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ABSTRACT

A FORTRAN subroutine package, called DERMOD, has been written for calculating
numerical approximations for the spatial derivatives of a function defined only
on a discrete set of data points. The routines are designed to complement many
existing codes for solving ordinary and partial differential equationms and for
the interpolation of tabular data. We describe some new numerical
differentiation algorithms, discuss a mapping procedure for nonuniform grids,

and explain the program methodology used in designing the software.

I. INTRODUCTION

The accurate approximation of spatial derivatives is a crucial element in the
numerical solution of partial differential equations (PDEs). The derivation and
implementation of accurate differentiation formulas is an error-prone and’
tedious process. This is especially true in two and three dimensions on
nonuniform grids. For these reasons we have written a subroutine package,
called DERMOD, to help reduce the effort needed to accurately and reliably
differentiate discretely defined functions.

A major advantage of the package, compared with the traditional approach for
solving PDEs, is that state-of-the-art numerical methods can be used with a
minimum of programming effort to approximate the derivatives in large
complicated PDE systems. Furthermore, the resulting programs can easily be
modified for a comparison of the relative accuracy and efficiency of the
different methods for solving a particular problem. The production rumns can
then be made using the best available methods.

The numerical analyst will also benefit from this approach. Most of the
developmental analysis for numerical methods is for simple linear systems. It
is important to understand the behavior of a new method in a complex situation
before recommending its use to the uninitiated. New methods can now be quickly

tested on any PDE system discretized using the DERMOD package.



All the spatial differentiation methods we describe will follow the same
algorithmic flow. A function is defined on a discrete set of mesh points in
one, two, or three space dimensions. These discrete data sets are the input to
a black box type subroutine in the DERMOD library. In this subroutine the
approximation for the described derivative is calculated and returned to the
user.

Thus, the spatial differentiation is totally divorced from the nonlinearities
of the PDE, the boundary conditioms, and the time integration me;hod. This
modularity also reduces the redundancy of programming the same approximation to
the spatial derivatives each time they appear in an equation. These
differentiation routines are designed for no specific PDE and need to be
debugged and optimized for a particular machine only once.

The data structures of the grids allowed in the current version of DERMOD,

listed in increasing order of complexity and computer cost, include:

0 one-argument grids: (tensor-product grids, Fig. la) {xi}, {xi, yj}, and

{xi, yj, zk}. Uniform grids are a special case of one-argument grids,

o multiple-argument grids: (logically rectangular, Fig. 1b) {xi}, {xi

7’
y; 53 and 1%y 5o Yy 50 %5,k
0 neighborhood grids: (Fig. 1c) {xﬁ}, {xg, yz}, {xz, Yyr 22}' and NBRS ;.

These grids are typical of finite element simplex grids.

The numerical differentiation methods described can be divided into two
classes: interpolation methods and mapping methods.

The interpolation method approximates the function with-an interpolant (such
as splines, or a local Lagrange polynomial), differentiates the interpolant, and
evaluates the derivative at the desired location. These formulas are simple on
uniform grids but are |usually complicated on nonuniform grids. The
interpolation method is not as sensitive to rough mesh variations as the mapping
method.

In the mapping method, the nonuniform grid is mapped to a uniform reference
grid. The derivatives on the nonuniform grid can then be expressed as products
and sums of the derivatives of the function on the reference grid and the map.
These derivatives on the reference grid are approximated using an interpolation
method that is simple and efficient. The accuracy of the mapping method depends
upon the smoothness of both the original function and the map. Therefore, the
smoothness of the mesh variations in the nonuniform grid can strongly influence

the accuracy of the derivative approximations.
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One-argument grids 2-D Tensor-product grid

(xil !Ij: zk)

Multiple-argument grids 2-D logically rectangular grid

(x5, 5 9,5

(x; 5,5 Yi,5,%' Z5,5,06

2-D triangular grid

Neighborhood grids

(x.y,z)2

xroc(L)
yroc(L)
zroc(L)
NBRS(L,*)

Fig. 1. Different 2-D grid data structures.



After first describing the interpolation method in greater detail we will
discuss the mapping method, explain the program methodology used in designing
the software, and then provide instructions for using the DERMOD subroutines

effectively.

I1I. INTERPOLATION METHODS

In the interpolation method one can either comstruct a local interpolation
function based only on data points near where the derivative is desired or, by
using all the data points, construct a global interpolant. Usually the local
interpolants are simpler and more appropriate for handling sharp gradients and
nonuniform meshes, but they are less accurate than the global interpolants. In
this report we will describe only the local polynomial interpolation methods.
In a later report we plan to describe on the implementation of global
interpolants based on the Fourier transform or Chebyshev polynomials.

The simplest local interpolation method to approximate der1vat1ves fits a
lLagrange or least-squares polynomial through the data at the nearby mesh points,
differentiates the polynomial and evaluates it at the desired mesh
point:.l'-8 This results in an approximation for the k-th derivative of f at X

denoted by f[k](xi), that is a linear combination of the nearby function values,

f[k](xi) = 3 af(x,)/(constant X k).

On uniform grids these formulas are relatively simple and are called finite
difference methods. Table 1 lists some common finite difference formulas used
in DERMOD. The centered difference formulas are used whenever possible and the
uncentered ones are used only near boundaries when too few function values are
available to use a centered scheme.

When the data is smooth, the high order Lagrange interpolation formulas in
Table 1la usually provide better accuracy on a given grid than do the lower order
formulas.

When the data is rough, the sensitivity of the derivative approximations to
noise can be more important than the order of accuracy of the method. For these
problems the least-squares formulas9 in Table 1b are preferred over the Lagrange
formulas. These formulas are derived by fitting a least-squares polynomial

through the data points of degree two less than the Lagrange polynomial.



TABLE 1a k_[k]
LAGRANGE APPROXIMATIONS ON EQUALLY-SPACED GRIDS, ch £ = 2 ajf(xi)

Derivative 2i-3 %i-2 %i-1 25 3341 2i+2 2i+3 2i+4 2i+5 2i+6 Accuracy
) 2
2nf_(x,) 1 1 O(hz)
2hf_(x,) -3 4 -1 0(h%)
12hf_(x,) 1 -8 g -1 o(x*)
12hf_(x,) -3 -10 18 -6 1 o™
12hf_(x,) -25 48 -36 16 -3 o™
60hf_(x,) -1 9 -45 45 -9 1 0(x®)
60hf_(x) 5 -24 -35 80 =30 8 -1 o®)
60hE_(x,) .10 -77 150 =100 50 ~-15 2 ou®)
60h_(x,) 147 360 -450 400 -225 72 -10 0(h®)
hf (x..,) -1 1 o(h?)
x itk
24hfx(xi+%) 1 -27 27 -1 o(h)
26hf_(x.,,) -23 21 3 -1 o™
6
1920nf_(x; ;) 9 125 -2250 2250 -125 9 0(b®)
2
h fxx(x ) 1 -2 1 0(h™)
2
n’f (x,) 2 5 4 1 0(h%)
2 4
126°f(x,) -1 16 -30 16 -1 o™
120°F_ (x,) 10 -15 -4 14 -6 1 o™
120%f (x.) 35  -104 114 =56 11 “ 0(h3)
XX 1
180h2fxx(xi) 2 =27 270 -490 270  -27 2 o(n®)
180h2fxx(xi) _13 228 -420 200 15 ~-12 2 o(b>)
180h2fxx(xi) 137 -147 -255 470 -285 93 -13 0(b>)
180h2fxx(xi) g12 -3132 5265 -5080 2070 -972 137 O(h>)
nf (%) -1 2 -2 1 o(h?)
2h3fxxx(xl) -3 10 -12 6 -1 0(h?%)
2n’f (%) -5 18 -24 14 -3 0(h%)
4 2
b fxxxx( 1) 1 4 6 4 »1 O(hz)
b4 (x.) 2 -9 16 -14 6 -1 0(h%)
1‘ XEXXX 1 2
b (x.) 3 -14 26  -24 11 -2 0(h%)
XXXX 1




"ABLE 1b k_[k]

[EAST-SQUARES APPROXTMATIONS ON EQUALLY-SPACED GRIDS, chf " = 3 a f(x,)
Approximation  2i-3  Zi-2  Zi-1 % 2341 Zi+2 2343 2i+4 2%i+5 %i+6  Accuracy
35£(x,) -3 12 17 12 -3 o™
35 (x, ) 9 13 12 6 -5 o)
35£(x,) 31 9 -3 -5 3 o(h3)
10hf_(x.) -2 -1 1 2 o)
70hfx(xi) -34 3 20 17 -6 O(hz)
70hf_(x,) -54 13 40 27 -26 o(b%)
2 2
ThE () 2 -1 -2 -1 2 o(h%)
14h2fxx(xi) 11 -16 -4 12 -3 0(h%)
2
mE (%) 9 15 -2 13 -5 o(h%)
231£(x,) 5 -30 75 131 75  -30 5 ox®)
462£(x) -35 155 212 150 25  -65 20 o(h>)
462£(x) 25 356 155  ~60  -65 70 -19 o(h>)
4621 (x.) 456 25 =35 10 20 -19 5 0(h”)
252hf (x,) 22 -67  -58 58 67  -22 o)
2772hf_(x,) 158 -1619 .50 1218 764 -607 136 o™
252hf_(x,) -104 -25 68 84 16 -59 20 o™
2772hf_(x,) -4420 5059 1504 -2394 -1378 2375 -746  -0(h")
2 ' 4
1320°f_ (x,) -13 67 -19  -70 -19 67  -13 o(h™)
132h2fxx(xi ) 27 3 -35 -34 9 47 -17 o)
132h2fxx(xi) 103 -145 -39 74 49 -57 15 o)
132h2fxx(xi) 215 -377  -31 254 101  -245 83  o(hd)




On an equally spaced mesh it is easily seen that the centered first
derivative approximations in Table 1 are conservative.10 On an unequally spaced
mesh the interpolation formulas are, in general, not comservative.

To compute more complicated derivatives such as fxy or (dfx)x the formulas
are applied in a two-step process that ensures that the resulting formula will
be as compact as possible. For example, to compute (dfx)x, first fx is computed
at the half-points X4y = %(x + x, +1) Then d is defined at these points using

the harmonic mean,

X, -1
1 o
di#j = Axi+£5 d " (x) dx = 2d1d1+1/(d1' * di+1)

The harmonic rather than the arithmetic mean is used in order to preserve the
flux continuity (df ) accross discontinuities in d. 1 The product df is then
differentiated and evaluated at the mesh points. On nonuniform grlds special
care must be taken because the centers of the midpoints are not the mesh points.

The three-point derivative approximations on nonuniform grids wusing a
parabolic interpolant are listed in Table 2. The five-point quintic Lagrange

interpolation methods are stralghtforward and are also available in the

TABLE 2

QUADRATIC APPROXIMATIONS TO fx AND fxx

£,.0x) = (8%, /5 Si4170 ¥ BRisay2 S;-172) BXgp1y0 ¥ B¥5oqy0)

£ (x;) = (8%, + 8%505,5) Sih1y2 ~ Bi41/2 Si4/2/ (Bxi4yy ¥ BX5430)
f (%) = 208,479 = Si-172) PXiaay2 * Bx; 472

where

Bxiv172 T Fiel T M

Siv1/2 = Ai41/2/Mi41/2




package. The coefficients aj for the quintic interpolation methods are computed
and saved on the first call to the package. By using this information, later
derivative calculations on the same nonuniform grid cost little more than the
approximations on an equally spaced grid.

On the multiple-argument or neighborhood grids the local Lagrange interpolant
is more cumbersome and frequently there is no unique formulation. For example,
in two dimensions, the typical Lagrange quadratic interpolant is uniquely
defined with six data points, but the (i,j)-th mesh point in two-argument grid
has nine data points next to it. A possible approach is illustrated in Fig. 2.
First, an orthogonal (x,y) coordinate system is set up and f is interpolated
linearly to give values at the on-axis points A, B, C, and D using the function
values at the neighboring points. The one-argument grid quadratic
interpolation formulas are then used. This procedure, implemented in DERMOD, is
not as accurate as it could be, since the interpolated values are only O(hz).
The first derivative approximations are only O(h) accurate and the second

derivative approximations may be only O0(1), and thus they may be inconsistent.

“"»i;”/<>A//\
~

/ /

Y
// // /(i+l,j+|)
Gi-Li g _ y

B LI
il @n ’

\
Ve iLj-n
D ('oj"‘)

(i-1,j=1

Fig. 2a. Two-argument grid. Fig. 2b. Neighborhood grid.

Fig. 2. Interpolation to an underlying orthogonal reference grid.

We have considered two other approaches to overcome this dilemma on
multiple-argument and neighborhood grids. The first is to fit a least-squares
quadratic polynomial through the nearby data points and differentiate it at the
desired location. We expect this method to be accurate and stable. We are

currently implementing this approach in DERMOD.
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The lumped finite element method is another interpolation method that can
also be used to generate local approximations to the derivatives. These
formulas work well on uniform grids, but appear to have little advantage over
the least squares approach on rough grids. Imn fact, using a triangulation of
the grid in Fig. 2, the approximations thus generated to the second derivatives
are pointwise inconsistent. The Minerbo approximation to the Laplacian12 is an

accurate special formula that avoids this incomsistancy.

111. MAPPING METHODS

A simpler approach to pumerical differentiation on nonuniform grids is the
mapping method. In the mapping method, the physical mesh points (x,y,z) are
mapped to reference mesh points (£,n,{). The derivatives in the physical space
are then expressed in terms of the derivatives of the map, called the mesh
metrics, and the derivatives of the function on the reference grid.

The mapping method in one space dimension13 is always nonsingular since the
nonuniform mesh {xi} forms a strictly monotonic sequence. That is, there exists
a one-to-one map from x, onto the reference grid gi (for example, £. = i). The

i
derivatives of a function defined on {xi} can then be expressed as

£o= £ &, = £/ (4.1)
and
2 _ -2 -2
fxx = fgggx + fg §xx = fgg(xg) + —}fg((X§) )g - (4-2)

The derivatives on the right side of these equations are derivatives on the
reference mesh. These can be approximated with any of the interpolation
methods, all of which have a much simpler formulation on regular reference
grids. For example, if fourth-order Lagrange finite differences are used in

(4.1), then

-f, . + 8f. 6 - 8f, . -X. .., - 8x. . o \-
£ (x) . f1+2 8f1+1 8f1_1 + f1-2 x1+2 + 8x1+1 8x1_1 + xl__2 1
x i 1248 12A%
- “fip P8 T8t i
Xip T BXyy m8Xy gt X,



Note that the reference grid points need not be evenly spaced. They could,
for example, be the Gauss or Chebyshev points depending upon the interpolating
functions being used.

Some smoothness in the function being approximated is assumed in deriving all
the high order differentiation formulas. For this reason, the order of accuracy
is bounded by the smoothness of f, the smoothness of the map, and the order of
accuracy of the differentiation formula on the uniform mesh. Therefore the
mapping methods are usually less accurate than the interpolation methods on
grids with nonsmoothly varying mesh spacing.

Analytically, §x can never vanish. However, on rough grids (where the
mapping method is inappropriate) the numerical approximation to gx may vanish
or, equally bad, change sign. When this occurs, either an interpolation method
or a lower order mapping method should be used.

On two-argument grids the formulas are more complicated,la' but the
derivatives can still be expressed as a function of the derivatives on a regular
reference grid and the mesh metrics of the map from the physical (x,y) grid to

the reference (£,n) grid. For this case we have

RS n, 0 0 o 1 g ]

£, £, n, 0 0 0 £

fol ® | 6xx N,y E,i 2E n, ni fee (4.3)
Xy €y Ny £X€y Eny * £ NNy fen

fyy _gyy yy gi 2k, ”§ _fnn

Using the Jacobian J of the map and its derivatives,

J = XYy T Xp¥g v

Te = XegUn * *eVen T Fen¥e T TnYee

and

<
L]

+ - - ’
n = *endn T FYan T *an¥e T *n¥en
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the mesh metrics can be easily expressed as derivatives on the (£,n) reference

grid.
&, = 9/7 ¢
by = “X/7
nx = 'gg/J ’
Ny = Xg/J
g 2 } 3
Eax = (Tg9n * Vn¥gn * %% T T’
_ } ) 3
by = Tef¥n = Xgq¥n ~ T ¢ TE YT
g 2 ) 3
gyy = | ngn + anxgn + Jnxgxn ngxﬂﬂ)/J '
g2 ) 3
Moy = ( I * TYeYen * TeYeYn Jygqu)/J ,
_ _ ) 3
ey = Tn¥ede = Te¥ = g% * TR/
and
il 2 ) 3
nyy = ( Jﬂx§ + ngxgn + nggxn nggxq)/J

1f the derivatives of many different functions must be calculated on the same
mesh, then the mesh metrics need only be calculated once and saved. Usually
this means after the initial derivative calculation, additional derivatives on
the same nonuniform mesh, using the mapping method, cost only slightly more than
derivative approximations on 2 uniform mesh. The package does this
automatically.

The mapping method for three-argument grids is similar to two-argument grids

but this has not been implemented in DERMOD, vet.
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Iv. SOFTWARE DESIGN

In designing DERMOD we placed a priority on making the code reliable, modular
and easy to use. All the programs were extensively documented and verified as
the code was developed and performance claims were tested and reconfirmed.
During execution, the input is consistently checked for reasomability.

The routines are modular and as independent of each other as possible.
Minimal internal communication allows sophisticated users to easily experiment
and modify a subroutine for special purposes without causing unexpected errors
to ripple through the other routines. Modularity also allows the programs using
DERMOD to be easily upgraded and to make use of improved methods and
implementations as they become available. We anticipate that by using the
package the sofware development time and maintenance of codes may be
significantly reduced, especially for lengthy 3-D programs.

The machine architecture largely determines the efficiency of many of the
numerical differentiation wmethods. We have opted for the rbutines to
differentiate along one line at a time. This requires only one-dimensional work
arrays and allows the code to be easily vectorized on machines such as the
CRAY-1 and CDC Cyber-205.

The subroutine names in the package have six characters. These are chosen

according to the following convention:

first letter:

- define all the indicated derivatives

sweep in the x direction (first index sweep)
- sweep in the y direction (second index sweep)
- sweep in the z direction (third index sweep)

N D>
'

second letter:

- first derivative
second derivative
third derivative
- fourth derivative
,Y,Z or L - see special cases listed below

1
2
3
4
X

third letter:

X derivative in the x coordinate direction
Y - derivative in the y coordinate direction
Z - derivative in the z coordinate direction
C,D,R,S,Y or Z - see special cases listed below

12



fourth letter:

- polynomial approximation (finite differences)

Fourier transform (pseudo-spectral method)

Chebychev transform (pseudo-spectral method)

rational function Padé approximation (implicit method)

ooy
'

i

fifth letter:

- equally spaced grid

- interpolation method (unequally spaced grid)
mapping method (unequally spaced grid)

- Gauss points

- Chebyshev points

O -t
1

sixth letter:

- one-argument (tensor product) grid X(I), Y(I), Z(K)

- two-argument grid X(I,J), Y(I,J)

- three-argument grid X(I,J,K), ¥(I1,J,K), Z(1,J,K)

triangular neighborhood grid X(L), Y(L) (two dimensions)

- pyramid neighborhood grid X(L), Y(L), Z(L) (three dimensions)
- one-argument staggered grid (derivatives at the half points)

= ol IS B VU SR
'

special cases for the second and third letter:

XY - mixed xy derivative
XZ - mixed xz derivative
YZ - mixed yz derivative

- ; i + +
LR - Laplacian in rectangular geometry (uXx uyy uzz)

LC - Laplacian in cylindrical geometry (x-l(xux)x + x-zu +u_ )

LS - Laplacian in spherical goemetry vy 2z
XD - compute (dfx)x
YD - compute (df
omp ( y)y
ZD -~ compute (dfz)z

For example, subroutine X2YPM2 computes the second derivative of f with
respect to vy, fyy’ at the mesh points along an X coordinate line using a local
polynomial interpolant or finite difference method, listed in Table 1, after
mapping the unequally spaced two-argument grid to a uniform grid. The mesh
metrics are computed using the same order finite difference methods.

At this time the available routines are:

X1XPE1, X2XPE1, X3XPE1, X4XPE1l, X1YPE1l, X2YPE1l, X3YPEl, X4YPE1l, X1ZPE1l, X2ZPEl,
X3ZPE1l, X4ZPE1, X1XPI1, X2XPI1, X1YPI1, X2YPI1, X1ZPI1, X2ZPI1, X1XPM1, X2XPM1,
X1YPM1, X2YPM1, X1ZPM1, X2ZPM1, XXYPE1l, XXZPE1l, XXYPI1, XXZPI1, XXYPM1, XXZPMl,
X1XPEH, X1YPEH, X1ZPEH, X1XPMH, X1YPMH, X1ZPMH, XXDPE1l, XYDPE1l, XZDPE1l, XXDPI1,
XYDPI1, XZDPI1, XI1XPI2, X1YPI2, XI1XPM2, X2XPM2, X1YPM2, X2YPM2, and XXYPM2.

13



The nomenclature used by the package will be useful in describing the
capabilities of the routines. These variables (used in the above X sweep
routines) and their meanings are:

Input Variables:

U - array of the function values to be differentiated

in one space dimension the function u(x) must be defined at U(I) where
I is between NXBX and NXEX

in two space dimensions the function u(x,y) must be defined at U(I,J)
where

I is between NXBX and NXEX

J is between NYBX and NYEX

in three space dimensions the function u(x,y,z) must be defined at
U(1,J,K) where

1 is between NXBX and NXEX

J is between NYBX and NYEX

K is between NZBX and NZEX

On neighborhood grids the function u must be defined at U(L) where L
is between NLBX and NLEX.

X - the array containing the mesh point locations in the first coordinate
diction. The element X(I) in one-argument grids, X(I,J) or X(I,J,K)
on multiple-argument grids, or X(L) on neighborhood grids must be
defined for the same imdices 1, J, K, or L as those where U is
defined.

Y - the array containing the mesh point locations in the first coordinate
diction. The element Y(J) in one-argument grids, Y(I,J) or Y(I,J,K)
on multiple-argument grids or Y(L) on neighborhood grids must be
defined for the same indices I, J, K, or L as those where U is
defined.

Z - the array containing the mesh point locations in the first coordinate
diction. The element Z(K) in one-argument grids or Z(I,J,K) on
multiple-argument grids or Z(L) on neighborhood grids must be defined
for the same indices I, J, K, or L as those where U is defined.

D - array of the diffusion coefficients for the second derivatives. This
array must be defined where U is defined and has the same data
structure as U.

NXBX - index of the first X point where U is defined.

NXB - index of the first X mesh point where the derivatives of U are to be
calculated.

NXE =~ index of the last X mesh point where the derivatives of U are to be
calculated.

14



NYBX -

NYEX

NZBX

NZ -

NZEX

MORD -

jndex of the last X point where U is defined.
dimension of the first index of U and the mesh arrays.
index of the first Y point where U is defined.

index of the Y mesh point where the derivatives of U are to be
calculated.

index of the last Y point where U is defined.
dimension of the second index of U and the mesh arrays.
index of the first Z point where U is defined.

index of the Z mesh point where the derivatives of U are to be
calculated.

index of the last Z point where U is defined.

method order parameter. The method should be asymptotically MORD-th
order

Workspace Variables:

Iws -

Qutput

index to indicate whether the work space array contains information on
the grid such as the mesh metrics (IWS = 0 on first call using the grid,
IWS = 1 on later calls).

array of workspace used for internal calculations. This array may be
input or output.

Variables:

U -

MORD -

array of the derivatives defined at U¥*(I) for I between NXB and NXE.
The second and third letters are the same as these in the
subroutine-naming convention.

The derivative returned is asymptotically MORD-th order. This will ~be
Jess than or equal to the requested value. MORD returns equal to zero if
pno calculation was possible.

The variables for the routines that sweep in the Y and Z lines are similarly

named.

A sample program to compute the derivative of sin(x) for x between zero and

one, using a sixth-order finite difference (polynomial interpolation) method is:

DIMENSION X(11),U(11),U1X(11)
NXBX=1
NXEX=11
DX=1.0/ (NXEX-NXBX)
DO 10 I=NXBX,NXEX
X(I)=(1-1)*DX

10 U(I)=SIN(X(I))

15



MORD=6

NXB=NXBX
NXE=NXEX
CALL X1XPE1(U,X,NXBX,NXB,NXE ,NXEX,MORD,U1X)
PRINT 20
20 FORMAT(" X U U1Xx ANS')

DO 30 I=NXB,NXE

ANS=C0S (X(1))
30 PRINT 40,X(I),U(I),U1X(1),ANS
40 FORMAT(4F10.6)

CALL EXIT

END

The output is:

X U UIX ANS
0.000000 0.000000 .999980 1.000000
.100000 .099833 .995009 .995004
.200000 .198669 .980067 .980067
.300000 .295520 .955336 .955336
. 400000 .389418 .921061 .921061
.500000 .479426 .877583 .877583
.600000 .564642 .825336 .825336
.700000 .644218 .764842 .764842
.800000 .717356 .696707 .696707
.900000 .783327 .621613 .621610
1.000000 .841471 .540289 .540302

Note that in this example the derivative approximations near the boundaries
where the uncentered difference formulas are used are less accurate than where
centered differences can be used. These errors could be avoided by defining U
on a domain greater than that of the desired derivatives such
as: NXBX < NSB - 2 and NXEX > XNE + 2. This is also convenient when using
fictitious points to incorporate the effects of the boundary conditions into a
discrete approximation15 and when constructing a local Hermite interpolant and
sampling the interior of a table.

The workspace needed by the code is limited to one-dimensional arrays of
length NXE. These arrays contain the finite-difference coefficients for a
particular mesh line, and can be used to define the coefficient matrix needed in
solving the linear systems arising from implicit methods. When the user's
program is constrained by computer CPU time and not storage, then by saving
workspace arrays of length NXE on one-argument grids or NXE-NYE on two-argument
grids, the difference coefficients need only be computed once for the entire

problem.
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V. USAGE

We expect the package to be used most frequently for calculating derivatives
directly for explicit approximations to differential equations15 and for defect
correction improvements of low-order implicit approximations.16 When used this
way a crude estimate of the error can be obtained by comparing the derivatives
with those obtained by a different method or on a coarser grid. The structure
of the package makes this easy to do.

The direct usage is straightforward; the function to be differentiated is
defined at the mesh points and the derivatives are calculated as described in
the example in the previous section. We expect this to be the most common usage
for explicit integration methods for PDEs and for constructing interpolants.

The indirect defect correction usage occurs most often in the iterative
solution of algebraic equations arising in the numerical approximation to
differential equations. These equations occur in steady state or time
independent problems and on each time step in the implicit integration of time
dependent problems.

These systems can be written

A(v) -b =0, (5.1)

where A is a nonlinear discrete operator, b is a known vector, and the discrete
solution vector is V. The sparseness of A depends wupon the numerical
differentiation method used. The high-order methods result in less sparse, more
complicated systems than the lower-order methods.

Often the solution of Eg. (5.1) is difficult to obtain directly, but the

residual error,

r=A(w) - b - (5.2)

for an approximate solution w, is easy to evaluate. In many complicated PDE
problems, one 1is less likely to introduce errors in evaluating r than in
constructing A and solving Eq. (5.1). This is particularly true for high-order
approximations of nonlinear systems on irregular domains.

If there is a related system

P(w) -b=20 (5.3)

that approximates Eq. (5.1) and is easier to solve, the defect correction
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algorithm may be appropriate. The operator P may be a lower order, simpler
approximation to the same system.
. . n . . .
Given an approximation v (where n is the iteration parameter) near a root

vn+1 of Eq. (5.1), we can expand Eq. (5.1) using the Taylor series to get

0 =A™ - b

=A™ - b+ p™Y - ™
+
=A™ - b+ P - B - (3, - JA)(Vn+1 - v +0e?)
(5.4)
n+l n . . . .
where € = v - v . The defect correction is any O(e&) approximation to
Eq. (5.4); that is, to
pv® 1) = Pv®) - AGY™) + b . (5.5)

The iteration will converge if v® and J
vn+1

P (the Jacobian of P), are near enough to
and JA, respectively. This will usually be the case if both A and P are
different discretizations of the same equation.

The approximate operation P can also be chosen to make Eq. (5.5) even easier
to solve using an SOR, ADI, ILU or multigrid approximation.16 When this is
done, the residuals need to be computed with the high-order formula only in the
last few iterations when the iteration is almost converged. The cost of the
high-order approximations in the residual calculations are often small and more
than justified in light of the resulting increase in accuracy.

The defect correction iteration can often be speeded up by using an

acceleration technique such as a Chebyshev or conjugate gradient method.

VI. SUMMARY

We have used a modular approach to design a subroutine package calculating
pumerical approximations to the spatial derivatives of a function defined only
at a discrete set of points. The routines are flexible, easy to use, and
compatible to further expansions of the package. We hope that the software
development and maintenance time of future PDE and interpolation codes using the
package will be substantially reduced.

We are extending the package to include some pseudo-spectral methods and some

better interpolation methods on two- and three-argument grids. We encourage
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others to develop compatible subroutines that could be added to DERMOD. We will

gratefully consider including into DERMOD any code sent to us that has been

programmed using standard FORTRAN and the same supporting routines as the

current package. For further information please contact J. M. Hyman.
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