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Abstract

Numerical studies are used to demonstrate that, in addition to supporting conventional solitons, the quintic Korteweg—de
Vries equation, u; + (%) = yyxxy, and its regularized version, u, 4+ (u?); +usrcrx = 0, support multihumped solitary waves
(doublets, triplets, quadruplets, etc.), referred to collectively as multiplets. Their peaks pulsate as they travel and undergo
nearly elastic collisions with other multiplets. An N-humped multiplet can pulsate thousands of cycles before disassociating
into an (N — 1)-humped multiplet and a single-peak solitary wave (singlet). Although multiplets are easily created from an
initial wide compact pulse, they rarely are formed by fusing singlets or multiplets in collisions. We describe the emergence
and evolution of multiplets, their nearly elastic collision dynamics, and their eventual decomposition into singlets. To consider
the effect of cubic dispersion on the solution of these equations, we also study u; + (°)y + Ditxcx = Styyrrr. The impact
of cubic dispersion critically depends on the sign of » and its amplitude. For sufficiently large n > 1, > 0, only a train of
singlets emerge from an initial pulse with compact support. If 7 is decreased, multiplets begin to emerge leading the train of
singlets. The number of humps in the multiplet increases as 7 is decreased, until below a critical point 7 < 14, < 0 the initial
pulse decomposes into highly oscillatory waves. Copyright © 1998 Elsevier Science B.V.

1. Introduction u,u? and u® + 3 (uyy)?, (3)
We study and compare the dynamics of mul- and the QRLW equation conserves
tihumped solitary waves satis.fying the quintic w, 1, and u® + (uy,)>. )
Korteweg—de Vries (qKdV) equation,
The gKdV equation is invariant under space-time

u + (uz)x = Uxxxxx, (1) Stretching,
and the quintic regularized long-wave (QRLW) equa- u— B, t— Bt x —> Bx (5)
tion [12],

, which reveals that high-amplitude patterns are nar-
ur + U )x + Urxexx =0, (2) rower and propagate faster than lower-amplitude ones.

. . In contrast, the QRLW equation is invariant under
The gKdV equation has three local conservation Q q

laws, u— fu, t—t/B. (6)
* Corresponding author. Tel: +1 505 667 6294; e-mail: Thus, if u(x, ) is a solution of the QRLW equa-
jh@1lanl.gov. tion, then so is —u(x, —r). Also, the amplitude affects
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only the timescale. In particular, the width of traveling
structures of the QRLW equation is independent of
the amplitude, implying there are no distinctive high-
amplitude phenomena. Thus while analyzing the be-
havior of the QRLW equation, one can restrict both
the analysis and the numerical investigations to initial
data of the same amplitude. For moderate-amplitude
initial data, the consequences of different scaling of
the two equations are of secondary importance, and
the solutions of the two equations are similar.

The observed dynamics of the gKdV and QRLW
solutions are distinctly different from the solution
dynamics of the cubic KdV, u, + (4?); + trxy = 0,
or regularized long-wave (RLW), u, + (M) = Uprx,
equations. In particular, a wide variety of pulsating,
multihumped, traveling solitary structures emerge
from an initial wide pulse with a compact support.
Both the gKdV and QRLW equations support aggre-
gates of robust, long-persisting, coupled oscillating
singlets, doublets, triplets, quadruplets, and higher-
order multihumped solitary waves, which are a hybrid
between conventional breathers and partially fused
singlets. We refer to those multihumped structures
collectively as multiplets and a single-humped “soli-
ton” as a singlet. (Here the term soliton refers to a
solitary stable structure; it does not imply integrability
in the strict mathematical sense.)

1.1. Derivation of the equations

The gKdV equation can be derived via a weakly per-
turbative procedure which balances nonlinearity with
weak dispersion. Consider the linearized dispersion
relation

w = G(k) N

to describe long-wave phenomena in fluids, solids,
or anharmonic lattices. The typical long-wavelength
(small k) dispersion relation can be expanded to

Gk) = apk + a1 k> + ask> + - - (8)

In certain complex systems, including anharmonic lat-
tices where the lattice sites interact with their four
nearest neighbors, or transmission lines with a mutual

inductance (see [12] and references therein), a; can
vanish, which, to leading order, results in the gKdV
equation.

The direct truncation of the Taylor expansion,
though appropriate for small k’s, introduces an enor-
mous amount of dispersion at high k’s that is absent
in the original process. Thus when high wave num-
bers are important, the solution of the gKdV equation
is a questionable approximation of the solution to the
original problem. This situation can be avoided by ap-
proximating G (k) by a rational function that captures
the behavior of G (k) for large k’s. Typically, G (k) is
bounded for all £’s. This fact was taken into account
in [12] and led to a derivation of the QRLW equation.
The QRLW equation results from approximating (8),
when a; = 0, by

agk

w=Gk)= T+ B

&)

This approximation coincides with (8) for small k’s
but, unlike the gKdV equation, remains bounded for
large k’s. In deriving the QRLW equation, the goal in
[12] was not to track the details of the original dis-
persion but merely to avoid the ultraviolet falsetto at
high &’s. In this sense the QRLW equation is better
suited than the gKdV to describe patterns involving
higher gradients. This situation is similar to the cubic
dispersive wave equations where the RLW equation is
physically more realistic than the KdV at high wave
numbers; however, the integrability of the KdV equa-
tion and its astounding properties have overshadowed
the many advantages of the RLW equation.

Often integrable systems are considered ‘supe-
rior’ to the ones that are ‘almost there’, but lack the
supporting analysis techniques that exploit the integra-
bility. This superior outlook can prejudice the inves-
tigations of equations, such as the gKdV and QRLW,
that have only a finite number of conservation laws
and thus only a finite number of constraints. But the
finite number of constraints may be just the freedom
needed to support a wider variety of structures than
those that have been observed for the KdV equation.
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1.2. Traveling waves

To search for traveling waves, we substitute s =
x — Xt into the gKdV and QRLW equations. After one
integration we have

—Au + u2 = Ussss (10)
and
—Au +u2 = AUggss, (11)

respectively. These equations can be brought into a
universal form

-V 4+ v2 = Uyyyy, (12)

where v = A™'u and y = A!/%s for (10) and y = s
for (11).

Thus while the width of the traveling structures of
the gKdV equation narrow with the increase of the
amplitude, the width of the traveling structures of the
QRLW equation is amplitude independent. The differ-
ent scaling relations of the corresponding singlets are
a natural consequence of the different dispersive re-
sponse of these equations at high &’s (see (5) and (7)).
Because for small v’s, Eq. (12) implies that vy, +v =
0, the solution and the tail of a traveling wave will
always be oscillatory.

Eq. (12) has one integral of motion,

Co — v+ _%v3
2
= 2y vyyy — (Uyy)",

Cy = constant, (13)

and can be reduced to second order by defining G =
(dv/dy)*/?;

Co— v’ + $0° = $G3G,,, (14)

but no further reduction seems possible. The analy-
sis is even more complex for the pulsating muitiplets.
Although we can create multiplets easily from any
compact initial data with appropriate width and/or am-
plitude, we have been unable to explicitly solve for
any of these structures.

2. Numerical experiments

Our investigation of the emergence and stability of
the multiplets is primarily computational, and we have
little analytical handle on the ‘how and why’ for the
creation and dynamics of the multiplets.

In our calculations, we approximated the spatial
derivatives with a pseudospectral method using the
discrete Fourier transform (DFT). The equations were
integrated in time with a variable-order, variable-
timestep Adams—Bashford-Moulton method. The nu-
merical errors were monitored by varying the number
of discrete Fourier modes between 128 and 512 and
varying the estimated time error per unit step between
107 and 10™° to ensure that the solutions were
well converged. Most of the calculations shown here
solved the conservative form of the equations with
256 DFT modes, a time error of 10~ per unit time.

To reduce the errors due to aliasing, we filtered the
time derivatives by explicitly adding an artificial dis-
sipation term to the equations. This term was defined
in Fourier space to approximate the effects of linear
second-order dissipation Axu,, on the top % of the
Fourier modes, have no effect on the lower % of the
modes, and have a linear transition between the two
regions. To identify numerical artifacts due to aliasing
and other discrete effects, we compared the solutions
of the equations when they were differenced in con-
servation and nonconservation form.

Most of the examples in this section use initial data
with compact support of the form

u(x,t =0)
_ ) Acos’(Bx -~ C) if|Bx —C| <

0 otherwise,

where A, B, and C are constants.

After illustrating the dynamics of the multiplet so-
lutions of the qKdV equation, we will compare these
solutions with those of the QRLW equation. Finally,
we will show how cubic dispersion alters the structure
of the emerging multiplets.
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Fig. 1. The initial conditions (15), A = 20/3, B = 1/4, and
C = 25/4 (illustrated by a dash—dot line), for the gKdV equa-
tion decompose into a train of singlets and a single doublet by
time ¢ = 135 (illustrated by a solid line). The doublet is traveling
with speed approximately 6.52.
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Fig. 2. The strongly bound doublet is shown at times
t=0,1,2,... in a domain with periodic boundary conditions.
This calculation was continued until the doublet had traveled a
distance of over 4000 and still retained approximately the same
height and speed.

2.1. The gKdV equation

In Fig. 1, we observe an initial pulse for the gKdV
equation (1) desolving into a train of solitary waves led
by a doublet. Without exception, in all numerical simu-
lations the multiplet structure emerges at the front. No-
tice the dip in front of the singlets and the oscillatory
tails. In Fig. 2, the doublet initial data evolve under the
gKdV equation in a periodic domain and are shown at
times + = 0, 1, 2, ... This calculation was continued

time
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Fig. 3. A weakly bound double, traveling initially at speed 9,
is shown at times ¢ = 0, 2, 4, ... satisfying the gKdV equation.

beyond ¢ = 300 at which time the doublet was still
tightly bound together. Observe the pulsating peaks
and the undulating valley between them. When the
forward pulse is higher, it travels faster and the dou-
blet widens; when the trailing pulse is higher, it travels
faster and tries to override the leading pulse, causing
the structure to narrow. These oscillations modulate
the speed and width of the doublet so that it resembles
a traveling breather.

In Fig. 3 a weakly bound doublet slowly sheds en-
ergy into the tail (visible behind the doublet at ¢t = 8)
on each pulsation. The strength of the bound state is
related to how close the valley between the states ap-
proaches zero on each pulsation. The valley in this
doublet is closer to zero than in the strongly bound
doublet in Fig. 1. The radiation loss causes a slow de-
crease in amplitude and a continuous deepening of the
valley until, at r = 79, the valley almost touches zero
and the doublet decomposes into two solitary waves.
When a doublet decomposes, the lead singlet must be
the faster (taller) one, running away from its sibling,

Using the qKdV symmetry (5) with 8 = —1, we
can reverse the decomposition process in Fig. 4 to cre-
ate initial data that will fuse into a doublet. That is
by defining ug(x) = u(—x,r = 85) as initial data for
the gKdV equation, the two singlets will fuse at time
t = 10. We did this, and observed that the states re-
mained bound until about 1 = 200, when they again
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time

Fig. 4. The doublet shown in a, shown at times
t = 76,78,80,..., decomposes into to singlets traveling at
speeds approximately 8.6 and 9.5.
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Fig. 5. The initial conditions in Fig. 1 were amplified by a factor
of 4, (15) A =80/3, B =1/4, and C = 15/4. The solution of
the gKdV equation decomposes into a train of singlets and a
triplet by time ¢ = 4 (the solid line).

separated. We never observed two singlets fusing into
a doublet unless the initial data were defined in this
special manner. We ran numerical experiments where
two singlets with nearly equal velocity collided, where
three singlets collided simultaneously, and where a
singlet collides slowly with a doublet or higher-order
multiplet. The collision to fuse singlets or multiplets
together seems to require the oscillating peaks or tails
be in ‘phase’. Without explicit understanding of the
process, we were only able to fuse singlets or multi-
plets by propagating a multiplet until it decomposed,

time

50 100 150 200

Fig. 6. The space-time evolution of the initial conditions shown
in Fig. 5 in a domain with periodic boundary conditions. Notice
how the triplet remains intact after several collisions with the
other singlets. Also, the phase shift of the two slowest singlets,
after a collision with the triplet at r = 5, can be observed.

X

Fig. 7. Space-time surface plot for the evolution of a triplet for
the gKdV equation. Note how the three bound peaks pulsate
up and down as they travel through space.

and then using the space-time symmetry to define
initial conditions that were equivalent to propagating
the multiplets back in time so they were again bound
states.

The initial conditions for the gKdV equation in
Fig. 5 are four times higher than those in Fig. 1. The
higher initial conditions result in creating a train of
solitary waves with a triplet, instead of the doublet ob-
served in Fig. 1, leading the pack. The robust stability
of the triplet is shown Figs. 6 and 7, where the triplet
remains tightly bound after several collisions. If the
initial pulse is made wider, a triplet may still emerge
from the initial data, even when the pulse is reduced
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Fig. 8. Initial conditions in Fig. 1 were decreased in height by a
factor of one-third and widened by a factor of 2, (15) A = 80/9,
B = 1/8, and C = 15/8. Again the initial pulse decomposed
into several singlets and a triplet, shown at ¢t = 150 by the solid
line. The triplet is traveling with velocity approximately equal
to 1.3.

in amplitude as in Fig. 8. As the pulse is made even
wider (or higher, because of the scaling (5) between
changes in height and width), the number of humps
in the leading multiplet increases to become a quadru-
plet, quintuplet, or higher-order multiplet.

2.2. The QRLW equation

We observed behavior in our numerical experiments
for the QRLW equation similar to that just described
for the gKdV equation. The scaling (6) implies that
changes in the amplitude of the solution will only alter
the time scale of the evolution and not the trajectory
or shape of the solution such as the number of humps
in the emerging multiplet. Changes in the width of the
initial conditions do affect the resulting pattern.

In Fig. 9 we observe an initial pulse for the QRLW
equation breaking into a train of singlets and a leading
doublet. Note the similarity between this solution and
the gKdV solution in Fig. 1. The further evolution of
the solution and the collision dynamics is displayed
in the space—time diagram in Fig. 10. Notice that both
the width and height of the doublet pulsate and that
there is a phase shift in the slower singlets after they
collide with the faster multiplet at time + = 125 and
t = 150.
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Fig. 9. The initial conditions (15), A = 7/4, B = 1/7, and
C = 20/7 (illustrated by a dash—dot line) for the QRLW equa-
tion decompose into a train of singlets and a single doublet
(illustrated by a solid line) at time ¢ = 75. The doublet is trav-
eling with velocity approximately equal to 1.36.

200

150

time

100 [

50

0 50 100 150
p.

Fig. 10. The lighter shades in the density plot indicate
larger-amplitude values in this shaded space-time plot of the
solution in Fig. 9.

In Fig. 11 the collision of a doublet with a slower,
weakly bound doublet breaks the slower doublet into
two singlets. In numerical experiments with strongly
bound doublets, the doublets have been observed to
survive hundreds of collisions and remained intact.

Because of the symmetry (6) for the QRLW equa-
tion, a negative pulse will travel to the left. Fig. 12
shows the robustness of a right traveling doublet col-
liding with a left traveling negative singlet. In this and
other numerical experiments, these collisions are ob-
served to be as robust as the collision between the pos-
itive multiplets and singlets. The collision is slightly
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Fig. 11. Initially, the doublet centered at x = 20 is traveling
faster than the weakly bound doublet at x = 50 and overtakes
it at r = 5. After the collision, the slower doublet decomposes
into two singlets.

Fig. 12. A negative singlet for the QRLW traveling to the left
remains intact after colliding with a doublet traveling to the
right. Note the ripple left at the location of the collision.

inelastic and leaves a small ‘ripple’ behind at the
collision site.

In Fig. 13 the evolution of a 9-plet is shown. The
solution was generated with a square wave initial con-
dition that quickly transitions into the 9-plet. By the
same method, one can create multiplets with an arbi-
trary number of peaks.

The initial pulse in Fig. 9 was made wider in Fig. 14
and decomposes into a train of singlets lead by a
triplet. The space-time plots in Fig. 15 follow the
evolution of this pulse until at 7 &~ 475 the triplet de-
composes into a doublet and a singlet. The lines repre-
senting the triplet start to separate at about ¢ = 450 in
Fig. 16. Also note the oscillations between the triplet
bound states, the robustness of the collisions, and the
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Fig. 13. A QRLW 9-plet solitary wave was created by evolving
an initial square wave pulse. Shown here at later times, the
peaks pulsate up and down as it propagates.
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Fig. 14. The initial pulse (15), A = 2, B = 1/28, and
C = 50/28, is wider than in Fig. 10 and decomposes into a
train of singlets and a triplet. This figure follows the evolution
of this triplet until it breaks up at time ¢ & 475.
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Fig. 15. The space-time plot of the solution for the QRLW
equation shown in Fig. 14. The initial conditions decompose into
a train of singlets and a triplet; the triplet eventually decomposes
at t & 475,
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Fig. 16. The space-time density plot of the solution shown in
Fig. 15.

phase shift when the triplet collides with the slower
traveling singlets. All collisions we observed were re-
markably robust, even though they were slightly in-
elastic and energy was lost to the medium.

3. The effects of cubic dispersion

In most of the previous investigations of the cubic—
quintic KdV (cqKdV) equation

u + (uz)x + Ntyxx = SMxxxrxs (16)

(cf. [1-11,13]), the cubic dispersion is assumed to be
the dominant mechanism. Note that in the quintic KdV
equation appropiate for water waves, the quintic dis-
persion has opposite sign, § < 0, than in the gKdV
equation (16). This difference can be easily reconciled
by the transformation

Uu— —u, t—> —t, n— —1, 17

which changes the sign of § (but also switches the sign
of the solution). Indeed, the numerical experiments
presented for § < 0 in [10] use negative initial data
and the resulting waves travel to the left, as expected.
This case is modeled via the cqKdV equation using
positive initial data, and n < 0.

Eq. (17) reduces to the gKdV equation when n = 0
and § > 0 and (after appropriate scaling) to the KdV
equation as 7 — 00. Most of the theoretical studies of
(16) have been confined to small é, when the cqKdV

equation can be treated as a perturbation of the KdV
(which enables its integrability to be exploited). The
integrability of the KdV equation is like a lantern at-
tracting the dynamics of nearby nonintegrable systems
and their practitioners. It so happens that the mul-
tiplets hide in the shadow zone beyond the light of
integrability.

In the absence of cubic dispersion (r = 0), Eq. (16)
can no longer be treated as a perturbation of the KdV
equation. Eliminating the cubic dispersion increases
the chances of determining if quintic dispersion gen-
erates a different phenomenology than the classic soli-
ton dynamics of the KdV equation. By focusing on
the role of the quintic dispersion in the creation of the
multiplets, it became clear that the cubic dispersion
undermines their stability. Stable multiplets were only
observed when § was above a certain finite threshold,
depending on the amplitude of the multiplet.

Previous attempts based on asymptotic analyses
have been used to construct steady traveling waves
with two or three humps and oscillatory structures
sampling both positive and negative values (cf. [4]).
These multihumped structures were also constructed
numerically in [10], but as their evolution reveals
[9], they are structurally unstable and decompose
into singlets. In the hundreds of numerical exper-
iments we have performed on these equations, all
the multiplets pulsated both in height, width, and
velocity (cf. Figs. 1 and 7). Thus the speed of each
hump in a multiplet is not constant, but modulates
around a constant. Such structures cannot be simply
composed out of solitons traveling with the same
speed.

3.1. Nonnegative cubic dispersion

The number of humps of the multiplets is per-
haps is the most interesting aspect of solution of the
cqKdV equation. For the initial data (15) (A = 2,
B = 1/28, C = 5 — /28), only singlets emerge
for . > 1.5 = ny. This result is illustrated in
Fig. 18 (n = 1.5), where the solution is shown at
t = 0 by the dash—dot line and at time ¢ = 100 by
the solid line. As the cubic dispersion is reduced,
first doublets appear (n = 1, Fig. 18), followed
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Fig. 17. u; + () + %—unx — uyxxxx = 0. For large cubic
dispersion, only singlets emerge from the initial pulse.

by triplets, quadruplets (n = 0.5, Fig. 19), and
quintuplets (n = 0, Fig. 20) for the qKdV equa-
tion. There does not appear to be a critical transi-
tion when 7 crosses zero, and the leading multiplet
continues to gain humps for negative n (n = —I,
Fig. 21). At a point just below n = —2, there is a
dramatic change in the decomposition of the initial
pulse, and it decomposes into a highly oscillatory
wave instead of a multiplet followed by a train of
singlets.

In Figs. 17-21, note how as n decreases, not
only do the number of peaks in the emerging multi-
plet increase, but the singlets become narrower and
the valleys between them widen and become more
oscillatory. At first, these oscillations are almost
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Fig. 18. 4, +(u?)x +xxx —tixxrrx = 0. As the cubic dispersion
decreases, a doublet emerges leading a train of singlets.
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Fig. 19. u, + (u x + zu”r Uyexxx = 0. As the cubic
dispersion is further reduced, the leading multiplet becomes a
quadruplet.
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Fig. 20. u; + (uz)x — Uxxxxx = 0. When there is no cubic
dispersion, the leading multiplet solution of the gKdV equation
has five humps.

unnoticeable, but ultimately they win out and for
N < N A~ —2 the initial pulse decomposes into
large-amplitude oscillations that fill the domain.

The same trend is observed for other initial data,
but with different transition values for 5. For ex-
ample, if the initial data are wider (or taller), the
leading multiplet has more humps. This is illus-
trated for n = 1.5 by the emerging triplet in Fig. 22,
where the initial data are twice as tall as those in
Fig. 17 where only singlets emerge from the initial
data.

It appears to be a general property that for every
initial pulse where an N-plet emerges, there are asso-
ciated bounds such that, as long as ny < n < ny—|,
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Fig. 21. u, + (u2 Jx — dxxx — Uxxxrx = 0. For negative cubic
dispersion, the number of humps continues to increase as the
dispersion is reduced.
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Flg 22. ur + (“ )x + 7“,\',\1’ Uyxxxx = 0. When the initial
conditions in Fig. 17 are made twice as tall, instead of only
singlets emerging, the leading multiplet is a triplet.

the emerging multiplet has N humps. If n > ny.-g,
the number of humps decreases by one. As 7 is fur-
ther increased, then the number humps continues to
decrease until n > 7, when only singlets are seen to
emerge.

Thus all changes in the number of emerging mul-
tiplets are confined to the {7, 171] interval. Recall,
however, that an emerging N-plet decomposes after a
while into an (N — 1)-plet and a singlet, and though
different initial data may initially beget multiplets with
the same number of humps, these multiplets are not
identical and usually will differ from each other in

their detailed structure (most notably the width of their
valleys). Therefore, the time at which the emerging
multiplets decompose does depend upon 7. In numer-
ical experiments, we have observed that if n is only
slightly smaller than ny_1, the emerging N-plet will
decompose into an (N — 1)-plet and a singlet much
sooner than if # is smaller and closer to ny.

For fixed values of § and 7, there may be multiplets
with different numbers of humps and multiplets with
the same number of humps, but very different behav-
ior. Because the multiplets slowly shed energy to the
background and lose their humps one by one, the val-
ues of § and 7 that support an N-plet will also sup-
port multiplets with a smaller number of humps and
the same amplitude. Also, as the multiplets lose their
energy, they are bound less strongly. Thus, there can
be both strongly bound multiplets that persist for very
long times and weakly bound multiplets that quickly
decompose.

Next we investigate the effect of fixing n = 1 and
varying §. In the KdV limit (§ = 0), Fig. 23 shows
the initial data for Eq. (16) breaking into a train of
classic KdV solitons. As § decreases, first a doublet
emerges (§ = —0.5, Fig. 24) followed by a train of
singlets that are qualitatively similar to those of the
KdV equation. Also, note that as & decreases, the spac-
ing between the emerging singlets increases, there are
fewer singlets, and their amplitudes slightly increase.
As expected, for a doublet to appear, § has to be above
a threshold dependent upon the shape of the initial
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Fig. 23. u; + (u”)x + uxxx = 0. The solution of the KdV
equation decomposes into classic solitons.
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Fig. 24. u; + (%)x + Uxxx — 3Ueecex = 0. When quintic
dispersion is added to the KdV equation, a doublet emerges at
the head of the train of singlets.

pulse. Decreasing the quintic dispersion further results
in the leading multiplet having more and more humps.

3.2. Negative cubic dispersion

Though most of our studies were devoted to positive
cubic dispersion with n > 0 and § > 0, in modeling
water waves, negative dispersion is appropriate. The
linearized dispersion equation

a)=8k5+nk3 (18)

for the cqKdV equation (16) illustrates the competition
between the quintic and cubic dispersions when §n <
0. Indeed, for n < 0, the cubic dispersion destabilizes
solitary waves, and if —» is large enough, the cubic
dispersion prevents the formation of stable multiplets.
Note that just as for the positive case, when 7 is small,
its impact is secondary and multiplets are commonly
observed. Previously, negative doublets were observed
in the numerical experiments of (16) with § < 0 and
n > 0 [10]. These simulations can be transformed into
positive doublet solutions of Eq. (16) exactly in the
range of small negative 7. After rescaling the equation
in [10] to (16), the transformed coefficients are § = 1

and n = —1/+/40.
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