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Abstract

Weak solutions of hyperbolic conservation laws are not uniquely ‘deter-
mined by their initial values; an entropy condition is needed to pick out the
physically relevant solution. The question arises whether finite-difference
approximations converge to this particular solution. It is shown in this paper
that in the case of a single conservation law, monotone schemes, when
convergent, always converge to the physically relevant solution. Numerical
examples show that this is not always the case with non-monotone schemes,
such as the Lax-Wendroff scheme.

. 1. Introduction

In this paper we consider solutions u(x, t), t=0, of the single conservation
law

(1.1a) U+ f(u), =0

subject to the initial data }
(1.1b) o u(x,0)=¢(x), —o<x<®,
where ¢(x) is a given function. Equation (1.1a) can be written in the form

_ 9
du’

* This research was carried out at the Courant Institute of Mathematical Sciences under U.S.
Air Force Contract No. F44620-74-C-0062 and ERDA Contract No. E(11-1)-3077. Reproduc-
tion in whole or in part is permitted for any purpose of the United States Government.

297
© 1976 by John Wiley & Sons, Inc.




298 A. HARTEN, J. M. HYMAN AND P. D. LAX

* which asserts that u is constant along the characteristic curves x = x(t), where

(1.2b) _(;t-za(u) .

The constancy of u along the characteristics combined with (1.2b) implies that
the characteristics are straight lines. Their slope, however, depends upon the
solution and therefore they may intersect, and where they do, no continuous
solution can exist. To get existence in the large, i.e., for all time, we admit
weak solutions which satisfy an integral version of (1.1),

-]

(1.3) Ime [wou+w,f(u)] dx dt+J w(x, 0)¢(x) dx=0

0 —oo -

for every smooth test function w(x, t) of compact support.
If u is a piecewise continuous weak solution, then it follows from (1.3)
(see [10]) that across the line of discontinuity the Rankine-Hugoniot relation

(1.4) flur)—f(ur) = S(ur — ur)

holds, where S is the speed of propagation of the discontinuity, and u; and
ugr are the states on the left and on the right of the discontinuity,
respectively. - : :

The class of all weak solutions is too wide in the sense that there is no
~ uniqueness for the initial value problem, and an additional principle is needed
for determining a physically relevant solution. Usually this principle identifies
the physically relevant solution as a limit of solutions with some dissipation,
namely :

(1.5) E ut+f(u)x = e[ B(u)ucl;, | B(u)>0, 0.

Oleinik [15] has shown that discontinuities of such admissible solutions can be
characterized by the following condition:

‘ - —f(u
(1.6) f(u) f(uL)gsgf(u) f(ur)

U—uy U—up
for all u between u; and ug ; this is called the entropy condition, or Condition E.
Oleinik has shown, see [15], that weak solutions satisfying Condition E are
uniquely determined by their initial data. Another elegant proof is given in

[7].
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Let v(x, t) be a finite difference approximation to (1.1)
(1.7) of*'=(L-ov");, ol=uv(jAx, nAt),

At and Ax are the time and space increments. Equation (1.7) is said to be
in conservation form if it can be written in the following way:

n+l _ ..n
(1.8a) v =07~ AMhjr12—hj-12)
where '
hiv1/2=h(Vj—+15 Vj—ks2, " * * 5 Vjic)s hic12 = h{(Vj-i, Vjmtcrts ** * Vjrie—1) 5

and A =At/Ax. In order for (1.8a) to be consistent with (1.1), h must be
related to f as follows:

(1.8b) h(w, w,+++, w)=f(w).

Lax and Wendroff [13] proved the following theorem: Let v(x, ) be a
solution of a finite difference scheme in conservation form. If v(x, t) con-
verges boundedly almost everywhere to some function u(x,t) as Ax and At
tend to zero, then u(x, t) is a weak solution of (1.1).

Thus we know that if a finite difference scheme in conservation form is
convergent, then it converges to a weak solution. Is this limit the unique
physically relevant solution, i.e., do all its discontinuities satisfy the entropy
condition (1.6)? The answer to this question will be discussed in the following
sections. It will be shown in Section 2 that solutions of so-called monotone
finite-difference schemes do satisfy the entropy condition. In Section 3 we
shall present several examples to demonstrate that this is not always the case
for non-monotone schemes.

2. Monotone' Finite-Diﬁerence Schemes

A finite-difference scheme
+1 _ n
(2.1) U;‘ = H(U;'l—k, U?—k+19 Tt Uj+k)

is said to be monotone if H is a monotone increasing function of each of its
arguments.

THEOREM. Let
(2.29) v?” = Hf(U?—k, U?—k+1 PR U;'+k)
2a
= U?“A[hf(l’?—kﬂ, Tty U?+k)— hf(v?—k’ Tty U;‘+k—1)]
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- be a finite-difference approxi-.mation to (1.1) in conservation form, i.e.,
(2.2b) Be(w, w, <+, w) = f(w)
which is monotone:

oH, |
—L (W, we)Z0 for all —k=isk.

(2.20) Y

Assume that, as At and Ax tend to zero, A =At/Ax =const., v; converges
boundedly almost everywhere to some function u(x, t). Then according to the
theorem of Lax and Wendroff quoted earlier, u(x, t) is a weak solution of (1.1).

Assertion. The entropy condition (1.6) is satisfied for all discontinuities of
u.

Proof: Our proof mimics one given by Hopf [6] and Krushkov [9] who
have shown that if u is the limit of solutions of the parabolic equation (1.5),
then u satisfies the inequality

2.3) | U(u)o+F(u), =0,
where

for u<z,

, _fo for u<z, 0
(2.4) U(u)—{ fw)—f(z) for uz=z,

u—z for uzz,

F(u)={

" and z is an arbitrary number. At a point of discohtinuity, (2.3) implies
(2.5) S[U(ur) - U(ur)]—[F(u.) - F(ur)]=0.

Inequality (2.5) is equivalent to Oleinik’s Condition E given by (1.6). Our
proof of the theorem consists in showing that likewise the limits of solutions
of (2.2) satisfy inequality (2.3) with U and F given by (2.4).

Let v" be a solution of the finite-difference scheme (2.2); we shall show
that o

Vi=UW),

where U is defined by (2.4), satisfies an inequality of the form

n+1 n n n n
Vj - Vj + hF(vj-k+17 tt T, vj+k)"',h_F(v?-—-k: T, vj+k—1)<0
- X =\

(2.6) YRS >
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hr being given by

hF(W~k+ly T, Wi)

(2.7)
Z U(W)(W,*Z)I —_(W—k+1(e) “, wi(0)) do.

j=—k+1

Here w;(6), —k+1=j=k, denotes the straight line connecting z with w,, ie.,
w; (0) z+0(w;—z) and

0 for u<z,
1 for u>z.

(2.8) Uu) :E‘-i; U(u)_={

Notlce that hg as defined by (2.7) is continuous and is consistent with F(u)
-given by (2. 4) ie., :

: 1 k
hs(u,u,f--,u.)?U(u)I Y hf(u(ﬂ),. , u(0)(u—2z) de

0 ]=—k+1a
= U(u)f0 j%hf(u(ﬂ),---,u(ﬂ)) do
= UGlh(u -+, w)=hi(z," -+, 2)]
= Ulu){f(u)—f(2)] = F(u).

Therefore it follows from (2.6), as in the Lax-Wendroff theorem quoted
earher that if o] > u boundedly a.e., then the limit u satisfies the inequality
(2.3). Thus a verification of (2.6) will complete the proof of our theorem.

' Agam we introduce the parametrization

vj+i(9)=z+6(v§*+;_—z), -k=i=sk,

and define
(293) 0(0) = Hf(vj—-k(o)’ Ty vj+k(0)) )
whete Hy is defined by (229). It follaws from (2.2b) and (2.23) that

(2.9b) v(0)=z, v(l) op*?,
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Next we express V™' by
UGF™) = U™ - UG = | Utee) do
2= (v( ).
I U(v(0)) Z —"(U, 1(6),** (O (vfr1—2) dO.

Ci=—k 9

Similarly we see, using (2.7), that

-U(U?)'*‘)\[hF(U?—kﬂ, Tty U?+k)— hF(v?—ka Tt U}'-;-k'—l)]

—(U,—k+1(9), Ty vj+k(0))

= le U(v;(0))(v;~z) do+ AJ 1 i [6

(o] 1——k+1

_ Ok

ow;_q

(vj—k(o)a T, U]+k 1(6))] U(Ut+](0))(v]+1 Z) de

i=—

= _J Z U(Uj+1(0)) g_I;f(Uj—-k(e), T, vj+k(0))(v;l+i_ z)de.

Multiplying (2.6) by At and using the above two expressions, we obtain

U] ™) = U@]) + Alhe(v] kvt +, 0]d = he(0is + + +, 0]i)]

(2.10) " 1 B .
=) (v}ui—z)f B (y-al®), s ONU(0(6) = U(oy.i(0)] .
k 0o OW; .

i=—

-4

By our assumptlon OH(w_i, -+, wi)/ow; =0 for all —k=i=k. We claim
that -

| @11) [U(0(6))~ Ulvy(6) )0}~ 2)20.

L For, if v},;—2z<0, by (2. 8) U(v,+,(6)) 0 and U(v(e))>() for all 0=6=1;
i if, on the other hand, v},;—z>0, then again, by (2.8), U(v;+:(6)) =1 and

U(v(8))=1 for all 0= 9 =1. This proves (2.11). Thus all the terms in the sum
on the right-hand side of (2.10) are nonpositive and so (2.6) holds; this
completes the proof of the theorem.
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A different proof of this theorem, using the characterization of solutions
of (1.1) which satisfy the entropy condition as an L,-contractive semigroup, is
given by Barbara Keyfitz in an appendix.

We remark that the convergence of solutions of monotone schemes to the
physically relevant solutions can be explained by the very close relation
between monotonicity and the presence of viscosity terms. To see this, we
compute the truncation error of scheme (2.1). First we prove several
- identities. Let

u =k, U—r) and  TE=(U_pr1, 5 Ui)
where u; = u(x+j Ax, ). It follows from (2.2a) and (2.2b) that

(2.12a) | H(u,---,u)=u,

where the subscript f is omitted. By diﬁerentiatioh of the consistency relation
(2.2b) we get

(2.12b) i hi(u,u, -, u)=a(u),

=k

where a subscript j denotes partial differentiation with respect to the j-th
components and h;=0 for j=k or j=—k—1. Differentiating (2.2a) we get

(2133) Hl = 80,1“A[h1_1(TL-l)—hl(b_t)], “kélgk,

(2.13b) Him = —Alh1—1,me1(T) = hym ()], -k=m=k.

It follows from (2.12) and (2.13) that

k
(214) Z Hl(ua u7"°7u)=259,l=17

1=k

k
(2.15) ,_Z_k IH,(u, - o u)= —/\Z (h—1— )l

= A [+ D)~ 1 =—)a(u),

"
@16) Y (=mPHim( s w) = AL (1= m)Thim = hios.m-1]=0.

ILm=—k
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Using the Taylor series and (2.12a) we get

H(“—k, Uk+1," " 7vuk)=H(u07 uO; T uO)
+ 2 Hi(uo, *+ uo)(u;— )

, |
EZ Hipm(to, * * * , o) (t1 = Uo)(thn, — o) + O((Ax)?)

= uo+Ax—u, ), jH;+GAx) u, 3, 2H,
j
+(3Ax)*u2 Y, ImH,, + O((Ax)?)
Lm

= ug+Axu, ), jH; + (3Ax)LY. 2Hu ],

+(GAx)*ul ), Hym(im—1%)+ O((Ax)?).
Lm ~ .

From (2.15), Ax - u, ). jH; = Axu,[—Aa(u)] = —Atf(u),. Using the symmetry
H,,.=H,,; and (2.16) we get |

Y Hin(im=1)==2 ¥, (1= m)*=0.
Im e

Thus the Taylor series expansion of the numerical scheme is

H(u(x—k Ax, t),: -+, u(x+k Ax, t)) = u(x, t) — Atf(u),
(2.17) k -
+(%Ax)2{ Y PH (1), ulx, D)ux, t)} +0((Ax)%) .

=k x

If u is a smooth solution of (1.1), then

u(x, t+ A1) = u(x, t)+ Atu, + GA1)? u, + O((A1)°)
(2.18) " ' '
| = u(x, t) = Atf(u), + GAD a*(w)u. ] + O((A1)°) .
| Consequently, the truncation error is

u(x, t+At)—H(u(x —k Ax, t),- - -, u(x + k Ax, 1))
(2.19a)
= —(At)z[B(u, Mul+O((Ar)’),
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where

(2.19b) B(u, A)= Mz ;_k’ZH(“’ L u)—ta(w).

We claim that, except in a trivial case, B(u, A)=0 and B(u, A)#0; this
shows that monotone finite- dtjference schemes in conservation form are of
first-order accuracy. This result is well known in the linear case, see [2] and

[11].

Proof: Using the monotonicity assumption H;=0, we can write

Y jH =) iVHVH;

by using Schwarz’s inequality, we get, from (2.14) and (2.15),

\2a*(u)= (Z f&)z=(21@@)2
=Y/ H-LH=L/H

It follows from (2.20) and (2,19b) that B(u, A) =0. This inequality becomes an
identity if and only if H(u, - u)=0 for all j except one, ie., the
finite-difference operator is a pure translatlon——thls is the trivial case men-
tioned above.

Su_ppose that w is a smooth solutlon of the parabolic equation

(2.20)

(2.21) we+ f(w)e = At B(w, M)wilx,

where B(w,A)=0 is given by (2.19b); then, in the same way as (2.19) was
derived from (2.17) and (1.1), we deduce that

(222) wix t+A0=H(w(x—k Ax, ), -, wx+k Ax, 1) = O(A1)).

This implies by standard arguments that v(x, t) given by (2.1), which is a
first-order accurate approximation to smooth solutions of the conservation
law (1.1), is a second-order accurate approximation to smooth solutlons of the
parabolic equation (2.21).

Although the preceding statement was derived by assuming smoothness of
the solutions, a similar statement can be made for solutlons of the lmear
equation

(2.23) u+cu, =0, ¢ =const. ,

with discontinuous initial data. It is shown in [3] that if u(x, t) is the solution
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of (2.23), v(x, t) the solution of (2.1), and w(x, t) the solution of (2.21), then
(2.24) lo(x, £)— u(x, )] = const. (At)*,
(2.25) lv(x, £) = w(x, t)|| = const. (At)3"f ,

where || || is the L,-norm. Thus even for linear discontinuities, the numerical
solution approximates the solution of the parabolic equation (2.21) better
than it approximates the solution of the original conservation law.

The numerical solution v(x, t), and the solution w(x, t) of the parabolic
equation (2.21) are both approximations to shock solutions of the conserva-
tion law (1.1). Both approximations share many properties like maximum
principle, L;-contractiveness (see Appendix) and most importantly, existence
of monotone steady progressing profiles (see [3] and reference [A2]). A

" numerical study in [3] revealed exceptional agreement between numerical and

viscous profiles. This shows that solutions of the monotone scheme in
conservation form (2.1) appear to approximate solutions of the parabolic
equation (2.21) better than they approximate solutions of the original
conservation law, continuous as well as discontinuous. Since the physically
relevant solution was defined as the limit of solutions of the parabolic
equation, this may explain why solutions of monotone schemes in conserva-
tion form converge to the physically relevant solutions.

3. Non-Monotone Finite-Difference Schémes

In this section we consider schemes of type (2.1) which are not monotone,
i.e., for which the function H defined in (2.1) is not a monotone function of
all its arguments. As we remarked at the end of the last section, difference
schemes which have order of accuracy higher than 1 are not monotone. In
this section we shall give examples of non-monotone difference schemes in
conservation form whose solutions converge to weak solutions which are not
physically relevant, i.e., which violate the entropy Condition E.

We consider numerical solutions to the following initial value problem:

(3.1a) CuHf),=0,  f(u)=u—aui(u—1)7?
1 for x=0.5,
B1b) u(x,0)=u0(x)={0 for x>0.5.

Here a is a positive parameter. Figure 1 shows a plot of f(u) for a =3 «/3;
note that f is not convex or concave. In fact, f(u) is not convex or concave

~for all «>0.
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The functibn
(3.2) . u(x, t)=uo(x —1)

solves the initial value problem and satisfies the Rankine-Hugoniot condition
across the discontinuity. It follows from the geometrical interpretation of the
entropy condition, see [7], that (3.2) satisfies the entropy condition. Therefore
by the uniqueness theorem it is the only solution.

First we consider the solution of (3.1) by the Lax-Wendroff scheme (LW):

07 =07 =3~ fT-1)
(3.3a) )
. +%)\ [a?+1/2(f?+1—f?)“a?—l/z(f?—f}l—l)],

fe=f(v0, akr12=aG(vi+vk.1); A=At/Ax is chosen at the beginning of
each time-step by ’

(3.3b) A max |a(v})|=0.9.
I

Figures 2a, 2b and 2c show v; of the LW scheme fpr n=>5, 15, 150; the
dashed line in these figures is the correct solution (3.2).
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- The numerical evidence presented in these figures . indicates that the
solution of (3.2) by the LW scheme converges as n— o to

up =1 for —0< x<0.5-3.3¢,

up=1.41 for 0.5-33t<x<0.5,
(3.4) u(x, )= 4

uy=-0.17 for 0.5<x<0.5+2.2¢,

\uR=O for 0.5+22t<x<+,

The Rankine-Hugoniot conditions (1.4) at the three discontinuities are
satisfied within the accuracy of the calculation, i.e., u(x, t) given by (3.4) is a
weak solution of (3.1). This is as it has to be according to the theorem of Lax
and Wendroff quoted earlier. On the other hand, observe that whereas the
entropy condition is satisfied for the discontinuity between u; and u, as well
as for the discontinuity between uy and ug, it is violated at the discontinuity
between u, and uy. This is again as it has to be; for, according to the
uniqueness theorem, there is only one solution of (3.1) which satisfies the
entropy condition, and that solution is given by (3.2).
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It seems that both the non-monotonicity of the finite-difference scheme
and the non-convexity of the flux function are responsible for this non-
physical behavior of the solution (3.4). The non-monotonicity of the finite-
difference scheme causes the development of an overshoot u, (see Figure 2a)
and an undershoot uy (see Figure 2b). The non-convexity of the flux function
allows a(uo)<a(ur) and a(uy)>a(ur). These inequalities explain the back-
ward propagating shock (ur, uo) and the forward propagating shock (uy, ug)
in (3.4).

We remark that numerical experiments with the LW scheme and a flux
function f(u),

(u—au*(u—1)* for 0=su=1,
ﬂw={

u for u=1 or u=0,

which is identical to (3.1a) in [0, 1], but is linear otherwise, did not exhibit
nonphysical solutions, although the overshoot was as large as in the case of
(3.1). .

Computer experiments with the second-order accurate 2-step Richtmyer
scheme (cf. [17]), as well as with the third- and fourth-order accurate
generalizations of the LW scheme (cf. [19]), produced results similar in nature
to the one described in Figure 2. v

We present now an example which shows that the LW scheme (3.3a) can
produce a solution of the conservation law (1.1a) which violates the entropy
condition even when f is convex.

We shall consider a function f for which

(3.5) f-1)=f(1).

It can be verified immediately that for such f

-1 =0,
(36) 'Uj='{ for ] 0

1 for j>0,

is a steady solution of (3.3a). That is, if the initial value v} is taken to be v; as
given by (3.6), vj=v}=---=v] are all equal to v;. The limit of these
approximate solutions is, clearly,

-1 for x<O0,
1 for x>0.

3.7 | u(x, t) ={

This is a weak solution of the conservation law (1.1a) when (3.5) holds. On
the other hand, the solution (3.5) will violate the entropy condition when f’(l)
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is - positive; for then the characteristic directions on both sides of the
discontinuity point away from the discontinuity and this is well known to be
contrary to the entropy condition. ,

We turn to investigating the stability of the solution (3.6). Our analysis,
partly theoretical and partly numerical, suggests very persuasively that even
when the entropy condition is violated, (3.6) is semistable in the sense that if
we take initial values close to (3.6), the solution ground out by the LW
scheme tends to a weak solution which still has a discontinuity at the origin
violating the entropy condition. \

We start by linearizing the LW scheme (3.3a) around the solution (3.6).
We write

v =p,+ew;,
(3.8)
v" P =0, +eW,+o(e).

Substitute (3.8) into (3.3a) and differentiate with respect to &; we get

W, = A1 (1 +Aa;_12) Wiy
(3.9 -

+(1 "%)tz(aj—l/z + aj+1/2)aj)wj - )taj+1(1 - )\aj+1/2)Wj+1 .

We abbreviate Af'(1) by b. For the sake of simplicity we assume that
Af'(=1)=—b; this will be so whenever f is an even function.
It follows from (3.6) and the definition of a;,,,, in (3.3a) that

~b for j=0, {"b for j<0,
AGjy12=

b for j>0, 0 for j=0,

(3.10) Aa,-={
b for j>0.

Substituting this into (3.9) we get

W; = (—3b+3b%) wj—g+(1- bz)Wj +@3b +'21'b2)Wj+1

for j<O,

W, =(=3b+3b)w_1+(1—3b>)wo—L1bw,,
(3.11) 1

Wi =—3bwo+(1-3b>)wy+(=3b +3bH)w,,
and

M = (’%b +%b2)w,-—1 + (1 - bz)Wj + (—%b + %bz)Wj.(..l

for j>1.
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We simplify the operator (3.11) by introducing

~=W'+W_.', P =W Wi,
(3.12) b= W;T Wi 4= W;— Wi

Pi=Wi+ Wiy,  Q=W;- Wy,

j=1,2,---. In the first equation of (3.11) replace j by 1—j and add it to,
respectively subtract it from, the last equation in (3.11). We get

(3.13) P, = (3b+3b°)p;-1+ (1= b?)p; +(=3b +3b7)pja1
. ] .
Q; = (b +3b%)g-1 + (1= b))g; +(~3b+3b)g11 .

Adding and subtracting the second equation from the third in (3.11) we get
(3.14) P, =(1-3b>-3b)p1+(-3b+3b%)p,,
Q;=(1-3b+3b)q1 +(=3b+3b2)gs .

Now (3.14) can be rewritten as (3.13); with j=1, provided that we define

po=2"1p

0= 7 . 4 V1>

(3.15) b+1
.qo=q'1,-

We use (3.15) as boundary conditions for equation (3.13).

In equations (3.13), (3.14) and (3.15) the p’s are completely decoupled
from the q’s. We denote by T,(b) the operator relating the p to P, by T,(b)
the operator relating q to Q.

Equations (3.13) with the boundary conditions (3.15) are simple scalar
examples of difference equations for mixed initial-boundary value problems.
A stability theory for such equations has been developed by Kreiss; another
approach to this theory is due to S. Osher. The idea of using the Kreiss
theory for shock problems occurs in [20].

Kreiss’ theory says that a difference scheme is strongly stable, in the sense
that the I, norm of its solutions remains uniformly bounded for all time, if
there are no unstable modes, genuine or generalized. It is not hard to show
the following:

For b>0, the operator T,(b) has no unstable eigenvector, and T,(b) has the
unstable eigenvector

qi=1’ j=1’27'”,

(3.16) |
T,(b)g=q.
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For b<0, the operator T,(b) has no unstable eigenvector but the operator
T,(b) has the unstable eigenvector

(3.17) T(b)p(b)=p(b),  p;= (b - 1)]

P | = 72"”’
b—1) =1

The reason is that in the case b<(0 there is a one parameter family of
stationary shock profiles which are exponentially small at +. Their derivative
with respect to the parameter is the eigenvector (3.17).

It follows from Kreiss’ theorem that T,(b) is strongly stable for b>0 and
T,(b) is strongly stable for b<0. We surmise that T,(b) is weakly unstable for
b>0, T,(b) is weakly unstable for b<0 in the following sense:

ITXb)|=const. Vn, b>0,
(3.18)

I T2(b)|=const. Vn, b<0.
We deduce easily from (3.13), (3.14) that
(3.19) T¥(b)=T,(-b),

where * denotes the adjoint with respect to the I, norm. It follows from
(3.19) that

(3.20) IT2(=b)= T3 5

so it suffices to prove only one of the two statements in (3.18). To study
T,(b), b>0, we compare T (b) to the solution operator of the differential
operator which it approximates. Then (3.13) is an approximation to

(3213) qt+qu=0,
and (3.15) is an approximation to
(3.21b) =0 at x=0.

The solution of (3.21) whose initial yalue is ¢(x) is, for b>0, given by the
formula

x t)={¢(0) for x<bt,

(3.22) ¢(x—bt) for x=bt.
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Table 1* of T2(b)b, b= (0.9), defined by (3.13)
i ¢ TH09)¢ TN0.9¢ TI50.9¢ TX(0.9)¢

0 1.053 1.053 1.053 1.053 )
1 1.0 1.053 1.053 1.053 1.053
§ 2 00 1.052 1.053 1.053 1.053
" 3 00 1.064 1.053 1.053 1.053
4 00 1.094 1.053 1.053 1.053
5 0.0 0.965 1.051 1.053 1.053 -
6 00 0.457 1.050 1.053 1.053
7 0.0 0.0 1.074 1.053 1.053
8§ 00 0.0 1.117 1.052 1.053
9 0.0 0.0 1.038 1.049 1.053
10 0.0 0.0 0.673 1.047 1.053
11 0.0 0.0 0.209 1.073 1.053
12 0.0 0.0 0.0 1.125 1.053
13 0.0 0.0 0.0 1.096 1.048
14 0.0 0.0 0.0 0.838 1.044
15 0.0 0.0 0.0 - 0.413 1.066
16 0.0 0.0 0.0 0.095 1.123
17 0.0 0.0 0.0 0.0 1.134
* 2 09-1
Observe that, by (3.25), l(¢) = 09-1 —————0 971 1.053.

By analogy with (3.22) we expcct1 the solution of the initial value problem
_for the difference scheme (3.13), (3.15) to be of the form

(3.23) q;=1(d) for j=bn,

where [(¢) is some linear functional of the initial data. Numerical calculations
bear out this contention, see Table 1.

The linear functional I(¢) is easily determined. With p given by (3.17) but
b replaced by —b and using (3.19) we have, for >0,

(3.24) (T3(b)d, p(=b)) = (o, Tp(~b)p(—b))= (&, p(=b)) .
It follows from (3.23) that, as n — «, the left side of (3.24) tends to

(b—-1)/(b+1)

—G-Dib+D @D

() X pi(b) = 1(9)
So from (3.24) we get

(3.25) 1) =2 60 = L ()

! We thank Stanley Osher for suggesting. this approach.
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Table 2 of T,(b)d, b =(—0.9), defined by (3.13)

i
n 1 2 3

4 5 6

o* 1.0 1.0 1.0 1.0 1.0 1.0
5 5.68 10.81 1.01 1.0 1.0 1.0
10 10.42 0.56 1.02 1.0 1.0 1.0
15 15.16 0.31 1.03 1.0 1.0 1.0
20 19.89 0.06 1.05 1.0 1.0 1.0
25 24.63 -0.19 1.06 1.0 1.0 1.0
30 29.37 —0.44 1.07 1.0 1.0 1.0
35 34.10 -0.69 1.09 1.0 1.0 1.0
40 38.84 -0.94 1.10 1.0 1.0 1.0

*¢.:{1 for 1=j=49,
" l0 for - j=50.

This relation was borne out by numerical calculations, see Table 1. It would
follow from (3.23) that, for b>0, || T4(b)||=const. Vn. We surmise that T,(b)
is stable on the subspace of data ¢ which are orthogonal to p.

By (3.20) the same inequality follows for Tp(—b), completing the proof of
(3.18). It is interesting to note that the instability of T,(—b) is more violent
than the instability of T,(b); in the former case, instability is manifested by
the first component of Th(—b) tending to «, see Table 2. Recall that T,(-b),
b>0, corresponds to a shock which satisfies the entropy condition whereas
T,(b), b>0, corresponds to a discontinuity that violates the entropy condi-
tion. It is amusing that the former should be more unstable than the latter, in
the linearized analysis. v

A number of numerical experiments carried out in the case f(u)= u’*/2 show
that in the full nonlinear theory there is no instability at all of the discontinuity
which satisfies the entropy condition, see Figures 3a and 3b. When the values
(3, 6) are perturbed, iterations of the LW operator (3.3a) tend rapidly, as n
tends from «, to one of a one-parameter family of steady profiles connecting
—1 to 1. For discontinuities which violate the entropy condition, there is a
mild instability. Finite perturbation causes a pair of rarefaction waves to issue
from the point of discontinuity, without however completely dissolving the
discontinuity into single rarefaction waves. See Figures 4a, 4b and 4c.

4. Conclusiohs

Our study shows that solutions of certain difference approximations to
conservation laws fail to converge to the physically relevant solutions. On the
other hand, we have shown that a limit of solutions of monotone difference
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| schemes is always the physically relevant solution. This quality, as well as

! their extreme stability, makes monotone schemes attractive at first. On the
other hand, monotone schemes-are necessarily of first-order accuracy and this
severely limits their accuracy and resolving power. In two- or three-
dimensional problems, where mesh sizes are necessarily crude, first-order
schemes are practically useless. Indeed, the practical schemes today combine
high-order accuracy in smooth regions with a sufficient amount of dissipation
in shock regions. Dissipation is provided.either by some version of artificial
viscosity; introduced 25 years ago by von Neumann and Richtmyer, see [18],
[13], [1], [4], [14], or by some form of hybridization as in the method of
Harten and Zwas [5]. The role of artificial viscosity as an entropy-producing
mechanism was clearly recognized by von Neumann and Richtmyer, although
it is also a device for reducing overshooting, and excessive oscillation, for
stabilizing calculations. These two roles of artificial viscosity are related. y

It would be extremely desirable to extend the result of Section 2 from
monotone schemes to all schemes which have a certain amount of viscosity in
regions of rapid transition and show that limits of such schemes satisfy the .
entropy condition.

It would also be extremely important to extend these results to systems. A
notion of entropy for systems is discussed in [12]; it is shown there that limits
of solutions of the Lax-Friedrichs scheme satisfy an entropy condition,
provided that At/Ax is less than a fraction of the Courant-Friedrichs-Lewy
limit.
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Another important problem is to study the effect of shocks on the overall
accuracy of schemes which are of higher order in smooth regions.

Appendix
by
Barbara Keyfitz

It was shown in [7] that piecewise smooth solutions of a single conserva-
tion equation satisfying Condition E form an L-contractive semigroup. To be
precise, if u(x, t) and w(x, t) are two solutions of (1.1a), and u(x, 0)—w(x, 0)e
L,, and if u and w both satisfy Condition E, then

(A1) luC, )= we, =t t)—wi, 1)l

for all &=t =0; here || | denotes the L;-norm in the space variable. The
converse of this proposition is also true, in the following sharp form: if (A.1)
is satisfied for a particular weak solution u and all smooth solutions w, then u
satisfies Condition E.

To test whether a given weak solutlon u(x, t) satisfies Condition E, it is
thus sufficient to show that |Ju(-, t)—w(:, 1)|| is a non-increasing function of ¢
for all smooth solutions w. For proofs, see [7], and [Al] in which Krushkov
extended this result to general weak solutions.

In this appendix we give an alternate proof of the theorem of Section 2 by
showing that if u is a limit of solutions of a monotone difference scheme, then
(A.1) is indeed satisfied for all smooth solutions w. This is based on the
observation by Gray Jennings [A2] that solutions of a monotone difference
scheme satisfy a finite-difference analogue of Li-contractiveness: if v, and z,
are two solutions of (2.2) defined at grid points (jx, nt), and vy —z; is
l;-summable, then

v
v

(A.2) o™ =z™|=]o"-2z" for m=nz0,

where | | denotes the Il-norm over the spatial grid. For the sake of
completeness we present a proof.
Clearly it suffices to show that (A.2) holds for m =n+1. Introducing the

notation &7 = (v}, * * *, V), a (2k +1)-dimensional string of points from {vj},
and letting s} =sgn (v} —z") we can write

" n+l_ n+1" _Z Sn+1(vn+1 +1) Z sn+1(H(ﬁ;;)_H(z;n)) )
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Now, dropping the superscripts;

1
d
Let £(0)=(1— 0)z;+ 07;, a (2k+1) dnnens1ona1 stnng from {(1-6)v;+6z;};
then ,
12k+1
" - n+1” _Z SHIJ; IZ (U; k+l1-17" Zj—k+I— 1) — (51(9)) de.
Rearranging terms, we obtain
12k+1
v . oH -
z (vm_Zm)J' Z s,m-:-lk—l+1 _—'(Em+k—l+1(e)) de,
m 0 I=1 ‘ oy
and since aH/au,>0 for I=1,-:-,2k+1, we may drop the terms s"+1 and
write
1 2k+1
oH
o= 2"y T I 23 { [ de} .
o i=1 0
However,
H(uy, "+, Ugier1) = e = AUz, -, Ugiar) = h(ta, -+ - 5 Uz}
and so - :
dH oh
—=A— s T T, ’ 3
us duy (uy Uak)
oH oh
=-=A (U2, -, Uzs1)
OUzk+1 Uz
oH dh ah ’
=1-\A— . +A Uy, ***, Uk) s
F 1 )\auk (uz, -+, Uazk+1) P (uq 21;)
and o )
oH dh _ dh
i T — +A ’ ) u
P E (uz, - u2k+1) au (ul 2k)

otherwise .
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-Hence, for each fixed value of 6, dropping the §-dependence of ¢

2k+1 aH
5— (gm —I+1> gm 1425 ", §m+2k—l+_1)
=1 oY
2k
= A'_"(§m7 §m+1 Z { A__' (gm +25° )
1=2 du—y
oh : .
+/\§(§m_,+1, .. -)} +1  (for the k+1 term)
1
oh
_A:?;;(g"‘_z"“’ -e)=1.
Thus

1
||vn+1_‘zn+1"1§2 lv:‘n—z;‘nl I 1deé ="U"_ z"“l ’
m 0

proving (A.1).

To complete the argument, let u(x, ) be the strong 11m1t of solutions v of
(2.2) as Ax, At— 0 with A fixed. Let w(x, ) be any smooth solution of (1. 1a)
with u(x, 0)—w(x,0)e L;. Now w can be approx1m_ated by a solution z} of
(2.2) which converges strongly to w as Ax — 0 with A fixed, as a consequence
of a result of Strang [A3], which shows that for positive methods (including
monotone schemes) convergence to smooth solutions is guaranteed.

In (A2) let Ax—0 with A fixed, and m,n > so that m At=1t,,
nAt=t,. Since v} and z} converge strongly and hence in norm, :

Ax[lo”=z" = uC, ) —w(-, 0,

whence (A.1) follows.

We remark that monotonicity is necessary for (A.2) to hold: a difference
scheme approximating (1.1a) which is consistent and conservative and satisfies
(A.2) is monotone.
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