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Abstract

We explore the validity of asymptotic models for water waves by investigating
the interactions of finite amplitude solitary waves of the Euler equations and its ap-
proximating models: the Korteweg-de Vries, the Boussinesq, and the Green-Naghdi
equations. The nonlinear surface wave dynamics governed by the two-dimensional
Euler equations is simulated by a new numerical method that solves a system of
exact one-dimensional equations reduced from the original system. Traveling wave
solutions of this new system are compared with those of the asymptotic models by
examining the differences between the speeds, amplitudes and mass of the solitary
waves. Both head-on and overtaking collisions of two solitary waves are calculated
and analyzed in detail. From our numerical simulations, all the asymptotic models
accurately describe the dynamics of small amplitude solitary waves. However, large
amplitude waves are much better approximated by the Green-Naghdi equations than
the weakly nonlinear asymptotic models.

1 Introduction

We consider the evolution of strongly nonlinear long waves on the free surface in a ho-
mogeneous layer of an ideal fluid governed by the two-dimensional Euler equations. We
compare numerical solutions of the Euler equations with the much simpler approximate
models derived from the original system. The validity of the approximate models is ex-
plored by systematically comparing numerical solutions of the Euler equations for solitary

waves interactions with those of the approximate models.
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Because the full Euler equations are often too complicated to analyze directly, simpler
models are commonly used to gain insight into the physical processes governed by these
equations (for example, see Choi, 1995). Small-amplitude, long-wavelength waves are ap-
proximated by weakly nonlinear long wave models such as the Korteweg-deVries (KdV)
and the Boussinesq equations (Korteweg & de Vries 1895; Boussinesq 1877). These equa-
tions have led researchers to better understand the physical behaviour of nonlinear waves,
and to develop new mathematical theories to explain their behaviour (Scott et al 1973).
However the weakly nonlinear models are not valid for large amplitude waves for which
nonlinear effects become more important. Relaxing the assumption that waves have small
amplitude leads to the higher-order nonlinear long wave models such as the Green-Naghdi
(GN) equations (Green & Naughdi 1976). Although the GN equations were originally de-
rived using the direct-sheet method, it was shown that they can also be derived directly
from the Euler equations by an asymptotic expansion method (Choi & Camassa 1999a).

The Fourier and the boundary integral methods are among the most widely used meth-
ods to solve the Euler equations. Expressing the wave profile and the velocity potential as
the Fourier series in horizontal space, Fenton & Rienecker (1982) combined the fast Fourier
transform with the leap-frog scheme for the time evolution to numerically solve the equa-
tions. The boundary integral method is based on parameterizing the free surface using the
Lagrangian coordinates and, by applying the Green’s theorem, the velocity potential is
expressed in terms of a distribution of singularities on the free surface. (Longuet-Higgins
& Cokelet (1976)). The method has been applied for various discretizations of the singular
integrals that must be approximated.

Here we solve a system of pseudo-differential evolution equations reduced from the
Euler equations for the free surface elevation and the velocity potential on the parame-
terized free surface. This system was first derived by Dyachenko, Zakharov & Kuznetsov
(1996) by using the time-dependent conformal mapping of the fluid region of interest to a
strip. This idea was further developed and tested by Choi & Camassa (1999b) for periodic

traveling waves. The new formulation provides a novel way of computing the evolution of
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fully nonlinear surface waves without solving the two-dimensional Euler equations. Un-
like the boundary integral method, the new formulation does not require approximating
complicated singular integrals and is easily approximated by the discrete Fourier trans-
formation.

After describing our numerical method for solving the new exact evolution equations,
we review the derivation of the KdV, the Boussinesq, and the GN equations, and describe
the relationships between them. We then compare our numerical solutions for solitary
waves with those for the approximate models. Finally, we study solitary wave collisions

and discuss the differences between the waves following the collision.

2 Exact evolution equations

A two-dimensional ideal flow between the free surface at y = ((z,t) and a flat bottom at
y = —h is governed by the Euler equations. These equations can be expressed in terms

of the velocity potential ®(x,y,t) as

&, + Dy =0, —h<y<(, —o0o<z<o00,
q)y:<t+q)z‘<za —00 <z < 00, ’yZC(.’L',t), (2 1)
<I>t+%|V<I>|2+gy:S+’PE/,0, —o0 <z <00, y=_((z,t), :
o, =0, —oo <z <00, y=—h.

Here p is the fluid density, S = 0(y,/(1 + ¢2)%? is the surface tension, and Pg(z,1) is a
prescribed external atmospheric pressure.

Following the work by Dyachenko et al (1996) and Choi & Camassa (1999b), let
z(€,m,t) = z(&,n,t) + iy(€,m,t) be an analytic function in the horizontal strip —h <
n < 0, where z — ¢ is periodic in ¢ with the period [, such that z maps the rectangle
of —1/2 < ¢ <1/2, —h < n < 0 onto the fluid domain. The mapping function satisfies
y(£,0,t) = ((z(£,0,t),t) and y(&, —h,t) = —h for any € € [-1/2,1/2].

It follows from the Cauchy-Riemann equations that the parameterized functions z(&, n, t),

y(&,m,1), ¢(&,m,t) = B(x(£,7,1),y(§,n,1),%) and its harmonic conjugate ¥(§, 7, t) are re-
lated by Fourier multiplier transforms (Choi & Camassa 1999b). That is, if the Fourier
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series of y(§,0,t) and ¢(&,0,t) are given by

y(&,0,t) = ag + Z lax, cos(2mkE /1) + by, sin(2mkE /1)],
k=1

[M]8

Y(£,0,t) = ao+ Y [aycos(2mké /1) + B sin(2mkE/1)],

>
I

1

then, for any 5 € [—h, 0], the following relations hold

y(&,n,t) = GO; hn +ap + Z Sh|ak cos(2mkE /1) + by sin(2mkE/1)],
k=1
$(Em,1) = S0+ a0+ Y Shlaw cos(2mke /1) + B sin(2mhe /1),
k=1
. (22)
z(&,m,t) = aoi_;l- h§ + x9 + Z Ch, [ak sin(27k& /1) — by, cos(27rk§/l)],
k=1

é(&n,t) = %f + ¢o + Z Ch [ax sin(2mkE /1) — By cos(2mkE /1)),

k=1

where

Sy = sinh[27k(n + h) /1] /sinh(27kh/1),
Ch = cosh|[2rk(n + h) /1] /sinh (27kh/1).

The time derivatives in (2.2) are periodic in £ if the coefficients for the leading linear
terms with respect to  and ¢ are constants. This is accomplished by choosing h and «
as h(t)=ao(t) + h and ag(t)=ch(t), where the constant c is determined from the initial
condition.

On the free surface at n = 0, the following relations follow from (2.2):
1}£:1+Ty£, ¢£:C+TQ/J£.

Therefore,

r=8+z+Ty, ¢=ck+o+TY,
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where g and ¢y are functions of time to be determined. 7T is the Fourier multiplier

operator defined by

Tly] Y coth(2rkh/I) [ak sin(2mké /1) — by cos(27rk§/l)] , (2.3)

k=1
which we call the Tilbert or T-transform. For deep water (h — 00), this becomes the
Hilbert transformation.

By substituting the expressions for x, y, ¢ and ¢ at n = 0 into the boundary conditions

at the free surface in (2.1), we obtain the surface Fuler equations

3] (5)
Y = —T¢ <%> —ye T [%} , (2.4)

G+ ¢ T [%] + % (62 — vZ) + 9y =S — Ps/p,
where J = 27 + yZ and S = o (yeewe — yewee)/J/? is the surface tension.

Equations (2.4) are the exact parametric evolution equations for surface waves in water
of finite depth, governed by the Euler equations (2.1). Since z and y are related by the
Cauchy-Riemann equations, it is sufficient to solve one of the first two equations with the
third equation in (2.4). Even so, we found it convenient to numerically solve all these
equations and determine both z((t) and ag(t) from the first two equations.

At each time step, the periodic functions in (z,y, ¢,1) are expanded as the discrete
Fourier series with respect to the variable £ and we use the fast Fourier transform (Staley
1999) to compute their derivatives and the T-transform. We advance the solution of
(2.4) in time with a variable-order, variable-stepsize, Adams-Bashford-Moulton predictor-
corrector method (see Schiesser, 1993).

In the absence of surface tension and atmospheric external pressure, the surface wave
equations have nine one-parameter symmetry groups (Benjamin and Olver 1982), from

which eight conserved quantities can be found. The accuracy of our numerical solutions
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was monitored by the following three conserved quantities: conservation of mass

12
/ y(€)ze(€) d,

—1/2
conservation of the horizontal momentum
1/2

Pe(€)y(£) dE

—1/2

and conservation of energy

1/2
/ (0e(E)V(E) + gy(€)?ze(£)) de.

—1/2

Here the conserved quantities are expressed using the parameterized formulation defined
in the interval [—/2,1/2]. The numerical error tolerance was set between 10~ and 10
per unit time depending on the length of time for the calculations. The spatial resolution
was between 512 and 2048 Fourier mode based the steepness of the solution. The time
step and spatial resolution was determined so that the absolute error of the conserved
quantities was below 10~ and the relative error was below 1073,

We used artificial dissipation (hyperviscosity) to reduce the aliasing due to the nonlin-
ear terms and the numerical errors in solving (2.4). The diffusive terms v A& zge, v A& yee
and v A ¢¢e were passed through a high pass filter and were added to the right-hand side
of the z, y, and ¢ equations, respectively. Here A¢ is the spatial step size and v was cho-
sen in the range between 0.01 and 0.05. To preserve the accuracy in the lower frequency
modes, we also applied a high pass filter defined in the Fourier space to these artificial
dissipation terms. The filter eliminated the lowest 1/2 Fourier modes of the dissipation
terms, left the highest 3/5 modes unchanged, and had a linear transition between the two
regions. Thus, the dissipation had no direct effect on the lower 1/2 of the Fourier modes

of the solution, and only dissipated the higher modes.

3 Approximate model equations

Here we briefly sketch their derivation of the KdV, Boussinesq and GN equations modeling

nonlinear long waves in shallow water. The derivations all assume the typical wavelength
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[ is much greater than the water depth h.
By substituting z = (X, y = h(Y — 1), t = IT/cy, ¢ = h(H — 1), ® = colp + it
and ¢3 = gh into the surface Euler equations for water waves (2.1) with S = Pg = 0, we

obtain the dimensionless equations

Eoxx + oyy =0, 0<Y < H,
Eor +3(E9% +9}) +E€H =0, Y =H,

eHyp + 62HX<,0X =y, Y=H
2% :0, Y 0,

(3.1)

Y

where € = h/l < 1 for long waves.
The velocity potential ¢, satisfying the Laplace equation and the bottom boundary

condition at Y = 0, can be expressed by

& k 2kzy2k anf(X T)
o(X,Y,T) Z T Yt (3.2)
=0

Substituting this expansion into the free surface boundary conditions at ¥ = H in

(3.1) yields the equations for H and w = fx

2
Hr + (Hw)x = 63(15[3“))0())( +0(e"),
2

(3.3)
wr +wwx + Hx = % [H2(wXT +wwxx — wg()]x + 0(64) .

2

Since px = w — €2Y?wxx /2 + O(e*) from (3.2), the depth-mean horizontal velocity u

can be expressed as

2H2
T wxx + O(e*). (3.4)

1 H
H/O ¥x w

This equality can be used to express w, in term of u, as
2 H2

6

w=u-+ UXX-|‘0(64).

The system (3.3) can now be rewritten in terms of H and u to give the GN equations

HT+ (HU)X = 0,
2

€
ur +uux + Hx = 3—H[H3(’LLXT+’U/LLXX —u?X)]X—{—O(GZI).

(3.5)



3 APPROXIMATE MODEL EQUATIONS 8

This asymptotic expansion derivation of the GN equations is analogous to the approach
Whitham (1974) used to derive the Boussinesq equations. The system (3.5) was origi-
nally derived by Green & Naghdi (1976) using the ‘direct-sheet’ theory. An alternative
derivation can also be found in Choi & Camassa (1999a).

Notice that the first equation in (3.5) is exact, while the second equation for the
conservation of momentum contains an error of O(e*). Because we have not assumed that
the wave amplitudes are small, the GN equations should be a good approximation of the
Euler equations, even for large amplitude waves, as long as the long-wave approximation
(e < 1) is valid.

Using the horizontal velocity defined at a certain depth, instead of the depth mean
velocity u in (3.5), results in other forms of equations, for example, the system by Wei et
al (1995). These other models are all asymptotically equivalent to (3.5).

Substituting H = 14 o and u = aii for a = a/h into the GN equations (3.5) and
dropping O(ae?) for weakly nonlinear waves lead to the Boussinesq equations:

i+ |(1+ad)a| =0,
.2 (3.6)
Ur + allx + (x = ngXT.
The KdV equation can be derived from the Boussinesq system (3.6) by assuming the
waves all travel in the same direction (e.g. see Whitham, 1974).

The GN equations (3.5) in dimensional variables are
m+ (une =0, n=h+(,

1 d (3.7)
U + Uy + Ny = % ["72@(77%)] )

where we have used d(nu;)/dt = (nuz): + u(nuy)-

In dimensional variables, the Boussinesq equations (3.6) are

G+ |(h+ ] =0, (3.8)

U+ Uy + 9 = 3 Yot
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and the KdV equation is

300 Coh2

where ¢y = v/gh.

4 Solitary wave solutions

The solitary travelling wave solutions for the KdV and GN equations are given by

2h(c — ¢o) 2 V/3(c—¢o) (z —ct)
— ST ) geen
Crav c sec '_200 h )
Con = - coch? 3(c2— @) (z — ct)

2ch ’

respectively, for given wave speed c. The explicit solitary wave solutions for the Euler
and Boussinesq equations are not known, and we calculated them numerically in our

comparisons.

4.1 Numerical methods

By using the KdV scaling, Friedrichs & Hyers (1954) and Beale (1977) proved the existence
of solitary waves for the Euler equations in the weakly nonlinear regime where the Froude
number F' = ¢/+/gh is greater than but close to one. They also showed that the KdV
solitary waves approximate those of the Euler equations. Amick & Toland (1981) showed
the existence of solitary waves for the Euler equations as the limit of periodic waves even
beyond the weakly nonlinear regime. Based on their results, we approximated the solitary
waves of the Euler equations by long wavelength periodic waves.

We look for travelling waves of the form

z=E6+3(E—ct), y=yl—ct), ¢=0E—ct)+d(E—ct), ¥ =1(—ct),

where Z(= Ty), y, ¥ and ¢ are periodic functions of s = £ — ¢t with the period ! and

¢ which are constants to be determined. The functions y and ¢ satisfy the boundary
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conditions y(l / 2) = g?)g (l / 2) 4+ 0 =0, and y is even and symmetric with respect to s = 0.

As | — o0, y(s) converges to a solitary wave decaying to zero (Amick & Toland 1981).
Substituting the travelling wave into the kinematic equation y,z¢ — z:ye = —1)¢ (Choi

& Camassa 1999b), we obtain cy, = ¢;. Because Z and ¢ are harmonic conjugates of y and

9, respectively, we have that ¢,(s) = c¢(Z,(s) —%,(1/2)), i.e. § = —cZs(I/2). Substituting

these relations into the third equation of (2.4) and assuming that the surface tension S

and the external pressure Pg are negligible, we obtain the free surface equation at n =0

2(1/2)
1—2gy/c®”
Substituting s = k€, © = hi, n = hf) and y = hg into this equation leads to the

2 2
Te+Ye =

dimensionless free surface equation

1 —2ghy/c? T (4.1)

Because the FEuler equations have a one-parameter scaling symmetry group
()\x,)\y,)\%t,)\%@ (Benjamin & Olver 1982) for any A > 0, without loss of generality,
we set h = 1 in the following analysis. Also, for simplicity, we will drop the accent "~ over
x and y.

Let w and @ be real-valued functions such that zz = z¢ + iy = €“*%. Because z¢ is
an analytic function of £ 4 in, w and 6 satisfy the Cauchy-Riemann equations. Using the
KdV scaling (Friedrichs & Hyers 1954), £* = a&, 6* = a™36 and w* = a~ 2w, the equation

for the free surface given by (4.1) can be expressed as

1
we = $6a2 (3w_2w(l/2)_1) sina®9 atn=0, (4.2)

where ¢** = ¢ / (giz) and we have dropped the asterisks for simplicity.

The exponent in (4.2) can be found using the Cauchy-Riemann relations as
3w —2w(l/2) = 3T,[0] — 2T,[0(1/2)]+ < w > = M,[6], (4.3)
where T,[6)] is the scaled complex T-transform (2.3),

T.[0] = —ia Z coth(2mak /1) cpe* e/ .
k£0
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Here < w > is the average value of w over one period,

1 1 [ e
<w>= —glog [7/ e Ta? cos(a39)d§} :
0

By using (4.3), equation (4.2) can be written as

fl1=6— (Gl — 1) {ieaz (Ma161-1) gin (036) — e} 0, (4.4)

a3

where

G0 = Z kl coth(2mak/1) cye? e/t
k40

To solve (4.4) with the Newton’s method, we express the (n + 1)st approximation to ¢
as 6,1 = 6, +v,, where 6,, is the approximation from the previous iteration and v, is the
correction. We then linearize (4.4) with respect to v, to obtain fy_ [v,] = —f[0.]. Here fp

is the functional derivative of f with respect to 6

fgn [’Un] =v, — (G — I)il 26‘12 (Ma[Gn}—l) sin(a30n) % + ea2 (Ma[on]_l) cos(a30n) — 1| v,.

After we compute fy, we define the N x N matrix, Fy, as fy modulus its kernel using the
discrete Fourier Transform for N Fourier modes. We then solve Fy_ [v,] = — f[6,] for v,
and iterate until |v,| < 10713

Because the small amplitude travelling waves of the KdV equation are close approx-
imations to those of the Euler equations (Friedrichs & Hyers 1954; Beale 1977), in the
weakly nonlinear regime (small a > 0), we use the KdV travelling waves as the initial
guess to find traveling wave solutions of (4.2). We then gradually increase the parameter
a (thus, increasing the speed c¢), and use solutions for the smaller waves as an initial guess
to compute higher amplitude waves as the solution of a fixed point problem. In the weakly
nonlinear regime, if we increase a by 7%, it takes only six iterations for this scheme to
reduce the error to sup |0,,,1 — 6,| < 107'3 and sup | f[6,]| < 10713.

Using this numerical method, we are able to solve for solitary waves of the surface
Euler equations with the Froude number up to F' = 1.27 using 2048 discrete Fourier

modes. Beyond F' = 1.27, the steepening slope of the solitary waves requires more Fourier
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modes to reduce numerical errors. Because our objective is to investigate the differences
between the model equations and not to compute the highest solitary wave, which is

known to have the discontinuity of wave slope near F' & 1.286, we limited F' < 1.27.

4.2 Numerical results

0.2r ‘ .

0.15
/h
¢ 0.

0.05

0.4

¢/h
0.2

0.6

Uh 0.4
0.2

Figure 1: Solitary wave profiles at the Froude numbers of F =1.0838, 1.2012 and 1.2691 for the Euler
(solid curve), GN (dash-dotted curve), Boussinesq (dashed curve), and KdV (dotted curve) equations.

In Fig. 1, we compare the wave profiles of the models for three Froude numbers F' =
c/v/gh =1.0838, 1.2012, 1.2691. When 1 < F' < 1.1, solitary wave solutions of the KdV,
Boussinesq and GN Equations are very close to those of the Euler equations, as expected.
However, as F' increases, the solitary waves of the KdV equation deviate from those of

the Euler equations. In particular, as F' increases, the KdV solitary wave is much lower
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Figure 2: The solitary waves increases in height and mass M as a function of the Froude number F
for the Euler (solid curve), GN (dash-dotted curve), Boussinesq (dashed curve), KdV (dotted curve)
and Longuet-Higgins & Fenton (circle) models. The mass of the full Euler equation travelling waves
calculated by Longuet-Higgins asymptotic expansion method is in excellent agreement with the solitary
waves for our surface Euler equation model (2.4). The GN equations show better agreement with the
Euler equations than the weakly nonlinear models for intermediate wave amplitude waves.

than the Euler solitary wave. This also implies that the KdV waves are faster than Euler
waves of the same height. The solitary wave profile for the GN and Boussinesq equations
are slightly above and below the Euler solitary wave, respectively, but much closer to the
correct amplitude than the KdV wave.

It is difficult to tell which of these two models is better by just comparing wave profiles.
At F = 1.2691, the Boussinesq solitary wave profile is closer to the Euler equations in
terms of its width. For high Froude numbers, the GN solitary waves are wider than those
of the Euler equations.

In Figs. 2 and 3, we compare the scaled mass of solitary waves M = fR ndx/h? and
the scaled wave amplitude a/h as a function of the Froude number. The figures also
confirm that the solitary waves for (2.4) agree with the solutions of the Euler equations

(as calculated by Longuet-Higgins (1974) and Longuet-Higgins & Fenton (1974)) to within
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Figure 3: Froude number F' versus wave amplitude a/h; Euler (solid curve), GN (dash-dotted curve),
Boussinesq (dashed curve), KdV (dotted curve) and Longuet-Higgins & Fenton (circle). Notice that the
KdV solitary wave of given wave amplitude is moving much faster than the surface Euler equations wave
with the same amplitude.

0.16% for M and 0.35% for a/h.

When the Froude number is close to 1 (1 < F < 1.1), all the solitary waves have
almost the same mass (Fig. 2). As F increases (1.1 < F' < 1.2), the mass of the solitary
waves of the weakly nonlinear KAV and Boussinesq equations are less than the Euler
solitary waves. For F' < 1.2, the solitary wave mass of the strongly nonlinear long wave
model (GN) is closer to the Euler wave than the other models. When F' > 1.2, none of
the approximate models are accurate.

Because the derivation for the GN equations did not assume that the wave amplitude
is small, it is not surprising that the GN equations are valid at larger F' than the other
models. The GN equations fail completely as the Froude number approaches the maximum
F = 1.286 (Longuet-Higgins & Fentons 1974). As F' approaches 1.286, the sides of the
solitary wave wave steepen until the slope is discontinuous. Beyond F = 1.286, none
of the long wave shallow water models are valid. The formation of the singularity may

explain why the GN solitary waves differ from the Euler solitary waves for F' > 1.2.
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Choi & Camassa (1999a) studied the coupled GN equations for strongly nonlinear
long waves at the interface between two fluids. As the internal solitary wave amplitude
approaches its maximum value, instead of the slope becoming discontinuous, the wave
becomes a front varying smoothly from one level to another. Therefore, unlike the GN
equations for surface gravity waves, the GN equations for internal gravity waves are valid
even for very large solitary waves.

The solitary wave amplitude of the KdV equation is much smaller than the wave of the
Euler equations at the same Froude number (Fig. 3). The weakly nonlinear Boussinesq
model is much better than the KdV equation but it still over-predicts wave amplitude for
the whole range of Froude number. The GN equations well predict the wave amplitude
for F < 1.2.

In conclusion, based on the comparison of the solitary wave solutions, the GN equations

show better agreement with the Euler equations than the weakly nonlinear models.

5 Collision of two solitary waves

We now investigate the differences of dynamical behaviours between the models by study-
ing head-on and overtaking solitary wave collisions. Throughout this section, time ¢ is

non-dimensionalized by h/cy.

5.1 Head-on collision

In the head-on collisions, shown in Fig. 4, solitary waves with F' = 1.172 and F =
1.084 propagating in the opposite directions collide and emerge with oscillating tails.
We matched the wave speeds for the different models, and thus wave amplitudes are
different as discussed in §4.2. Initially, the amplitudes of the larger waves are Ag/h =
0.3847, Ag/h = 0.3727 and Ag/h = 0.3991 and those of the smaller waves are a./h =
0.1765, ay/h = 0.1744 and a,/h = 0.1801 for the Euler, GN and Boussinesq equations,
respectively. Because the KdV waves are unidirectional, the model was not included in this

example. Notice that the amplitudes of the larger waves are not in the weakly nonlinear
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Figure 4: The head-on collision of two solitary waves of the Euler equations (solid curve) is compared
to the solutions of the GN equations (dash-dotted curve) and the Boussinesq equations (dashed curve),
respectively, with the Froude numbers of F' = 1.084 and F' = 1.172. At t = 25.9, the two solitary waves
have merged into a single pulse with height greater than the sum of the amplitude of the two original

waves.

regime.

As shown in Fig. 4, two solitary waves collide and merge to form a single peak at ¢t =

25.9 with amplitudes of Ar/h = 0.5991, Ag/h = 0.5802 and Ag/h = 0.6052. The height of

the peak during the collision is always greater than the sum of two wave amplitudes. After

colliding, all the waves shed dispersive waves behind them and the amplitudes of both

waves slightly decrease. At t = 62.7, the larger waves have amplitudes of Ar/h = 0.3828,
Ag/h =0.3717 and Ag/h = 0.3989, the smaller waves have amplitudes of a./h = 0.1748,

ag/h = 0.1725 and a,/h = 0.1800.
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Figure 5: The trailing tails of the solitary waves after the head-on collision shown in Fig. 4 at t = 62.7
for the Euler (solid curve), GN (dash-dotted curve) and Boussinesq (dashed curve) equations. Notice
that the GN wave tails is much closer to the Euler solution.

0.15

0.1
¢/h
0.05

I
—-44 -42 -40 -38 -36 -34 -32 -30

Figure 6: The final wave profiles for F = 1.084 and F' = 1.172 after the head-on collision shown in Fig. 4
for the Euler (solid curve), GN (dash-dotted curve) and Boussinesq (dashed curve) equations. The GN
solitary waves are in phase with the Euler solitary waves, while the Boussinesq equations underpredict
the phase shift.
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Figure 7: The head-on collision of two solitary waves of the Euler (solid curve), the GN (dash-dotted
curve) and Boussinesq equations (dashed curve), respectively, with the Froude numbers F = 1.172 and
F = 1.201. Notice that the trailing edge of the Boussinesq waves is a poor approximation to the Euler
wave after the collision.

After the collision, the dispersive tails (enlarged in Fig. 5) show that the GN equations
more accurately approximate the Euler equations than the Boussinesq equations. In fact,
the GN equations does a remarkable job at capturing both the phase and amplitude of
the small trailing waves.

After the collision, both waves are retarded from their own pathlines. This phase
shift is the salient feature of the nonlinear interaction. The decay of kinetic energy by
the retardation upon merging is compensated for by the increase of potential energy, or

the increase of the peak height (Wu 1995). For the weakly nonlinear collision, the phase

shift of one wave is known to be proportional to the square root of amplitude of the
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Figure 8: The trailing tails after the head-on collision shown in Fig. 7 at t = 62.7 for the Euler (solid
curve), GN (dash-dotted curve) and Boussinesq (dashed curve) equations. The GN solution is remarkably

close to the Euler solution.

Figure 9: The wave profiles for F = 1.172 and F = 1.201 after the head-on collision shown in Fig. 7 for
the Euler (solid curve), GN (dash-dotted curve) and Boussinesq (dashed curve) equations. The Boussinesq

wave is a poor approximation to the Euler wave after the collision.



5 COLLISION OF TWO SOLITARY WAVES 20
t=0 t=752.9
0.35} ‘ 0.35 ‘
0.3f 0.3
0.25} 0.25
Yho:2y Yho2
0.15} 0.15
0.1f 0.1
0.05} 0.05
—060 0 —060 -40 0
x/h x/h
t=850.2 t=1694.0
0.35} ‘ 0.35 ‘ ‘ ‘
0.3f 0.3
0.25} 1 0.25
Uh 0.2} {h 0.2
0.15} 0.15
0.1f 0.1
0.05} 0.05
—060 0 —060 -40 0
x/h x/h

Figure 10: Overtaking collision of two solitary waves of the Euler (solid curve), the GN (dash-dotted
curve), the Boussinesq (dashed curve) and the KdV equations (dotted curve), respectively, with F' = 1.156
and F = 1.0904. The calculation is shown in a moving frame corresponding to F' = 1.123. Unlike the
head-on collision, the two peaks never merge into a single humped pulse and the emerging solitary waves
are very close to the incident waves.

other wave. That is Az/h = (amplitude/3)'/? (Wu 1995). This phase shift is too small
to be accurately measured in our numerical solutions, but the finite amplitude effect on
the phase shift can be identified from the relative positions of different solitary waves.
The weakly nonlinear model (Boussinesq equations) underpredicts the phase shift after
the collision, while the phase shift in the GN equations is very close to that in the Euler
equations (Fig. 6).

The phase shift is more noticeable in collisions of higher amplitude waves with F' =

1.172 and F' = 1.201 as shown in Figs. 7, 8 and 9. The differences between the dispersive
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Figure 11: Comparison of solitary wave profiles with F' = 1.156 and F = 1.0904 after the overtaking
collision, shown in Fig. 10; Euler (solid curve), GN (dash-dotted curve), Boussinesq (dashed curve) and
the KdV equations (dotted curve).

tails and phase shifts in this highly nonlinear regime are even more dramatic. The strong
nonlinearity in the GN and Euler equations induces the larger phase shift.

The head-on collisions verify that solitary waves of these three systems are not true
solitons, i.e. they do not maintain the same shape after interactions, and dispersive tails

become larger as solitary wave amplitudes increase.

5.2 Overtaking collision

Figure 10 shows the overtaking collision between two solitary waves with the Froude
numbers of ' = 1.156 and F' = 1.09 in a frame moving with the speed F' = 1.123.
Initially, the amplitudes of the larger waves are Ax/h = 0.3114, Ag/h = 0.3441, Ag/h =
0.3356 and Ap/h = 0.3561, and the amplitude of the smaller waves are a;y/h = 0.1808,
a./h =0.1911, ay/h = 0.1889 and a/h = 0.1952 for the KdV, Euler, GN and Boussinesq
equations, respectively.

Unlike the head-on collision case, after an overtaking collision, waves are almost elastic
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Figure 12: When a very fast wave overtakes a slow wave, the slower wave is ‘swallowed’ by the fast wave
creating a single pulse wider and lower than the fast wave. The solutions of the Euler (solid curve), the
GN (dash-dotted curve), the Boussinesq (dashed curve) and the KdV equations (dotted curve) with the
Froude numbers F' = 1.172 and F' = 1.024 are all in close agreement. The solutions are shown moving in
a reference frame corresponding to F' = 1.098.

and the emerging solitary waves are almost identical to the incident waves. The KdV
solitons collisions are always perfectly elastic.

When one solitary wave overtakes another one of similar height, as in Fig. 10, the
waves never merge into a single peak. There is always a gap between their peaks and their
amplitudes gradually change in time; the larger amplitude of the faster wave decreases
while the smaller amplitude of the leading wave increases. This phenomenon was explained
earlier by Wu (1995) for the Boussinesq equations. He showed that when the ratio of the

amplitude of two waves is less than three, then the Boussinesq waves do not form a single
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Figure 13: The solitary wave profiles of the Froude numbers F = 1.172 and F = 1.024 after the
overtaking collision shown in Fig. 12; Euler (solid curve), GN (dash-dotted curve), Boussinesq (dashed
curve) and the KdV equations (dotted curve), respectively. Notice that the position of the fast waves are
all close, but the Euler slow wave is ahead of the other slow waves.

peak in an overtaking collision. Above this ratio, when a solitary wave overtakes another,
they merge together to form a single peak. The amplitude ratio in the simulation shown
in Fig. 10 is less than 3 and two solitary waves never merge.

A large solitary wave overtaking a smaller one experiences a forward phase shift, while
the smaller one shifted a backward (Whitham, 1974). The height at the center of mass
is known to depend on the difference of two wave amplitudes. Fig. 11 shows that in a
collision the larger waves of the GN and Euler equations have a larger phase shift and
move slightly more forward than those of the weakly nonlinear models. The smaller waves
of all models have almost the same phase shift.

In Fig. 12, we show two solitary-wave interactions with the Froude numbers F' =
1.172 and F = 1.024. The simulation was performed in a frame moving with the speed
corresponding to F' = 1.098. The amplitude ratio of the incident waves is about 7.8. In

this case the larger wave merges with the smaller wave to form a single peak during the
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interaction. The amplitude of the merged peak is about Ag/h = 0.3208. This is smaller
than the amplitude of the larger wave, Ag/h = 0.3847, as the weakly nonlinear theory
predicts.

Fig. 13 illustrates that the solitary waves of all these models are almost in phase
after an overtaking collision. During the collision, the smaller solitary wave of the Euler
equations is shifted back less than the approximate models and is slightly ahead of them.

In our numerical experiments, we observed that although the solitary waves of the four
systems have slightly different phase shifts after an overtaking collision, all three model

equations were good approximations of the Euler equations.

6 Conclusion

The full Euler equations for free surface problems are difficult to solve because they are
highly nonlinear and the domain boundary changes to follow the surface waves. The nu-
merical solution of these surface waves in our new exact one-dimensional evolution equa-
tions (2.4) is much easier than other approaches, such as the boundary integral method.
The relative error of the conserved mass, horizontal momentum and energy was below
0.43% in the extremely long simulations until dimensionless time ¢ = 1700 shown in
Fig. 11. Although in these comparisons, we only considered solitary waves, the equa-
tions (2.4) for surface gravity-capillary waves are valid for periodic waves of arbitrary
wavelength.

We demonstrated that the head-on collision of large (nonlinear) waves can be captured
only by the strongly nonlinear models such as the GN equations. Steady solitary wave
solutions of the Euler equations are well approximated by the weakly nonlinear Boussinesq
equations, but when the waves collide, the Boussinesq dynamics are quite different from
strongly nonlinear models such as the GN or Euler equations.

We observed that the GN equations were a better approximation of the Euler equations
in the nonlinear regime. This is expected since the GN equations are a higher-order

nonlinear approximation to the Euler equations than the other weakly nonlinear models.
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We conclude that the GN equations are valid for a wider range of solutions than any of
the weakly nonlinear asymptotic models we considered. Thus the GN equations would be
more appropriate when simulating more realistic physical problems such as coastal waves

with uneven bottom topography.

This work was supported by the US Department of Energy. We would like to thank R.

Camassa for his helpful suggestions.
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