where the constants of motion are Inserting a trial solution of the form
1 cm mc? u=AcogP[d(x—ct)], p#2 (3.23
M—E\/C/Z, P—Es, H——2—56
into Eqg.(2.8), we obtain, for example, fop=1, =1, and
andd?=2 giving the solution a=—1/2 the conditions
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d=Dl(p+1)(2p%+ 4p+3)] 4

[(p+1)(2p*+4p+3)]*%  (3.29

8B
|
A
2B(p?+8p+4)
cC= .
(4—p*)\(p+1)(2p°+4p+3)

Choosing, for examplep=n=1, [=m=0, y=1, and«a
= —1/2 we get the single solution

( 13@)
X— 1
u=8y2cod| —~ 3.2
V2 218 (3.25
The constants of motion for this case are

400m(2)%4
M=8mx(2)%/3, P=487(2)Y4/3, H=— ——"—

(2)%3 (2)¥y3 35

so thatH/P= —25c/39, which not unexpectedly does not
obey relation(2.9). Note that in this case the width of the

compacton solution is not independent of its amplitude.
For the special case whgn=n=2, one obtains

u=Acosdy.
Whenm=I1=0, we find

a ’ 150')/( a,B)
=—>"|c .

4: —_—— —
d 30y’ A o’ * 15y

Choosing furthel3=a=1 andy= —1/30, and we obtain

u=+10—c cosy.

PWSICAL REVIEW E 64 026608

in time with a variable order, variable timestep Adams-
Bashford-Moulton method using the method of lines ap-
proach as described in detail by Schieqddé]. The numeri-

cal errors were monitored by varying the number of discrete
Fourier modes between 128 and 512 and varying the esti-
mated time error per unit step between %0and 10° to
ensure that the solutions were well converged to within“10

in the L, norm. Also, the mass and momentum were con-
served to an accuracy of at least f0and the Hamiltonian
was conserved to an accuracy of better than?1id all the
calculations.

The numerical approximation must respect the delicate
balance between the nonlinear numerical dispersion terms in
the equation. For example, when the third term in @cf) is
expanded, it has a diffusionlike termgn(u™ tu,)u,,. On
the trailing edge of the compactan,>0 and this term acts
like a destabilizing backward diffusion operator. The solution
would be unstable if it were not for the stabilizing nonlinear
dispersion. This balance is easily lost in numerical approxi-
mation if the aliasing, due to the nonlinearities, is not
handled carefully. The loss of this delicate balance in very
steep fronts may be the reason that the numerical simulations
break down for very narrow initial data.

To identify numerical artifacts due to aliasing and other
discrete effects, we solved the equations with the nonlinear
terms expanded in different formulations. We compared the
solutions of Eq.(1.6) when they were differenced in diver-
gence form and when the derivatives in the nonlinear terms
were expanded. Although the numerical solutions in all these
formulations were qualitatively similar, in very long integra-
tions we found that integrating E@L.6) in divergence form
was more stable and preserved the conservation laws better
than the approximations where the nonlinear terms were ex-
panded.

The lack of smoothness at the edge of the compacton
introduces high-frequency dispersive errors into the calcula-
tion. These dispersive errors can destroy the accuracy of the
simulation unless they are explicitly damped. To reduce these

So, again for this special case we get a continuous family ogrrors while preserving as much accuracy as we could for the
solutions as long as<10. The constants of motion are now |ower frequency modes in the solution, we explicitly added

M=2y10—c,

_ o _ o
P=7(10-¢c), H=;,10-c)(30-¢)

and relation( 2.9) is again not obeyed.

For any particular value g, m, n, andl one can always

find the consistency condition on the parameterg, v, A,

an artificial dissipatiorihyperviscosity term SAxFu,, to the

right side of Eq.(1.6). The high-pass filteF was defined in
Fourier space to eliminate the lowest 1/3 Fourier modes and
leave the highest 1/3 modes unchanged and was a linear
transition between the two regions. Thus the dissipation has
no direct effect on the lower 1/3 of the Fourier modes of the
solution and only introduces dissipation into the higher

d, g andc so that solitary wave solutions of the form modes. We also experimented in solving the equation with
A cosl(dy) exist. However we do not have a simple expres-other artificial dissipation terms based on fourth spatial de-

sion for these parameters for gl m, n, and| and have

instead looked at some simple cases above.

IV. NUMERICAL STUDY OF THE GENERALIZED KdV
EQUATION

A. Numerical method

rivatives and mixed space time derivatives. All the solutions

behaved qualitatively the same, but the filtered hyperviscos-
ity approach preserved the conserved quantities better than
any other approach we tried and was the most stable for the
widest range of problems. This is the same hyperviscosity
term used in the original Rosenau-Hyman calculations. The
modified PDE with the artificial dissipation no longer pre-

In our calculations, we approximated the spatial deriva-serves the Hamiltonian and we chose the paraniesperi-
tives with a pseudo-spectral methft4] using the discrete mentally to minimize the aliasing errors, while conserving
Fourier transform{DFT) [15]. The equations were integrated the Hamiltonian to within 1%. The momentulry norm of
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FIG. 3. A different graphical view of break up of the initial
conditions shown in Fig. 2 decomposing into compactons.

FIG. 1. Pulse with an initial width four times that of the com-
pacton of Eq.(3.16 pertaining to the parametep=m=n=1, |

0, anda=58=3.y=1, namely,up= &cod](x—30)/(4/12)]. the studies of Rosenau and Hyman in their third-order

The initial wide pulse breaks into compactons that collide nearlyg(':'nerallzed KdV E_)quanon. However, unlike _the Rosenau-
elastically. Note the phase shift of the slower pulse after colliding™ymMan equation witm=n=2, the momentum is conserved
with a faster, higher compacton. in Eq. (1.6). Therefore, when a compacton-anticompacton

pair is created in a collision the compactons must necessarily
the solution was also monitored and converged withinleave their momentum behind and the collision cannot be
0.01%. elastic.

We used a local average efu,/u, to estimate the local The first generic feature of these equations is that arbi-
traveling wave velocity and computed the quantitytrary initial compact data, as long as the width of the packet
(ur) . /u* with r=1, 2, and 4 to verify the shape of the is larger than that of the compacton, evolve into several com-
solution. Both these quantities are constant for travelingpactons with the number depending on the initial energy. We
wave solutions of the form E¢2.10. This approach allowed remark that when the initial pulse was much narrower than
us to estimate the velocity of the wave and the parameters ithe compacton that minimizes the reduced Hamiltonian, our
Eq. (2.10 within 0.1%. numerical solutions were unstable at the leading edge of the

_In the simulations shown here we uséd 10, solved the pyise. This instability was independent of the number of
divergence form of the equations with 128 DFT modes ancEourier modes used in the numerical simulation.
specified a time error of 10’ per unit time. We show the decomposition of a wide intial pulse for two
o o different cases. The first case is related to the compacton of
B. Numerical investigations Eq. (3.16. We start off with an initial pulse, which is four

For the original Rosenau and Hyman compacton equatimes the width of the compacton and watch it evolve. This is
tions numerical investigations showed some remarkableéhown in Fig. 1.
properties, namely, whatever initial compact data was given, In Figs. 2 and 3 we show the same phenomena for the
it eventually evolved into compactons. When two compac-compacton system described by E®.4), again starting
tons scattered, any energy not in the original pair of compacfrom initial data wide compared to the compacton solution.
tons emerged as compacton-anticompacton pairs. We will In Figs. 4 and 5 we show similar features of the breakup
find that the compactons of this fifth-order generalized KdVof a compact wave for the compacton E8.9).
equation have similar properties to those previously found in  Then next generic feature is what happens when two com-
pactons of different speeds collide. The compactons remain
coherent and experience a phase shift. This is shown in Fig.

0.30
0.25¢ L E

0.20¢ h ]
0.15
0.10
0.05

0.00

-0.05 ‘ ‘ ‘ ‘
A0S

e °° 0 10 20 30 40 50

~~ X

u(x,t)

oo &S

FIG. 2. The decomposition of an initial pulse for the parameters FIG. 4. Break up of a compact wave with four times the width
p=m=n=2/=0, ande=6,8=4,y=3 relevant to Eq(3.4. An  of the compactonp=m=n=1/=0, ande=55,8=1,y=35. An
initial compact wave (solid line) uy=/(25/22) cob(x—30)/6] initial compact wave(solid line) u0=2%co§‘[(x—7.5)/4] breaks
wider than a compacton width breaks into a string of compactoninto a string of compactons with the shapeos' (x—ct) by timet
with the shapeA cog(x—ct)/y/5]. =10 (dashed ling
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FIG. 7. Aripple(solid line) is created when the compactons first
collide in Fig. 6. This ripple was extracted from the solutiont at
=25 and used as an initial condition. By tinhe 500, the ripple
(dashed ling has separated into compactons traveling in opposite

6 for the compactons described by E§.16). st :
There are significant differences between the collision dydirections. _These compactons have a shape proportional to

namics of the compactons and the solitons in integrabl@cosz(y/\/l—z)'

equations. The main difference is that in an integrable sys- idth of the stabl ; find icallv. bl
tem, the infinite number of conservation laws only allow for Width ot the stable compacton, one finds numerically, blow

time delays and the final product of scattering does no p at later times. The nu_mgricallsimulations converge up to
change the shape at all. Here, the resulting solitary wave e blowup time as the grid is refined. However, although we

have slightly reduced amplitude, but otherwise maintain thei glleve the bI.OW up'is a property of the dlﬁgrent|al e'quatlon,
It is not certain that it is not a numerical artifact. This effect

shape after scattering. Unlike the soliton collisions in an in-, h i Fia. 8 for th ¢ - Figs. 6 and
tegrable system, the point where two compactons collide i§ 5 own in F1g. ¢ for the same compactons as in Figs. 6 an

marked by the creation of a low amplitude %) compact
oscillatory ripple. This ripple does not disperse but becomes
compacton-anticompacton pairs. These resultant compactons V. SUMMARY

also have exactly the same shajapart from their ampli- We have generalized the Lagrangian for the KdV equation
tudes as the initial ones. After the collision, the original i the one that supports a wide class of KdV-like equations
compactons emerge intact, just like classical, integrable soliynq preserves the invariance of the action under time and
tons, indicating that the remarkable stability of the solitaryspace translations as well as the shift of the field by a con-
waves lies deeper than mere integrability. The first collisionsiant. We have derived explicit formulas for the traveling
shown in Fig. 6 creates a ripple, shown in Fig. 7, that deyyayes for this equation and demonstrated in numerical ex-
composes Into compacton-anticompacton pairs. periments that the traveling waves exhibit solitonlike behav-
In an earlier numerical study of nonlinear wave phenom-o; Even though the equation is most likely not integrable
ena[17] in generalized KdV equations it was also found thatang satisfies only a handful of conservation laws, our nu-
following the scattering of solitary waves a ripple or wake merical experiments indicate that the compactons for these
was left behind. However these authors did not have enoug8yyations play the role of nonlinear local basis functions.
resolution to show if this wake turned into solitary waves orpgsitive compact initial datéwider than a compactorde-
whether the wake dispersed. _ _ composes into a train of nonlinearly stable compactons. The
When a compacton and an anticompacton collide as wellppystness of these compactons makes it clear that there is a
as when one starts with initial data that is narrower than the,,qamental mechanism underlying the process that does not

FIG. 5. Gray scale contour plot of the evolution of the compac-
tons in Fig. 4.

1.5
150
100f ¥ ¥§
=5}
g R
= 7 ¥ ¥
50 ¥
=
)
X
FIG. 6. Collision of two solitons for the casg=m=n=1| FIG. 8. Possible blowup after a compacton-anticompacton col-

=0, and «=5,8=3,y=1. Two compactons described by Eg. lision. p=m=n=1]=0, anda=5,8=3,y=1. Two compactons
(3.16 collide. One has speet=2 and the other has speed-1. described by Eq(3.16 with speedc=+1 andc= —1 collide. The
Note the phase shift in the slower compacton after the collisionnumerical solution breaks down slightly after 15. It is not clear if
These compactons remained coherent, even after dozens more ctite break down is due to the steep gradients in the solution or
lisions. because there is a true singularity that develops in the equations.
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require the equation to be integrable. However the solutions found are often maxima or saddle
Following the initial research presented in this paper, Deypoints of the action. We find from our numerical experiments
[18] considered a slightly different version of the fifth-order that when this happens, our computer simulation of the exact
KdV-like equation and obtained compacton solutions that areolitary wave solution is unstable. In particular, the numeri-
similar to solutions described here. Our future study of theseal simulation of the exact narrow traveling wave, and in fact
nonlinear PDEs will aim at understanding the nonlinearany compact initial conditions that are significantly narrower
mechanism that causes these structures to be so robust. Rean the stable wider compacton, blow up at the leading edge
search into this mechanism has the potential of opening newf the pulse. We do not know if this blowup is due to a
doors in our understanding of the central role of solitons innumerical instability or to an inherent instability in the equa-

nonlinear dispersion. tions.
For the special case gf=m=n+1, a simple variational
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APPENDIX: VARIATIONAL APPROACH The exact solitary wave solutions satisfy this relationship as

) o . long as the integration constaey of Eq. (2.8), is zero.
Our time-dependent variational approach for studying The starting point for the variational calculation is the

solitary waves is based on the principle of least action. 'nactionI‘sz dt, whereL is given by Eq(1.3). Inserting the
previous works[6,19-21, we introduced a post-Gaussian tia] wave functionu. we obtain
v

variational approximation, a continuous family of trial varia-

tional functions more general than Gaussians, which can still

be treated analytically. We assumed a variational ansatz of ]"(qlﬁ,pls):f dtf —Pg—Heg], (AB)
the form

u,(x,t)=A(t)exd —b(t)|x—q(t)[>]. where Ho¢ is the Hamiltonian evaluated using the varia-
_tional wave functionu,. The effective Hamiltonian is a
function of the variational paramePsb,s. The parameters

terms of expectation values with respect to the “probability” 5, ¢ are determined by finding the stationary points of the

P, action. This leads either #d being either a minimum, maxi-
2 mum, or saddle point as a function of these variables. Only
P(x,t)= [u,(x.1)] , (A1) the approximate solitary waves corresponding to a minimum
2P of the effective Hamiltonian turn out to correspond to stable

) ) exact solitary wave solutions of the compacton variety.
where the conserved momenturis defined as above,

1. Exact variational ansatz

1
E—f [u,(x,1)]?dx. (A2) . .
2 Now we would like to ask the question, to what extent we

could recover from the variational ansatz the exact solitary
We haveq(t) =(x), wave solutions we have discovered earlier by trial and error.
That is, if we assume solutions of the form

1
Gag=(Ix—a(*)= 455 (A3) o _
At)cos[b({x—q(t)}], —-=b{x—q(t)}=-
and
PL2(2h)Y4s for compact solitary waves and
AY=r—7 (A4)
r £+1 A(t)sech[b(t){x—q(t)}]

Extremizing the effective action for the trial wave function for ordinary solitary waves, would we recover all the exact
u, leads to Lagrange’s equations for the variational paramsolutions? We also want to make the suggestion that the sta-
eters. We find that for all values of the parametérm(n,p) bility of the solitary wave solutions found in this manner is
the dynamics of the variational parameters lead to solitargletermined by whether these solutions are minima of the
waves moving with constant velocity and constant width.effective Hamiltonian as a function of the paramei¢r).
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First let us show that for the KdV equation and for the ThusA= —c/2 and we get the usual exact answer
generalized KdV equation we investigated earlier, we indeed

obtain the exact solution. The Lagrangian for the KdV equa-

tion is

1
E(Px(Pt_((Px)S_ E(@xx)z}-

1
szdx

The conserved Hamiltonian is given by

Hzfdx

Assuming the trial wave function

1
(‘Px)3+ E(‘Pxx)z}-

ex=u(x,t)=A(t)sech[b(t){x—q(t)}], (A7)

we find that the reduced action is

I'=—Pqg—H[A(P),b], (A8)
where
P= f %uz dx= ZA;ét) (A9)
and
H= EAZ(%er). (A10)
15 b
We can rewriteH in terms of A as follows:
H= g P{=(6bP)Y2+p?}, (A11)

where we have used the two possible solutions

3bP\ 12
a==( %77

Since the Hamiltonian is independent®fP is conservedb
is a variable of constraint and is eliminated by the equation

1/2

+2b. (A12)

Only the negative choice & in terms ofP yields a positive

solution forb, namely,

(6P)l/3
b= 4273 (AL3)
Eliminating b, the reduced action is
. (3P)°®
F=-Pg+—¢ (A14)

Varying the action we find the velocity is a constant,

q=(3P)**=c.

1/2
u(x,t)y=— Esecﬁ T(X—Ct) . (A15)
We also find that
4
H=zP{~(6bP) Y2+ p?} (Al6)

has a minimum at the exact value ofor fixed P.

Next we consider the class of exact compact solitary
waves that we found for the generalized KdV equation of
Ref.[7]. In this case the Lagrangian is

1
L=fdx

1
E‘Px‘Pt-" am( (Px)p+2_ :8905( (Pxx)z}

and the Hamiltonian is
a p+2 p 2
——( <Px) + B‘Px(Qoxx) .

H:fdx p(p+1)

Now we assume a solution of the form= 2/p)

ex=u(x,t)=AcosPld(t){x—q(t)}],  (A17)
We obtain for the reduced action
I'=—Pqg—H[A,d], (A18)
where now
2
- Az j(f)rr((lll T;p/f))) ’ (AL9)

AZTP{ABd*(2+3p+p?)— a(4p+ pz)}ﬁr(%+ g)

H:

2
2dp?(1+p)(2+p)l'| 2+ 5)
(A20)
On using the relation as given by EgA19) we obtain

H= (Zd)p/2pl+ p/2

{4Bd%(2+3p+p?)— a(4p+p?)}TP?2

2
1+
X

(2 p+5p?+4pi+pt)wPlAre?

1 2
27p
(A21)

We determine the constraint varialléy sH/9d=0, and
obtain

_ ap?
C4B(p+1)(p+2)°

Lagrange’s equations give

d? (A22)
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o oH B pt+2[H 293
9=C=--5=~"">p (A23)
We then have that
pp CPTD(PF2)
2a
and recover our previous exact requit
c(p+1)(p+2)|** p(x—ct)
ux,t)y=|——— P )
2a [4a(p+1)(p+2)]*

(A24)

As a function ofd for fixed P, H is a minimum at the con-
straint equation value ofl. As an example, whep=1,P
=1, andB=1/2,a¢=1 one obtains foH[d]

2/ d 1/2
I _ 2
H 9(377) (=5+12d),
which has a minimum at®=1/12.

Now let us look at our generalized equation whe# 0.
For the special case=m=n,| =0 considered in this paper,
we have the Lagrangian as

L 1 (‘Px)p+2

Y
_ﬁ(<PX)p( ‘Pxx)2+ E@Q‘Pixx :

(A25)

We introduce a trial variational function of the form

u=Acos [d(t){x—q(t)}] (A26)
with r=4/p and the constraint
2
o (2+1)(4+1)(—4+4r+r2)B? (A27)

Y(—2+1%+6r)*
Using the fact that

T(1/2+7)
2dT(1+r)

S kLN

PHYSICAL REVIEW B4 026608

to eliminateA in favor of P, we again find we can write the
reduced action as

J dt{—Pq—H[P,d]}, (A28)

where
H :(Zd)2/rpl+2/rr2r[1+r]1+2/r(1232_|_ 8,3d2’y— 32d4’)/2

+2082%r — 32Bd%yr + 176d*y%r — 198%r2— 32Bd% yr?

—1720%)?r?—24p%r3+ 1528d% yr*— 152%y°r3

—4B%r*+508d%yr— 15204 y?r*+ 4 8d%yr®

_4w4,}/2r5_3d4,}/2r6)

X {4y (—2+6r+r2)2T[3+r|[[1/2+r]?} L.
(A29)

From the equation that eliminates the constraint variable
d, 9H/ad=0, we find there are two solutions faF. One
solution

.

Srer—2) (A30)

is a minimum ofH[ d] for fixed P and is an exact solution of
the generalized KdV equation. The other solution dér

,  BBt2r)(—4+4r+r?)
Cy(—2+6r+r%)(8+4r+3r?)

(A31)

is a maximum of the energp[d] for fixed P and is not a
solution of the equation of motion. An example discussed
earlier is the casgp=r=2 with g=1, y=1/14, and«
=96/7. In that case we have

2

Aldl==9r

(10d—5d3+d®), (A32)
with two extrema:d=1, which is a minimum ofH and
yields an exact solutioru=/c/2 cog(x—ct) and d=/2,
which is a maximum and leads to=\/3c/2 cog\/2(x— ct)
that is not a solution of the original generalized KdV equa-
tion.
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