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I. SUMMARY

The numerical solution of conservation laws is a
highly complicated and problem—-dependent process. The
solution may contain dynamic interactions between
shock waves, rarefaction waves and contact discon-
tinuities. A method developed for a particular test
problem may or may not work for another with stronger
(or weaker) shocks and contact discontinuities. Meth-
ods which work well in one space dimension may or may
not be easily extended to two or three dimensions.

The analysis in this report is based on solving
systems of conservation laws in one space dimension
using techniques that generalize to higher spatial di-
mensions. The approach is based on the philosophy of
the method of lines (MOL).Z‘l In the method of lines,
the space and time discretizations of a partial diff-
erential equation (PDE) are decoupled and analyzed
independently. First a method is selected to discre-
tize the differential equation in space and incorpo-
rate the boundary conditions. The spectrum of this
discrete operator is then used as a guide to choose an
appropriate method to integrate the equations through
time.

The dissipative effects of a numerical method
are crucial to constructing reliable methcds for con-
servation laws. This is particularly true when the
solution is discontinuous as in a shock wave or con-
tact -discontinuity.

Choosing an accurate method to accomplish each
of these tasks, space and time discretization and in-
corporating artificial dissipation in the numerical
solution, determines the success of the calculation.
In Sections III through VI we will consider each
choice independently and combine them in Section VII
to develop a class of particularly good explicit
finite difference methods. In Section VIII, we pre-
sent some numerical examples to illustrate the pro-
perties of the different methods and analyze their
results in a summary, Section IX.

Before developing a good method for any system
of PDEs one must have a basic understanding of the
equations being solved. We now give a brief review
of the general theory of conservation laws.

I1. CONSERVATION LAWS

General Theory

A vector quantity W of length N is conserved as
it evolves under the flow of a conservation law if the
amount of each substance Wi, j=1,2,...,N, contained in
any fixed volume V is due entirely to the flux Fj(w)
across the boundary 3V of V. These conservation laws
can be expressed in integral form as

d f f
_— W, dx = -
dt v 3

MY

Fj(w)'n ds (2.1)

where n denotes the outward normal to the boundary.

Moving the time derivative under the integral
sign and applying the divergence theorem Eq. (2.1) can
be rewritten as

3
e + di =
fv[sc W+ div Fj(w)]dx 0. (2.2)
By letting the volume V shrink to a point we obtain the
system of PDEs
3

— W, + div Fj(W) =0, j=1,2,...,N

ot (2.3)

at every point where W and F are differentiable.

In one space dimension Eq. (2.3) can be written
in vector form as

W+ F(W)X =0 (2.4)

or

+ =

W G(w)wX 0 (2.5)
where G is the N by N matrix gradient of F with res-
pect to W.

Equation (2.5) is a first-~order quasi-linear
system of PDEs. This system is hyperbolic and well-
posed if the eigenvalues of G are distinct and real.
These eigenvalues, called the characteristic veloci-
ties, are the local signal speeds at which sharp dis-
turbances propogate.

1t is well known that a system of nonlinear con-
servation laws may fail to have a continuous solution
after a finite time. Since conservation laws are de-
rived from integral relations (2.1) these generalized
solutions may still be admitted as long as they are
measurable and bounded. There are instances, as in
the FEuler equations of gas dynamics, that there may be
many different generalized solutions satisfying Eq.
(2.1) with the same initial data. Within this set
only one of these solutions has any physical signifi-
cance. An important consideration in construction a
numerical method is to build a mechanism, such as arti-
ficial dissipation, into the difference scheme that will
automatically choose the physically relevant solution.

The physically relevant solution must satisfy the
differential equation (2.4) in smooth regions and ful-
£fi11 two additional constitutive relations across any
discontinuities in the flow. The first constitutive
relation, called the Rankine-Hugoniot jump conditions,
states that the discontinuity must propagste with
speed s satisfying the jump conditioms

s10.) = {Fj(w)] s 3= 1,7, 00,0

Here | ] denotes the jump of the quantity in brackets
across the discontinuity. These jump conditions are
satisfied by the numerical solution if the equations
are solved in divergence form (Eq. (2.4)) and the flux
function is differenced with centered differences.

The second constitutive relation, called the en-
tropy condition, states that entropy must increase
across the shock discontinuity. This condition is sat-
isfied by the limiting solution of the viscous equa-
tions as the viscosity is decreased to zero. Numeri-
cal methods for solving discontinucus solutions of Eq.
(2.4) have a small artificial viscosity that helps
select the physically relevant solution.



The methods developed in this paper will be des—
cribed in terms of the Euler equations of gas dynamics.
However, most of the techniques and results are equally
valid for other hyperbolic systems. For a further
discussion of the mathematical theory of general hy-
perbolic systegs7of conservation laws we refer the
reader to Lax.”?

Euler Equations

The one-dimensional Eulerian equations of gas
dynamics can be written in divergence form as

Wt + F(W)x =0,

p 0
W={m},F(W) = u¥W + p y
E pu

where p = mass density, u = velocity, m = pu = momen~
tum, E = p(I + % u®) = total energy per unit volume,
I = internal energy and p = pressure.

(2.6)

Equation (2.6) is hyperbolic if pressure is an
increasing function of density at constant entropy.
This is the case if we assume the equation of state
to be that of a polytropic gas, i.e. P = (y-1)Ip. The
parameter vy is a constant greater than one and equal
to the ratio of the specific heats of the gas., For
this equation of state we have

g—R: I‘E=C2>O

dp o
at constant entropy. The quantity c¢ is called the
local sound speed of the gas and is related to the
characteristic velocities u, u + c and u - ¢ of Eq.
(2.6).

ITI. SPACE DISCRETIZATION

To solve Eq. (2.6) numerically we must first
chose an appropriate approximation of the spatial de-
rivatives. The guiding principle in choosing a spatial
approximation is that the discrete model should re-
tain as closely as possible all the crucial properties
of the original differential equation. Equations
(2.6) reflect principles of conservation of mass, mom—
entum, and energy which are the basis for the mathe—
matical theory of fluid dynamics. These properties
should be preserved in the difference formulation.
This is best accomplished if the equations are inte~
grated and differenced in divergence form using cen~
tered finite differences.

Phase and Damping Errors

The derivative of the flux function F determines
the phase velocities of the solution and hence the
shock speeds. Therefore, the errors in approximating
F and its derivative should be made as small as poss—
ible. These errors can be divided into two classes;
phase or dispersion errors and damping or dissipation
errors.

Centered finite difference approximations of
F, preserve many of the conservation properties of Eq.
(2.6). The second-, fourth- and sixth~order finite
difference approximations to Fy can be written as

2
Fo = (Fip=Fi )/(28%) + o(ax®) (3.1a)

F_ = (-F, ,+8F_  _-8F

4
X i+2 i+l i'l+Fi-2)/(12AX) + 0(sx ) ,

(3.1b)

and
F = (Fi+3—9Fi+2+45Fi+l—4SFi_l+9Fi_2-Fi_3)/(60Ax)
+ 0(axb) .

Here Fi refers to the value of F(w(xi,t)) and

(3.1¢)
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Ax = X541 ~ ¥; 1s the mesh spacing.

The errors in a finite difference approximation
can be computed for numerical approximations of travel-
ing wave solutions to Eq. (2.6). Consider the solu-
tion to Eq. (2.6) with periodic boundary conditions on
the unit interval and constant initial pressure and
velocity v. The solution is a traveling wave and sat-
isfies the simple linear hyperbolic convective equation

p, + Vo = 0, (3.2)

t
with the initial conditions 0(x,0) = g(x), and the
solution p(x,t) = g(x-vt).

When the initial conditions consist of a single
frequency, g(x) = a sin(kx) + b cos(kx), then the
phase error introduced by the finite difference approx-
imation of py will be the same using second-, fourth-
or sixth-order differences if the number of mesh points
in the calculations satisfy

M, = 0.36 M = 0.12 Mg ) (3.3)

2 4
Here Mj is the number of mesh points when using j~th
order finite differences.

The table below compares the number of points per
wave length necessary to obtain a given phase error e
in the solution to (3.2) at time t using second-,
fourth- and sixth-order centered differences.

2nd 4th 6th
order order order Accuracy
M2 M4 M6 e/ (vkt)
4 4 3 2.6
8 5 4 0.65
16 7 5 0.186
32 10 7 0.04
64 14 8 0.01
128 19 10 0.0025
256 27 13 0.0006

Table I. Points per wavelength for second~, fourth-
and sixth-order differences to have the

same accuracy.

In a calculation where the solution contains many
different frequencies, the high modes (2-5 points per
wavelength) are approximated equally poorly with all
the methods. The middle modes (6~16) points per wave-
length) are computed much more accurately with the
fourth and sixth-order differences than with the second
order method. The sixth-order differences are more
accurate for the lower modes than either second~ or
Fourth-order differences.

The relationship of the accuracies of the dif-
ferent methods compared to the number of points per
wavelength is even more impressive in higher dimen-
sions. In two space dimensions the numbers in Table I
should be squared; in three dimensions cubed.

The next step is to determine if this linear
analysis is applicable to nonlinear equations with
shocks and contact discontinuities. Figure 1 displays
the solution to an initial value problem for Eq. (2.6).
The problem was solved twice, the only difference be-
ing that the spatial differences were changed from
second~ to fourth-order.

The example is the shock tube Riemann problem
described completely in Section VIII. The shock and
contact discontinuity in Figs. la and 1b are much
sharper when the higher order differences are used,
Also, the post shock oscillations are reduced even
though the same artificial dissipation was used in each



calculation. The high order differences are able to
resolve the discontinuities better and require less
artificial dissipation to eliminate post shock
oscillations.
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Fig., la 2-nd order Fig. 1b 4-th order

IV. BOUNDARY CONDITIONS

Before calculating the solution to any differen-
tial equation one should determine if the boundary
conditions are consistent with a well posed problem.

A numerical method cannot be expected to generate rea-
sonable results for a problem which does not have a
well defined reasonable solution. The importance of
proper boundary conditions cannot be overstressed, the
boundary conditions exert one of the strongest influ-
ence on the behavior of the solutjon. Also, the errors
introduced into the calculation from improper boundary
conditions persist even as the mesh spacing tends to
zZero.

A common error in prescribing boundary conditions
for conservation laws is to over or under specify the
number of boundary conditions. Overspecification
usually results in nonsmooth solutions with mesh os-
cillations near the boundary. Underspecification does
not insure the solution is unique and the numerical
solution may tend to wander around in steady state
calculations. In either case the results of the cal-
culation are not accurate and one should be skeptical
of even the qualitative behavior of the solution.

Once it has been determined that the differential
equations and boundary conditions are well posed,
special care must be taken to preserve this in the
difference approximation. This can best be done by
enforcing constituent relationships on the difference
equations such that the discrete equations are con-
sistent with as many relationships that can be de-
rived from the boundary conditions and differential
equation as possible.

Fictitious Points

To define the solution at fictitious points, the
boundary conditions are differentiated with respect to
time and combined with Eq. (2.6) to obtain differen-
tial constraints for the extrapolation formulas. This
technique will be shown for reflecting boundary con-
ditions to the Euler equations.

The reflecting boundary conditions for a ther-
mally insulated wall for Eq. (2.6) at x = %, are

u(xo,t) = {, Ix(xo,t) =0 . (4.1)
The thermally insulating boundary condition, I, =0,
is obtained from the limit of the viscous dissipative
equations as the viscosity and heat dissipation tend
to zero. This condition is necessary to prevent a
boundary layer in the difference approximation of in-
viscid calculations due to the presence of artificial
dissipation.

To incorporate these boundary conditions into
our numerical solution when using fourth-order cen-
tered differences we will introduce two fictitious
points at x.j = Xo — 4x and X9 = X5 = 20% outside the
region of integration. At these points we need an
approximation to p, pu, and E to preferably fourth~

above procedure must be iterated.
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order,

Combining Egs.

(2.6), and (4.1) at x = x we
have °©

2 ;
0 =~-(pu)t = (pu” + 13)X =P, = (v-l)loX s

2
s 1 =
EX [p(I +3%u )]X 0,

and

(ou)xx = ~(pt)x =~(p ) =0.

X't
Since these equations are valid for all time and
v # 1 we have

P = m=m =E =20 (4.2)

X XX X
as auxiliary boundary conditions at x = x_ consistent
with the original problem. The nonphysical solution
at the fictitious points outside the region of inte-
gration needs to be chosen such that a finite differ-
ence approximation of Eqs. (4.2) is satisfied at the
boundary.

When we replace the derivatives in these auxili-
ary boundary conditions by the standard centered finite
differences we see that Eqs. (4.2) are satisfied if
and only if

(4.3)

¢ . =p.,,m . =-m, E  =E,
| i’ Ted i

for i = 1 or 2.

No Fictitious Points

There is not always a simple extrapolation
formula such as Eq. (4.3) to extend the solution to
the fictitious points. For these problems it is often
better to use uncentered differences near the boundary.
This method will be described for the linear hyper-
bolic system of M equations

wt = H(x)wX (4.4)
with the boundary conditions
SW, = b(t), x = x_ (4.5)

Difficulties arise in defining the solution at the
boundary when 0 < Rank(S) < Rank(H) = M and there does
not exist a unique solution W, of (4.5). If Rank(S) =
0 then all the characteristics are outgoing and using
either uncentered differences at the points near the
boundary or straight forward extrapolation to the fic-
titious points gives accurate results. When Rank(S) =
M then all the characteristics are entering the bound-
ary and all the components of the solution can be
solved for on the boundary. Uncentered spatial dif-
ferences can then be used at the points near the bound-
ary will result in an accurate approximation of the
boundary conditions.

When Rank(S) is greater than zero but less than
M then by differentiating Eq. (4.5) with respect to
time and replacing W, from Eq. (4.4) we have

SH()W, = b (), x = x (4.6)

o
Approximating wx by second-order one-sided differences
gives us

SH W, = [SH (4W) - W) - 24xb’ (£)1/3 (4.7)
where H_ = H(x_ ). Equation (4.7) gives us additicnal
information about the boundary conditions that is con-
sistent” with both the original boundary conditions
(4.5) and the differential Eq. (4.4). If we still do
not have enough boundary conditions to solve for Wy
uniquely then we can continue by differentiating (4.6)
with respect to time and using Egq. (4.4) again.

It is often the case that H, is nonlinear and the
Usually one or two



iterations are sufficient for a stable accurate
boundary approximation.

Once W, has been found we can use uncentered
finite differences to approximate the spatial de~
rivaties at the mesh point nearest the boundary or we
can extrapolate the solution to fictitious points
outside the region of integration. This extrapolation
can be done by replacing the derivatives in Egqs. (4.6)
with second-order centered differences and solving
for W_g.

Imbedded Regions

There are many initial boundary value problems
where it is essential to introduce artificial bound-
aries to reduce the computing time and storage of a
calculation. These problems are usually posed in a
domain much larger than the subregion where the solu-
tion is of interest. The subregion is blocked off
and imbedded in the original problem by creating arti-
ficial boundaries. The boundary conditions at the
artificial boundary are chosen such that the solution
on the full domain would automatically satisfy these
internal boundary conditions if the full problem were
solved. The goal, of course, is to approximate the
original problem as closely as possible on the re-
duced domains.

Consider the initial boundary value problem for
the Euler equations on the half line [0,*), with re-
flecting boundary conditions at x = 0, Suppose we are
interested only in the behavior of the solution in
the interval [0,1] and wish to restrict the domain of
our computation to a neighborhood of this region.
First we map the interval [0,=) into [0,b) with a
map such as

X 0<x<1
y = (4.8)
b+(1-b)/x 1 <x <

In this new coordinate system Eq. (2.6) transforms to
+ 3
W+ s(y) Fy 0, yel0,b)

where
1 0<y<1

s(y) = . (4.9

2
(b-y)/ (b~1)
The solution to (4.9) is identical to the solu-
tion of our original problem. Therefore, the trans-
formed system has the correct number of signals en-
tering and leaving through the artificial break point
at x = 1,

Ll <y<b

In this transformed system a wave slows down in
the region (1,b) and approaches zero speed as x nears
b. This causes a wave train to squeeze up, with the
lower frequencies being pushed into higher ones as in
Fig. 2a. These high frequencies cannot be com—
puted accurately and it is best to add some dissipa-
tion to damp them out as they approach the trans-
formed boundary b. This damping should be chosen such
that the signals propagating into the region of in-
terest [0,1] depend in some sense on an average of
the solution outside this region, i.e. (1,b). A
possible form for the dissipation is

W+ s(y)Fy = (Ayd(y)W))y (4.10)

where
0 0sy<1

d(y) =

SUy-1)/ (b-11% 1 < vy <b )

The graph in Fig. 2b shows the functional form of the
two coefficients. Notice that the equation is
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unchanged in the interval [0,1] and becomes parabolic
in the interval (1,b]. In fact at y = b the equation
reduces to a simple diffusion equation.

H ¢

| | |
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y Axls

Fig. 2a Graph of sin(4mx(y))

y axis
Fig. 2b Form of d and s
Boundary conditions must be given for all the
variables at y = b for the problem to be well~posed.
The boundary condition for steady flow at infinity
(W,=0) gave the best results in a series of test
problems.

By imbedding the equation in the subregion into
a well-posed problem in a slightly larger domain the
difficulty of maintaining the correct number of bound-~-
ary conditions at the artificial boundary was solved
automatically. Furthermore, the information entering
the region at this boundary depends on some global
average properties of the solution outside the sub-
region.

Characteristic Form

In problems where the solution is sensitive to
the approximation of the boundary conditions it may be
more stable to transform the boundary conditions or the
equation into characteristic form. The extrapolation
formulas are then derived to extrapolate the outgoing
characteristic variables to the fictitious points.

At a subsonic inflow boundary, ]u[<c, the boundary
conditions should be of the form

u = al(u—c) + Bl(t) 4.11)

and

u+c= az(u—c) + Bz(t) N (4.12)
where a; and Bi are functions of t alone. At subsonic
outflow boundary the boundary conditions should be of

the form

u-c=amu + aa(u+c) + BB(t) . (4.13)
When the flow is supersonic, ful>c, at the boundary the
either three or no boundary conditions are given, de-

pending on whether it is an inflow or outflow boundary.

Characteristic variables are also important when
no amount of algebra seems to yield enough relation-
ships to uniquely define all the solution variables at
the fictitious points. When this happens one is forced
to extrapolate on some of the variables without any
boundary relationships to guide the extrapolation. It
is usually best to extrapolate on outgoing character-
istic variables and use their values at the fictitious
points to provide the extra needed information.

Differential Form

Whatever extrapolation formula is used there may
be some inherent truncation error in the extrapolated
solution at the fictitious points. Some of these
truncation errors can be eliminated by changing the
differential form of the equation at the boundary.

For example, the reflecting boundary conditions
(4.1) and (4.2) can be incorporated in the Euler equa-
tions at the boundary to give

o m
m + 0 =0
E /¢ pu /x

(4.14)



at the boundary. By differencing these equatiomns,
rather then Eq. (2.6), at the boundary we have pre-
vented some of the possible truncation errors inherent
in the extrapolation formula, from creeping into our
calculation.

Notice that the modified Eq. (4.14) has been kept
in divergence form. This is particularly important to
maintain conservation when shocks are reflected at the
wall.

Using the modified differential form of the
equations is especially important when there is a re-
movablé singularity at the boundary. These terms
should be replaced by their equivalent nonsingular
form obtained using L'Hopital's rule.

v. ARTIFICIAL DISSIPATION

Artificial dissipation or artificial viscosity
is a special form of truncation error either inberent
to a finite difference approximation or resulting from
explicitly adding an additional term to the equationm.

This dissipation is the leading truncation error
in the numerical approximation and is chosen on the
basis of the expected form of the solution.

The purpose of the artificial term is to remove
many of the numerical difficulties by dissipating or
damping out the high frequencies of the solution.

This approach does in some sense mock up the effects
of the viscous and dissipative terms discarded in the
derivation of the Euler equations in that it primarily
dissipates the high wave numbers, but it has little to
do with true heat dissipation or viscosity.

There are six primary reasons for including
artificial dissipation in the numerical approximation.
They are:

1. To achieve proper entropy production across
shock fronts.

2. To smooth out nonphysical discontinuities in the
flow.

3. To solve the problem of the energy cascade when
computing only a finite number of modes.

4. To compensate for spatial interpolation errors,
such as the Gibb's phenomenon, near discontinui-
ties in the solution.

5. To counteract the dispersion error in the
numerical scheme.

6. To stabilize certain time differencing methods.

The form of a good artificial dissipation term
tailored for a particular problem will depend on which
of these points are most important. It is therefore
essential to designing a numerical method to have a
basic understanding of each of them. In this section
we will review each reason for adding artificial dis-
sipation and suggest a form which works for a large
class of problems.

Entropy Production

The most common reason given for adding artifi-
cial dissipation is so that one can calculate shock
waves. Entropy increases across a shock front, but
Eq. (2.6) has no mechanism for the increase. We must
add a term to the equation which will allow entropy
to increase by the proper amount. The term should be
in conservation form to maintain the Rankine-Hugoniot
jump conditions and therefore give the correct shock
speed.

Nonphysical Discontinuities

Amother desired effect of the artificial dissipa-
tion is to smooth out nonphysical discontinuities in
the flow. That is, it would be advantageous if the
artificial dissipation were formulated in such a way
that physical shocks are stable and nonphysical sudden
compression shocks are unstable. These nonphysical

discontinuities often occur in the initial conditions
and can be smoothed out by using more artificial dis-
sipation in the first few time steps than later in
the calculation.

Energy Cascade

Typically, in Eq. (2.6) energy enters the system
at low wave numbers and cascades upward through the
high wave numbers where it is eventually dissipated by
molecular viscosity and enters the system as heat
(Kolmogoroff hypothesis). In numerical calculatiomns
the energy spectrum is limited by the number of mesh
points. When there is no artificial dissipation in
the system the energy cascade backs up at the higher
frequencies and shows up in the calculation as high
frequency noise or trash. Some of this energy is
aliased or reflected back into the lower wave numbers.
This closed loop energy cascade can destroy the accur-
¢y in all wave numbers during even moderately short
computations.

Gibbs Phenomenon

Artificial dissipation can help compensate for
some of the errors introduced by approximating F and
Fy with an interpolant whose values agree with F only
at a discrete set of points.

The errors in the interpolant are most severe
near discontinuities in the functioh being approxi-
mated. At these points the continuity conditions used
to derive the interpolant break down and oscillations
appear in the calculation.

These oscillations can destroy the accuracy of
the calculation by creating nonlinear instabilities
or introducing nonphysical features in the flow such
as negative mass or pressure. The oscillations may
generate new artifacts into the calculation such that
the numerical calculation is stable but converges to
the wrong solution [Harten et. al. (1976)1. 1In re=~
acting flows these overshoots can trigger a chemical
reaction and lead to meaningless results. Adding
artificial dissipation to the numerical approximation
damps the high frequencies and helps reduce super-
fluous oscillations in the solution.

Dispersion Error

Dispersion errors come from the inexactness in
both the time and space differencing methods. The
dispersion errors due to the different modes of the
solution traveling at different and incorrect veloci-
ties can accumulate and destroy the accuracy of the
computation. This is particularly true for the higher
modes even in calculations of flows which should have
only smooth solutions. Increasing the accuracy in
both the time and space differencing methods will re-
duce the dispersion in the low and middle frequencies,
but not the high modes. It may be best to damp these
out by some form of artificial dissipation.

Stabilization of Time Integration Methods

The ability of artificial dissipation to stabi-
lize what may otherwise be an unstable time differenc-
ing method for Eq. (2.6) lies in the fact that it
shifts the spectrum of the spatial operator such that
the solution to the modified equation is mathemati~
cally and numerically more stable. This is espe-—
cially true for such standard methods as forward Euler
and improved Euler as will be seen in Section VI.

Differential Form

For many problems the artificial dissipation in-
herent to the time integration method is sufficient to
compensate for the energy cascade problem and also
the entropy production in weak shocks. For strong
shocks it is necessary to add significantly more dis-
sipation. The extra dissipation can be added by



explicitly adding a dissipative truncation error to
Eq. (2.6). This is done in all the shock calculations
in Section VII. The modified equation for these cal-
culations can be written as

Wy R = (hx i), (5.1)
where
_ /ey 21 g_. /At 2-1 2
d=3s (Ax) Ao =6 (AX) (Jul+a)* (5.2

and Ay, is the largest characteristic velocity of the
system and § is called the artificial dissipation co-
efficient. Numerical experiments indicate that choos~
ing the parameter % = 1 works best for most flows.

It may seem strange at first to use a first-
order artificial dissipation term with a fourth- or
sixth-order approximation of the derivatives of the
flux function. In calculations with strong shock
waves there is not always a one-to-one correlation be-
tween the formal order of accuracy of a difference
scheme and the true accuracy of the calculation. The
most reliable and accurate artificial dissipation
terms known happen to be of low order and we are stuck
with them until better ones can be developed.

VI. TIME DISCRETIZATION

In choosing the "best" numerical method to in-
tegrate the Euler equations through time one has to
consider the accuracy, stability, storage require-
ments, computational complexity and the relative cost
of the different methods. These factors are depen-—
dent on each other and tradeoffs must be made as to
which criteria are more important for a particular
problem.

Spectral Analysis

Both the phase and damping errors depend on the
spectrum of the differential equation and the time
step size. The time step can be varied during the
calculation to reduce the numerical integration errors,
but the spectrum of the differential equations is de~
termined by the spatial difference operator. A good
integration method depends on how accurately it can
integrate a particular set of equations. For this
reason the spectrum of the spatial difference operator
is the most important guide in selecting an efficient
numerical method to integrate through time. The spec~
trum can be determined by analyzing the linearized
continuous time - discrete space approximation of the
partial differential equation.

Equation (2.6) is solved after adding artificial
dissipation and therefore we must analyze a system of
the form (5.1). Most of the essential properties of
this system are also found in the simple prototype
equation

P e, = (Bxbp ) (6.1)
A semi-discrete approximation of (6.1) results when
the spatial derivatives are approximated by finite
differences on a mesh of N points. This system can be

written in the form of ordinary differential equations

(ODES)/ Ay + saxBy = Cy = £(y) . (6.2)

The vector y is an array of the approximate solution
at the mesh points and the prime denotes the deriva-
tive of y with respect to time.

When second-order centered differences are used
the eigenvalues of A are imaginary and the eigenvalues
of B negative real. The eigenvalues of C are complex
and lie on the ellipses graphed in Fig. 3 for values
of § = 0.0, 0.2,...,1.0.
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Fig. 3. The eigenvalues of AxC

We shall first analyze Eq. (6.2) when there is
no artificial dissipation (i.e. 6=0) and include the
effects of the dissipation as a perturbation on this
equation. When §=0 Eq. (6.2) is dispersive since the
eigenvalues of A lie on the imaginary axis. These
eigenvalues, A, are equal to iou, iefutc) and ia(u-c),
where a depends upon the spatial order of approxima~
tion. When second- or fourth-order centered differ~
ences are used and the boundary conditions are peri-
odic on the unit interval the corresponding a's are

(sin(2mjax))/bx (6.3)

i

a
and 2

It

o (8 sin(2mjAx) - sin(4wjisx))/6ax , (6.4)

4
for
j=-N/2, -N/2 + 1,...,N/2 and Ax = 1/N.

To facilitate studying the properties of differ-
ent time integration methods we use a well known re-
sult from ordinary differential equations. The isola-
tion theorem,® states that the stability
and accuracy of a numerical integration method for
Eq. (6.2) is determined entirely by how it approxi-
mates the decoupled diagonalized system

yo= 0y s (6.6)
with the solution yi(t) = yi(O)e/\it where the X4
are the eigenvalues of C.

Numerical Methods

Equation (6.6) (hence 6.2) is a multirate
system of equations since some ODE components change
on vastly different time scales than others. These
systems can have accuracy and stability restrictions
that can make standard explicit integration methods
inefficient.

We now describe a new class of numerical -methods,
called iterative multistep (IMS) methods® that over-—
come some of the difficulties in solving multirate
systems. An IMS method sequence begins with an expli-
cit predictor of order k, such as forward Euler (k=1)

1) (6.6)

yn+l = yn + At fn .

and a corrector of order k+1, in this case the im-
proved Euler method
(2) _ 1

Yo =Vt

atl "%t (6.72)

(1)

+
At<fn-(>-l fn)
Here n+l refers to time tp41 and the superscript is
the iteration index, f(li = f(y(li ). After the cor-

S nf . n+
rector cycle, additional iterationis are based on the
simple recurrence relation

. . ro(i_ .

(1) _ (-1 (G- G zj

B N e AT at+l (6.7b)

for 1 = 3,4,... The constants ¢; depend on the
iteration count and the predictor-corrector method used



to start the process. The c4 are chosen to increase
the order of accuracy of the method for linear auto-
mous systems and each iteration. When Egs. (6.7) are
used to start the iteration the constants cq have the
simple explicit formula cj = 1/i, 1 = 3,4,... This
method is called the iterated Runge~Kutta method since
the stability region after the i-th iteration is equi-
valent to the stability region of an i-th order Runge-
Kutta method. These regions are symmetric about the
real axis and are shown in Fig. 4 below.
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Fig. 4. Stability regions for the iterated Runge-

Kutta method for i=1,2,3 and 4.
The method is stable if At is chosen small enough that
AAt lies within its stability region. For Eq. (6.2)
this must hold for all the eigenvalues of C. The sta-
bility regions increase on each iteration and the
approximations will converge to the exact solution

when solving linear automous systems such as Eq. (6.23.

Another IMS method which has excellent stability
and accuracy properties for the ODEs arising from the
Euler equations is the iterated leap-frog method. The
second-order leap-frog predictor is given by

1) _

2 2
= (1- + +
yn 1 (1-r )yn TV At(l+r)fn s

T =[(tn—tn~l) / (tn+l-tn‘)] :/

and the third-order leap-frog corrector is

(2) 3
yn+1

(6.8a)

where

2
- (e @iy + 2y |+ s’
a

+ At(1+r)fn+

i]/(2+3r) (6.8b)
The TMS coefficients for this method are c, = 3/10,
7/30, 4/21, 451/2800, 314/2255, 1153/9420,land 126/
1153 for i=3,4,...9 when r=1. The ¢, are functions
of r and are not known for general r at this

time.

The iterated leap~frog method has stability re-
gions that are particularly good along the imaginary
axis, as seen in Fig. 5 below.

3t T

Imaginary Axis

T

7
i

3 -2 -1 [+ !

[}
Reai Axis
Fig. 5. Stability regions for the iterated leap-
frog wethod when i = 1,2,3 and &.

The leap-frog predictor is unstable for systems
of equations with eigenvalues having a nonzero real
part. Therefore, when artificial dissipation is added
or the boundary conditions shift the spectrum of the

discretized equation the leap-frog method cannot be
used without the corrector cycle. The first corrector
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application extends the bound on the maximum time step
by 50%, increases the method to third-order and is
stable in smooth regions of the solution with or with-
out any spatial artificial dissipation. Another dif-~
ficulty with using the leap-frog predictor is a unique
type of error due to time and space mesh decoupling.
The odd and even points of a mesh are only weakly coup-
led when integrating conservation laws and errors with
frequency = 24x can degrade the accuracy of the solu-
tion with high frequency noise. The corrector cycle
couples the mesh points among the three time levels and
prevents this weak instability.

When integrating nonlinear equations, the IMS
methods reduce to the order of the predictor-corrector
or Runge-Kutta starting method. The stability regions
still expand with extra iterations but the order of
accuracy remains the same. The coefficients for the
IMS methods can also be chosen to increase the stabi-
lity by a maximum amount on each iteration while re-
taining the order of accuracy of the starting method.

Stability

For most numerical methods it is the largest
eigenvalue i ., of the linearized equations that deter-
mines the stability condition. When we make this as-
sumption stability restrictions on At can be derived
using Figs. 4 and 5. When second-order centered dif-
ferences are used in space and the leap~frog predictor
is used in time, then if &=0 the stability condition
requires Atlxmaxl<l or (using Eq. (6.3))

st max(|ul+e) | EEEéiﬂiéﬁlw = %% max(lul4+c) <1 .

This is the usual Courant-Friedrichs-Lewy stability
condition for explicit methods when solving the Euler
equations. If fourth-order centered differences are
used in space and the leap-frog predictor-corrector
method in time, the corresponding stability condition
is 8

ot o max(ju] + ¢) €1.5
Notice in Fig. 4 that some integration schemes such as
forward Euler are unconditionally unstable for all
At > O when the spectrum of the discretized system lies
on the imaginary axis. It is well known that forward
Fuler is the heart of many standard methods to solve
Eq. (2.6) and in fact is not always unconditionally
unstable. This is because of the addition of artifi-
cial dissipation shifts the eigenvalues of the linear-
ized system to the left so they have a negative real
part as seen in Fig. 3.

We caution the reader that this stability analy-
sis is linear and is not necessarily valid for highly
nonlinear phenomena such as shockwaves. In practice
to prevent nonlinear instabilities, it is necessary to
restrict the time step such that a shock will not move
more than one mesh point per time step.

VII NUMERICAL ALGORITHMS

The general flow of a MOL computer code has a

well defined structure. The code must:

1. Define the initial conditioms for the PDEs.

2. 1Incorporate the boundary conditions into the
discrete system.

3. Define Wy, i.e. evaluate and difference the flux
function and the add artificial dissipation.

4. Predict the solution and update the time (e>rt+AL)
or correct the solution (t is unchanged).

5. Repeat the cycle if the problem is unfinished
(go to 2).

The numerical method is determined by the deci-
sions made in steps 2, 3 and 4. In step 2 we recommend
incorporating the boundary conditions into the dis-
crete system by using fictitious points. This approach
can be used with any of the procedures described in



gection IV. The extrapolation formula for the ficti-
tious points allows more freedom to include informa-
tion about the PDEs and the boundary conditions into
the difference scheme than does using uncentered
differences.

In Step 3 we recommend using second-order dif-
ferences only in the initial debugging stages of the
program and later switching to at least fourth-order.
The higher order methods reduce the phase errors and
the amount of artificial dissipation needed to
stabilize the calculation. However, the extra work
required to use sixth-order differences may not be
justified unless this accuracy is balanced by also
using a high order method in time. '

The artificial dissipation term added in step 3
is crucial to the success of any numerical method in
shock calculations. The dissipation in Eq. (5.1) can
be approximated when %=1 by second-order differences
at time t, and x=xj as

~ a0 _ a4
(bxdW ) = by, L (7.1)
where
n _ n n Rt
Py = (@14 D (g I8
and

dz = Si(lu]+c)? .

Choosing 6 between zero and one works adequately for
most problems.

When the location of a contact discontinuity
most be tracked accurately then a switch may be used
to reduce 8§ away from shocks. [n one-dimensional
calculations a shock can be detected by a discontin-
uous negative velocity gradient and the artificial
dissipation coefficient can be increased accordingly.
For example, a possible switch is to replace ¢?+% in
(7.1) by a¢?,, where o=l if u?+1 - u? + (8x/3) and,

i .
say, o=1/3 otHerwise.

A second type of switch changes the artificial
dissipation coefficient in the predictor and corrector
cycles. This is a particularly good switch for the
iterated Runge-Kutta method. The forward Euler pre-
dictor cycle is less stable (Fig. 4) than the im—
proved Euler corrector method and requires more art-
ificial dissipation to be stable for hyperbolic equa-
tions. We, therefore, add a large amount of artifi-
cial dissipation in the predictor cycle. In the cor-
rector cycle the artificial dissipation coefficient is
reduced, set to zero or even reversed in sign to add
antidifussion and counteract the effects of the overly
diffused predicted solution.

A third type switch is designed to prevent con-
tact discontinuities from smearing in long-time or
steady-state calculations by artificially compressing
them. Harten3 has proposed modifying Eq. (2.6) by
adding the derivative of an artificial compression
function to the right hand side. This function is
chosen such that a shock or contact discontinuity for
Eq. (2.6) is a shock for the modified equation. That
is the contact discontinuity is artificially compress-
ed to reduce numerical smearing.

These improved artificial dissipation strategies
all help reduce the numerical errors away from shocks,
but no one method stands out as best for all problems.
For this reason it is one of the most active areas in
developing new methods for the Euler equations.

0f the ODE methods used in Step 4 the leap-frog
predictor-corrector method has outpreformed any other
method we have tested. If the solution can be stored
on more than two time levels then the high order
Adams-Bashford-Moulton methods may be more competive.
(See Shampine and Gordon9).
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VIII. NUMERICAL RESULTS
Riemann Problem

An initial value problem for the Euler equation
is called a Riemann problem if the initial data con-
sists of two constant states. The initial conditions
chosen in this example were also used in a survey arti-
cle by Sod (1978) to allow comparisons with other dif-
ference schemes. Initially a gas (y=1.4) is separated
in a shock tube by a diaphragm at x=0.5. The left and
right states of the system are:

u(x,0) =0 u(x,0) = 0
p(x,0) =1, 0< x <k op(x,0) = 0.125,5<x < 1
p(x,0) =1 p(x,0) = 0.1

at t=0 the diaphragm is burst and by t=0.25 the gases
have developed into a shock wave on the far right, a
contact discontinuity near x=0.7 and a rarefaction wave

to the left of x=0.5.as _seen in Fig. 6.
DENSITY VELOCITY
Loy 1
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cD RF s
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0 l |
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3.0 0.5 1.0 0.0 0.5 1.0
Fig. 6. Density and velocity at t = 0.25.

The problem was solved on a mesh of 100 points,
with fourth-order spatial difference and an artificial
dissipation term given by Egnms. (5.1) and (7.1) with
2=1 and 8=0.5. The iterated Runge-Kutta was used in
time with one corrector cycle and |Apayx|ot = 1.

When the ends of the shock tube are approximated
by a reflecting boundary condition, Eq. (4.1), the shock
reflects from the right boundary and passes through the
contact discontinuity by t=0.5 in Fig. 7, below.

DENSITY VELOCITY
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0 | j |
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Fig. 7. Solution t=0,5 with reflecting boundary conditionms.

This problem was also solved with a nonreflect-
ing boundary condition at x=1 using the mapping techni-
que given by Eq. (4.10). Three fictitious points were
included between x=1 and x=b=1.03 in Fig. 8 below.

. DENSITY +2LOCITY
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Fig. 8. Solution at t=0.5 with an artificial boundary at x=1.

Notice the shock has passed through the boundary with
almost no reflections.

Generalized Euler Equations

The general one-dimensional form of the Euler
equation is
0

A
X

~A

(AW), + [AF(D] = P (8.1)

t



where W and F are as in (2.6) and A(x,t) is an area
term depending on the geometry and dimensionality of
the problem. For example, A=l for slab symmetry, A=X
for cylindrical symmetry and A=x< for spherical sym-
metry. In this problem A(x,t) is the cross-sectional
area of a imploding cylindrical duct.

The cylinder is 100 cm long and collapses at a
constant velocity of 1 cm per unit time from a radius
of 1 em to 0.25 cm. The collapse progresses up the
cylinder behind a hinge from x=0 at t=0 to x=93.8 at
T=7. A shock forms in the gas and is maintained at
the hinge location by exponentially accelerating the
velocity of the hinge.

This action causes the collapsing cylinder to
act as a velocity accelerator. That is, the implod-
ing wall pushes the gas and accelerates it up the cy-
linder. The velocity of the gas is over 20 times the
velocity of the collapsing cylinder walls by the time
it has reached the end of the cylinder. A more de-
tailed description of this problem can be found in
Ref. 1.

Initially the system is at rest and 0=0.15, p=1.3
and y=5/3. The hinge is advanced according to
h(t) = 78.93 B (exp(Bt) - 1)

where B = (y-1)/(y+1) = 1/4. A cross-section of the
cylinder, the gas velocity and maximum sound speed
(Jul+c) are shown at time t=7 in Fig. 9.
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Fig. 9. The imploding ¢vlinder, the gas velocity { e} @NG maximus

characteristic velocity ute (--=) at [SY

This solution was calculated with Ax=1, &=0.4,
fourth-order centered difference and the leap-frog
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and position as predicted in Ref. 1.

IX. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

In this paper we have followed a MOL approach

to constructing accurate and robust numerical methods
for hyperbolic PDEs derived from conservation laws.
The approach has proved to be straight forward and
has lead to some excellent new methods for solving
the Euler equatioms. 1t is our belief that a similar
approach may yield some equally useful methods in
other 'problem areas" of numerical analysis such as
the Navier-Stokes equations, reacting or combusting
flows and nonlinear diffusion equations.
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