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Abstract

We prove that a mimetic finite-difference discretization of Laplace’s equation con-
verges on rough logically-rectangular grids with convex cells. Mimetic discretizations
for the invariant operators divergence, gradient, and curl satisfy exact discrete analogs
of many of the important theorems of vector calculus. The mimetic discretization of
the Laplacian is given by the composition of the discrete divergence and gradient. We
first construct a mimetic discretization on a single cell by geometrically constructing
inner products for discrete scalar and vector fields, then constructing a finite-volume
discrete divergence, and then constructing a discrete gradient that is consistent with
the discrete divergence theorem. This construction is then extended to the global
grid. We demonstrate the convergence for the two-dimensional Laplace equation with
Dirichlet boundary conditions on grids with a lower bound on the angles in the cell
corners and an upper bound on the cell aspect ratios. The best convergence rate to be
expected is first order, which is what we prove. The techniques developed apply to far
more general initial boundary-value problems.

1 Introduction

We prove that the solutions of mimetic finite-difference discretizations of Laplace’s equation,
and their gradients, converge at first order to the solution and gradient of the continuum
problem in logically-rectangular grids with convex cells. Numerical examples indicate that
the method is first-order convergent on rough grids and second-order convergent on smooth
grids.

Mimetic finite-difference methods, derived by the support-operators method [38], create
discretizations of the gradient, curl, and divergence that satisfy many properties of the
continuum operators, for example, that the discrete curl of the discrete gradient is zero,
that the discrete gradient and divergence exactly satisfy a discrete analog of the divergence
theorem, that if the curl of a discrete vector field is zero, then it is a discrete gradient of a
discrete scalar field, etc. [15, 17, 21, 22, 23, 25, 30].

The study [37] showed that on nice problems the mimetic finite-difference method was of
comparable accuracy to other methods, and on difficult problems the mimetic method was
superior to the mixed finite-element method. Extensions to higher-order methods can be
found in [7, 8, 9]. Mimetic finite-difference methods have been applied in two-dimensional
diffusion [19, 32, 36, 37], three dimensional diffusion [17, 31], Maxwell’s equations [18, 24],
hydrodynamics [5, 6]; and flow through porous media [16]. These successes motivate the
need to prove the convergence properties of the method on rough grids. The proof tech-
niques presented in this paper can be extended to general grids with convex cells (with
triangles, quadrilaterals, and more complex polygonal cells), to problems with variable —
even discontinuous — and anisotropic material properties, to general Robin or mixed bound-
ary conditions, to higher dimensions, and other coordinate systems.

The derived mimetic discretization, on non-uniform grids, are not given by local oper-
ators. However, in [31, 32] it was observed that by adding some auxiliary discrete scalar



variables, the support-operators method could be viewed as local, with some computational
advantages. In this paper, we extend this idea to a complete development of the mimetic
ideas from a local, that is, single cell point of view. This is done by having discrete scalar
variables located at the cell center and at the centers of the cell edges, while the normal
component of vector fields are located only at the centers of cell edges. Then one can retain
the scalar values at the cell edge center and use the solution methods in [31, 32] or these
values can be eliminated and the usual support-operators method recovered.

In fact, the development of mimetic finite-difference methods for a general quadrilateral
cell in two dimensions is algebraically complex, so we begin all discussions with the one
dimensional case, as this adds clarity, and all calculations can be done explicitly. Many of
the formulas in this paper were derived using a computer algebra system. As these systems do
not support abstract vector computation, their use for our problems is not straight forward.

Most of the early work on the support-operators method was done by Samarskii, et
al. [12, 13] and the term “support-operators method” comes from early translations of
this work. The textbooks [35] and [14] have extensive references to the early literature,
and proofs of convergence for finite-difference methods similar to the methods presented
here. An alternate convergence proof for the mimetic finite-difference method, based on
viewing mimetic discretization as a mixed finite-element method, is contained in [2]. The
paper [3] contains proofs of higher-order convergence for similar finite difference methods
in grids whose elements are rectangular, while the paper [26] studies “almost” second-order
convergence for variable coefficients and mixed boundary conditions in rectangular grids.
The related 1-D natural finite volume difference discretization introduced in [34] is shown
to converge at second-order on rough grids. Also, because we use a standard finite-volume
discretization of the divergence, our method is a finite-volume method [29], and is closely
related to the mixed finite-element method [1, 4, 10, 11, 33].

Methods where the solution of a discretization converge at a rate better than the order of
the truncation error are called supraconvergent in [28] Although the solutions of the mimetic
finite-difference discretization of Laplace’s equation are first-order convergent, the mimetic
finite-difference discretization of the Laplacian has zero-order truncation error on irregular
grids or on uniform grids near the boundary, even in one dimension, so the discretization is
supraconvergent. However, both the divergence and gradient have truncation error at least
order one. In our analysis we estimate the error in the solution of Laplace’s equation in terms
of the error in the the divergence and gradient, as is natural in a mimetic formulation. The
methods described in Heinrich [14] and Samarskii [35] can also have zero-order truncation
error for the Laplacian on irregular grids. These authors rely on decompositions of the errors
and special estimates for each part of the error to obtain their convergence results.

In this paper we prove that the mimetic finite-difference method converges under modest
assumptions on the grids. The proof is based on the mimetic properties of the discretization
and thus will directly generalize to mimetic discretizations of other problems.

We prove our low-order convergence estimates without relying on the smoothness of the
grids. We also lay some groundwork for later studying higher-order convergence on smooth
grids. In fact, suppose that we have a smooth map of the unit square to a domain and



then we build grids on the domain by mapping rectangular grids on the unit square to
the domain [27], then as these grids are refined, the cells approach parallelograms given
by the image of a small rectangle transformed by the Jacobian of the map generating the
grid. Numerical studies have verified that the mimetic method is second-order accurate
for smooth grids, which indicates that our discretization should have special properties for
parallelograms. This observation motivates our expressing the error estimates so that we
can see what happens when the grid cell is a parallelogram.

In Section 2 we develop the mimetic finite-difference method for a single quadrilateral
cell. The first objective is to show that the scheme satisfies a summation by parts (discrete
divergence) theorem. The proof of the mimetic properties requires that we define discrete
inner products for both scalar and vector fields. In one and two dimension the inner product
of discrete scalars is simply the product of the values at the cell centers times the size of the
cell; the cell edge values of the scalar are not used in the inner product. The inner products
of vectors is given by a geometric construction, which is not so simple for two dimensional
irregular quadrilateral cells. The divergence is discretized using standard finite-volume ideas
and then the discrete analog of the divergence theorem is used to define the discrete gradient.
In two dimensions, the values for the gradient are defined by solving a local system when the
scalar edge values are retained, or a global system when the scalar edge values are eliminated.
Finally, the inner products are bounded from above and below and then the errors in the
divergence and gradient are estimated.

In Section 3 the results for a single cell are translated to a global logically rectangular
grid. The discrete gradient satisfies a system of equations that is independent of the cell-edge
values of the scalar field. This system is symmetric positive definite and strictly diagonally
dominant.

In Section 4 we introduce the global formal operators that allow us to explicitly compute
the discrete inner products for scalar and vector fields, the discrete divergence, and most
importantly, the system of equations that define the gradient. This is useful for creating and
analyzing solution algorithms, and provides a framework for proving a discrete Friedrichs—
Poincaré inequality that is critical to the convergence proof.

In Section 5 we discretize the Laplace equation with Dirichlet boundary conditions using
the discrete divergence and gradient defined in the Section 3. We then introduce an abstract
mimetic setting and use this to prove that the error in the solution of the boundary value
problem, and its gradient, are estimated by the truncation error in the divergence and
gradient, observed in Section 3. Throughout the paper, all estimates are given in terms of a
cell aspect ratio and the sine of the smallest angle in the grid. Therefor all of our estimates
are uniform and convergence is clear for families of grids where the aspect ratios are bounded
above and the angles are bounded below

2 The Local Mimetic Discretization

The central goal in the mimetic method is to find a discretization of the divergence and
gradient operators that satisfy exactly a discrete analog of the divergence theorem. For a



Figure 2.1: A typical cell [z, zg] in a one-dimensional grid with center z¢ = (z + zg) /2.

grid cell C, this theorem states that

/6-wudv+/w-ﬁudvz/ uw-ids, (2.1)
C (& aC

where OC' is the boundary of the cell, 7 is the outward normal to the boundary of the cell,
dS is the surface differential on the boundary, dV is the volume differential, u and w are
respectively smooth scalar and vector fields defined on the closure of the cell, V- is the
divergence and V is the gradient (see [38]).

If u® and u® are scalar fields and w(!) and w® are vector fields, then the natural
cell-based continuum inner products for scalars and vectors are

(u® u?) = / u u® qv and (W, w®) = / w . w® gy, (2.2)
c c
and the divergence theorem (2.1) can be written as
<6-w,u>+<wﬁu>=/ uw -7 ds. (2.3)
ac

We first derive the one-dimensional discretization before studying the more complex
two-dimensional case. In both cases, we define discrete analogs of the continuum inner
products (2.2) and use the finite-volume method to discretize the divergence and the discrete
divergence theorem to discretize the gradient.

2.1 One-Dimensional Discretization

A generic one-dimensional cell (shown in Figure 2.1) is given by its left and right end points
xr, < zr. We define z¢ = (x + xg) /2 to be the center of the cell and and Lc = zg — x, to
be the length of the cell.

In one dimension, the divergence and the gradient are simply the first derivative and the
divergence theorem is integration by parts for two scalar fields defined on the cell in Figure
2.1:

/mR w'(z) u(z) dz + /mR w(z)u'(z) dz = w(xg) u(zgr) — w(zr) u(zyr) . (2.4)

Ty, TL



2.1.1 Discrete Variables and Their Inner Products

We introduce a discrete scalar field v that has the value u¢ associated with the cell center,
and two auxiliary values u;, and up associated with the cell end points, and also a discrete
vector field w with values w;, and wg that are associated with the cell end points. The values
ur, and ug are called auxziliary because they can be eliminated from the discretization except
at the boundary of the domain.

If M and u() are two discrete scalar fields and w and w® are two vector fields defined
on the cell, then their inner products are

w(Ll) w](?) + wg) wg)
= Lc.

(), @) g = u(C}) ug) Lo, (w®, w®), 5

(2.5)

where Le = zg — x, is the length of the cell. The values u;, and ug are not included in the
inner product because they are eliminated in the global discretization.

The two discrete inner products correspond to midpoint and trapezoid integration rules,
which are third-order accurate on a single cell. The upper and lower bounds on the inner
products in one-dimension are

2 2
wi, + Wx

- (2.6)

(u,u) = LchC, (w,w) =L¢

2.1.2 The Divergence

In (2.4), W' is the analog of the divergence V- of a vector field which produces a scalar field.
So the discrete divergence of a discrete vector variable is a cell quantity:

Wgr — Wr,

(Dw)e = Lo

(2.7)
This definition is the standard finite-volume discretization.

2.1.3 Integration by Parts and the Gradient

In (2.4), v’ is the analog of the gradient of a scalar field which produces a vector field. So
the discrete gradient G of a discrete scalar field u has two values in a cell: (Gu); and (Gu).
The natural discrete analogs of the terms in (2.4) are:

/wR w'(z) u(z) dz — (Dw,u)s = (wg — wr) uc; (2.8)
/ M W (@) (@) dz s (w, Guy = 22 G ’; wr (W), . (2.9)

and
w(zg)u(zg) — w(zr)u(zr) — wrug — wruy, . (2.10)



The discrete analog of the integration by parts theorem is

wy, (Gu); + wg (Gu)
2

For (2.11) to hold for all vector fields w, the gradient must be defined by

(wR—wL) uc + RLC:U}R’U,R—’UJL’U,L. (211)

Uc —ur, Ur — Uc

(Gu)p, = o2 (Gu)p = Lo/2

We now have a mimetic discretization of the two inner products (2.5) and the analogs
of the divergence and gradient which satisfy a discrete analog of the integration by parts
theorem (2.4):

(2.12)

(w,Gu)y + (Dw,u)s = WrUR — WL Uy, - (2.13)

2.1.4 The Projections from the Continuum

We analyze the accuracy of the mimetic discretization, by comparing the discrete values with
the values of continuum fields projected onto the cell. The projection Ps of a continuum
field u are its values at the mid and end points of the cell:

u, = (Psu), =u(z,), o€{C,L R}, (2.14)
while the projection Py, of a vector field are only it values at the end points of the cell:

w, = (Pyw), =w(z,), o€{L,R}. (2.15)

2.1.5 The Truncation Errors
The truncation error Tp for the discrete divergence (2.7) is defined by

To(w) = Psw' — DPyw (2.16)
where w is any smooth field. A Taylor series expansion gives

w(zr) — w(zr)

TR — XL

To(w)| = [w'(zc) - [ <GsLE, (2.17)

where C} is a numerical factor, independent of Lo, times the maximum of the k-derivative
of the continuum fields over the cell.
The truncation error Tg for the discrete gradient (2.12) is defined by

T5(u) = Pyu’ — GPsu, (2.18)
where u is any smooth field. A Taylor series expansion gives

u(zc) —u(zr)

|Tg(u)| = [u'(zz) - | <Clce, (2.19)
with a similar estimate at the right end point.

The divergence given by (2.7) is second-order accurate (2.17) while the gradient given by
(2.12) is first-order accurate (2.19).



Figure 2.2: The cell edge tangent vectors T and normal vectors N in a generic two-
dimensional grid cell satisfy the identities TD + TR = TL + TU and N D+ N L= =N R+ NU

2.2 Two-Dimensional Discretization

We begin with a detailed discussion of the geometry of a quadrilateral cell and a coordinate
system in the cell based on bilinear interpolation. We define a local coordinate representation
of all of the geometric formulas for the cell in terms of the vectors that are the sides of the
cells. This formulation is independent of the coordinate system, and the resulting formulas
are significantly simpler than if they were written in terms of a global coordinate system.
Next the inner product for vectors is given by an intuitive geometric construction. The
discrete divergence is defined by a finite volume approximation of the divergence theorem
for a vector field and the gradient is uniquely defined implicitly as the solution to a system
of equations based on the divergence theorem (2.1).

The upper and lower bounds on the inner products play an important role in the con-
vergence theory for the discrete operators. We introduce the projections of continuum fields
onto the grid and estimate the accuracy of the discrete divergence and gradient. We define a
compact geometric formulation for the truncation error for the divergence and then estimate
its accuracy based on a Taylor series analysis. The truncation error in the gradient is derived
from the system of equations that the gradient satisfies.

2.2.1 The Quadrilateral

The two dimensional cell shown in Figure 2.2 is determined by its four corners P; = (z;, v;),
0 < i < 3. The sides of the cells are labeled by the letters D, R, U and L (which stand
for down, right, up, and left). We assume that the lengths of all of the sides of the cell are
positive, that the angles in the corners of the cells are non-zero, and that the cell is convex.
If the vectors P, connects the origin to the point P;, then vectors tangent to the edges are

10



given by the edges:
To=PB—B), TaeB—B, Ty=B -5, ToeB-PB, (220
while vectors normal to the edges are given by
Np=FxTp, Np=-FxTa, Ny=FxTy, Ny=-FxTs, (2.21)

where & is the unit vector normal to the coordinate plane. The directions of these tangents
and normals are chosen to be those that are used in a global logically rectangular grid rather
than say exterior normals. The lengths of side of the quadrilateral are given by

L, =|T,| = |N,|, o€{L R,D,U}. (2.22)

Note: We define the formulas for all the important parameters of a cell in terms of
tangent vectors. The formulas are more compact than if these are expressed in terms of
the coordinates of the points, and importantly, the tangent vector representation formulas
are clearly invariant under coordinate transformations. The tangent identity given in figure
2.2 tells us that these formulas are not unique; we can always eliminate one of the tangent
vectors. This makes using a computer algebra system to find the formulas decidedly non-
trivial, particularly, it is difficult to find the “simplest” representation of the formulas.

The bilinear transformation

PEn=0-0-nNB+1-nP+1—n)P +Enh
=P+ 1-&nT,+E1—-n)Tph+En (T’D+T’R)
=B+ (1= nTy+E(0—n)Tp+&n (T, +Ty) . (2.23)

maps the corners of the unit square 0 < £, 7 < 1 to the corners of the cell shown if Figure 2.2.
Because the cell is convex, the mapping from the unit square is onto the cell. Later we will
show that the Jacobian of this map is non-zero for convex cells with non-zero angles in the
corners, so this mapping is one-to-one. Consequently, this bilinear map defines a coordinate
system, called logical coordinates, for the quadrilateral.

PROPOSITION 2.1 The bilinear map (2.23) is linear if and only if the quadrilateral is a
parallelogram.

Proof. A quadrilateral is a parallelogram if and only if TL = fR and TD = fU. We can
rewrite (2.23) as

ﬁ(fﬂ]):ﬁ0+ﬁfL+fTD+§ﬂ(TR—TL) =ﬁ0+ﬁfL+fTD+§ﬂ (TU_TD) )

which make the result clear.

If ¥ = (z,y), then the center of the cell and the centers of the faces of the cell are given
by

1

) L1 B} B s o1
7o = P( P(5,0), fu=P(,1), f=P0y5), f=P13), (229

)7 FD

DN | —

bl

DN | —



and then

= - - -

— T - g T — T — — T
=P+, fu=h+Toto, =R+, m=h+To+7, (225

and

4:130-1‘131-1'1324-]33_15 TD+TL+TR:" TL+TD+TU

_ Ip 1L 2.2
e 1 0T 1 "3 1 (2.26)
It will simplify the formulas to define the vectors relative to the center of the cell:
N - 1 = = - - ]_ — —
TU_TC:+Z(TL+TR); TD—TC=—Z(TL+TR),
]. = = 1 — —
FR_FC:+Z (TD+TU) ) 'FL_FC:_Z (TD +TU) : (2'27)

The coordinate lines in the unit square are given by (£,7), 0 < £ < 1, with 7 fixed in
[0,1], and (&,7), 0 <n <1, with £ fixed in [0, 1]. The image of these coordinate lines under
the bilinear map (2.23), are the logical coordinate lines in the quadrilateral. Tangents to
these coordinate lines are given by

B 0 - . .
Te(n) = a—gP(fS,n) =1-nTp+nTy,
7€) = 5 Plen) = (1= ) Ty + €. (2.28)

The normal vectors pointing in the direction of increasing ¢ and 7 are given by

Ne(€) = —k x Tp(&) = (1 — &) Ny + & Np,
Ny (1) = +k x Te(n) = (1 = ) Np +n Ny, (2.29)

where & is the unit normal to the z-y-plane. The Jacobian for the bilinear map is given by
JEn) =k-Ten) xTy(&) =k -Tp x Tp, + k- Tp x Ty +nk-Tg x Ty, (2.30)

The last two terms in the Jacobian are zero for a parallelogram. That is, the Jacobian for a
parallelogram is constant. The area of the cell is given by integrating the Jacobian:

—

AC:E'TDXTL+ E'TDXTU+ E'TRXTL

(52)

—

k- (TD +TU) x (’fL +’fR) . (2.31)

DN | —

1
2

<

| =

12



The areas of the triangles defined by two adjoining sides of the quadrilateral play an
important role in the definition of the discrete inner product for vectors. These areas can be
written in terms of the cross products of tangents (being careful of the order):

E'TDXTL E'TDXTR E'f[]XfR E'fUXfL
Apr=——F——,App=——F"—, Apyp=——F7F—",App=——F7—,
2 2 2
(2.32)
and then the area of the cell can also be written

Ac=Apr+Ayr=Apr+Aur. (2.33)

We can complete the list of formulas given in (2.32):
k-TpxTy=2 (Ap.r —Ap,r) =2(Avr — Au) (2.34)
E'fL XTRZQ(AD,L_AU,L) ZQ(AD,R—AU,R) . (235)

A little algebra gives
JEn=2Ap(1 -8 Q- +Arc(1-&n+Apr{(1—n)+Ayrén) .  (2.36)

If the areas of the corner triangles are positive then, as the Jacobian is a convex combination
of these areas, the Jacobian is positive.

The dot product of tangents and normals can be computed from the formula for the
triple scalar product:

T, - (l_@: X ﬁ) =—k- (T’U X ﬁ)) , (2.37)
and the definitions of the normal vectors (2.21). This allows us to write the formulas in

(2.32) in several different ways in terms of normal and tangent vectors. The angles in the
corners of the quadrilateral shown in Figure 2.2 are given by

. 2ADL . 2ADR . 2AUR ) 2AUL
0 = . 0 = : 0 = : 0 = = . (2.38
Sln( D,L) I—D I—L ? Sln( D;R) I—D I—R ? Sln( U,R) I—U I—R ’ Sln( U,L) I—U I—L ( )

The error estimates will be a function of the size of the cell, so we define
Lnin = min{Lz,Lg,Lp, Ly}, Lmax = max{ly,Lg,Lp,Lu} . (2.39)
We define p to measure the aspect ratio of the quadrilateral:
I—rnax

p= . (2.40)

I—Inin

The distortion of the cell can be measured by

ﬂ = min {sin (HD,L) 5 sin (0D,R) s sin (OU,R) 5 sin (QU,L)} . (241)

PROPOSITION 2.2
0<p<1, 1<p<co. (2.42)

Proof. The assumption that the angles are not zero gives § > 0. In an orthogonal grid,
B = 1. The assumption that the sides of the cell are positive implies that p is finite.

13



2.2.2 The Discrete Scalar and Vector Variables

In the cell shown in Figure 2.2, for a discrete scalar variable u, we define the cell value u¢
and the four auxiliary edge values up, ug, uy and ur. For a discrete vector variable w, we
define the four normal flux variables wp, wg, wy and wy. As in one-dimension, the scalars
on the cell edges are auziliary variables because, except on the boundary of the domain, they
can be eliminated from the global formulation of the discretization [31, 32].

2.2.3 The Discrete Inner Products

The values of up, ug, uy, and ur do not explicitly appear in the inner product for scalars
or the global formulation of the discretization. So a natural cell-based inner product for two
discrete scalar fields u(!) and u® is

(u®, u®) g = u(cl) u(cz) Ac, (2.43)

where A¢ is the area of the cell.

An inner product for discrete vector fields, called the wverter inner product, is defined
using a geometric construction [20]. At the corner P between the L and D sides in Figure
2.2, a vector w can be represented in terms of the tangent vectors. Let

% - N % N
’(UD:W D, ’(UL:W L, (244)
Lp L,
and then L L L L
W= ol DT el Ty = P (2.45)
TL'ND TD'NL 2AD,L 2AD,L

Here we have used (2.37), (2.21) and (2.32) to see that
fD'NL ZTL'ND ZTL' (EXTD> = —E (TL XfD> :E (TD XTL) = 2AD,L- (246)

We can view (2.45) as a way of interpolating the normal components wp and wy, to a constant
vector field on the triangle with vertex at the corner 0.
If two vectors w(® and w® are represented by (2.45), then their Cartesian inner product
is given by
(wW, w(2))D,L =wl.w® (2.47)
1212 (w') w? + iV w(LQ)> +LpL Ty - Th (w(Ll) w4+ wll) w(LQ)>
B AA% |

This can be repeated for each corner of a cell and the weighted average of the four values
used to define a bilinear form.
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A natural choice for the weights is the area of the triangle near the corner divided by
the area of the quadrilateral. By (2.33), the sum of the weights is 2, so dividing by this and
multiplying by the area defines a vector bilinear form:

N @ Lp Ly (Th - Tp (w0l + wh) w?) + Lp Ly (wh) ) +wl w?))
(w®, w®)y,, =

8Ap,L
8Ap,r
8AU,L
Lr Ly (’fU Tr (wg) wg) + wg) wg)) + Lg Ly (wg) wg) + wg) wg))) (2.48)
SAU’R ’

PROPOSITION 2.3 The bilinear forms (v, u®)s and (w,w®),, are symmetric and pos-
itive definite, and thus inner products.

Proof. The properties of the scalar form are obvious. The properties of the vector form follow
from the observation that each corner inner product is an inner product on the normal vectors
to the sides adjacent to the corner, and the bilinear form is a positive convex combination
of the corner inner products.

2.2.4 The Divergence
The finite-volume discrete divergence

Lrpwp — Ly wr +Lywy — Lpw
(Dw)e = RWR L LACU U DWp (2.49)

is a natural choice given the way variables are defined in a cell. The signs of the terms are
determined by noting that wgr and wy use outer normals while while wp and w;, use inner
normals.

2.2.5 The Gradient

The gradient Gu of a discrete scalar field u is a discrete vector field given by the normal
vector components (Gu)p, (Gu)g, (Gu)y and (Gu),. The natural analog of the divergence
theorem (2.1) is the discrete divergence theorem

(Dw, ’U,>5 + (w, gu)y = LU Uy Wy — LD Up Wp + LR URWR — LL ur wy,, (250)
where (-, -)s is given in (2.43), {-,-)y is given in (2.48), the divergence D is given by (2.49),
and the gradient G is to be found. The signs of the terms for the boundary integral are

determined by noting that divergence theorem (2.1) uses the outward normal while wp and
wr, use the inner normal.
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PROPOSITION 2.4 Formula (2.50) uniquely determines the gradient G.
Proof. Because (-, -)y is an inner product, and we want (2.50) to hold for all discrete vector
fields w, there must be a unique Gu satisfying (2.50).

2.2.6 Estimates for the Inner Products

THEOREM 2.5 For § defined in (2.41) and L, and L.y defined in (2.39), the scalar inner
product (2.43) satisfies the estimate

ﬂLmln uC < > < L12na,x Uc, (251)
while the vector inner product (2.48) satisfies the estimate
2
P (wh w4 w4 wd) < )y < <3 12 (wd bk e bwd) . (252)

Proof. The estimate for the scalar inner product is clear. For the vector inner product, the
proof is based on the well-known inequality

(1—laf) (&®+9?) <2®+2azy+y* < (1+]a]) (®+¢°) . (2.53)

We also need to know that if sin(6) satisfies (2.41), then
2
cos(f)| <1— 5 (2.54)

From the definition of the corner inner product (2.47), we have

Ty - T
Ap 1 {(w,w)pL = wh + wi + 2 L 2Dy wp ,
) 3 ’ I—DI—L

= m (w,2j +w? +2 cos (0p,r) wr, UJD) . (2.55)

From (2.39), (2.41) and (2.54) we have
Lmin <Ly < Llmax, o€ {L,R,D,U},

1 < 1 1
— sin (9D L) ,B
52
1 <1—|cos(f)|, 14 ]cos()] <2,
so that
ik 1
Lfnin T (sz + w%) <Apr(w,w)pr < Lmax 3 (w2D + w%) } (2.56)

This estimate holds for any corner, so we can sum these four estimates and divide by 2 to
get the desired estimate.

16



2.2.7 Projections

To assess the accuracy of the discretization, we project continuum fields to the grid. If u is
a smooth scalar field and w is a smooth vector field, then their projections are

u, =(Psu), =u(7,), o€{C,L,R,D, U}, (2.57)
W, = (PyW), = W(7,), o€{L,R,D,U}. (2.58)

2.2.8 The Accuracy of the Divergence
The truncation error for the divergence is

To(W) = PsV - w — DPyw (2.59)
where W is any smooth vector field.

THEOREM 2.6 The truncation error for the divergence satisfies the estimate
To(W)| < 505 {Uh + L+ L + 1)
+§02{‘TR—TL‘+‘:FU—TD‘}, (2.60)

where [ is defined in (2.41), p is defined in (2.40), and Cj is a numerical constant times the
maximum of the absolute values of all of the k-th derivatives of the components of w over
the cell. If the quadrilateral is a parallelogram, then the last term in the estimate is zero
and the truncation error for the divergence is second order.

Proof. We will estimate the truncation error for the divergence in the logical coordinates
given in (2.23). For any vector field

w =w(n) =w(x(&n),y(n), (2.61)

a chain-rule computation gives
Ne(©) - 5 + Ny(n) - 5y
J(&m)

From this, we see that the projection of the divergence is

- 3 11 2 e — 5
(PSV w)c_v (2 2) - , (2.63)

while the discrete divergence of the projection of the vector field is

V-w(En) =

(2.62)

+NR ) V_\’f(l, _) - NL ) V—‘}(Oa %) + NU ﬁ(%a 1) - ND ' W’(_ 0)
Ac

(DPyWw) = (2.64)
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We write the truncation error as

- Tou+Tr
To(W) = 2022 (2.65)
Ac
where . .
N+ Np 0w 11 R N |
E,R—T'a—g(ia§)_< RW(1,§) NLW(072)> ; (2.66)
and B .
No+Ny 0w 1 1 L1 L1
— oA OW Dy “ 1) - Npw(=,0)) . 2.
Tow =280 SE 0D = (Fw() - Fow(z.0)) (2.67
These terms can be rewritten as
N4 Ng (oW 11 (L1 1
Tin= DR (B0 - (%5 -w0.3))
N, - N 1 1
LR (W0 5) - 295, ) + 900, 5)
+ (NL—NR) WL, 5 (2.68)
22/
and
Np+Ny (0w 11 (1 1
— G 2 1) —w(=
Tow = 2220 (B D - (3G -9(G.0))
Np—Ny (.1 L1101
S (WG - 2905 5) +9(,.0)
Loy 11
+ (ND - NU) (5,3 (2.69)

When we form the sum 7p i + 71, g, the last terms in the above expressions will add to zero
by the identities given in figure 2.2, so they do not need to be estimated. We estimate the
remaining terms by using Taylor’s theorem in the cell coordinates (£,7) and the chain rule
to transform logical derivatives to spatial derivatives.

If f is a smooth scalar field of a single variable, then Taylor’s theorem with remainder
gives

() - 10 -1 (5) = 5" (€) . 0<a<1,

2) 24
1 1
f(1) — 2f(§) +£(0) = Zf” (&), 0<& <. (2.70)
For any smooth scalar field u,
ou o -
— = . 2.7
5 = Te(n) - ¥, (21)



where V is the gradient with respect to the spatial variables. Because the tangent vector is

independent of &,
Pu = -
=gz = Le(n) H(u) Te(n) (2.72)

where H, the Hessian, is the matrix of second derivatives of u, with similar expressions for
the higher derivatives.
From (2.28), we have

Tt < Lo + Lo (2.73)
Consequently, the logical derivatives can be estimated by

o
onk

ak
a—; < Cp (Lp +Lp)F, < Cp (Ly + Le)*, (2.74)

where C}, is some numerical constant times the maximum of the absolute values of all of the
k-th derivatives of u over the cell.
To estimate an expression like

o1 o1 aw,1 1
w(l,5) = w(0 5) - a_g(i’ 3) (2.75)

we apply Taylor’s theorem in the the £ variable to each component of w and then apply the
first estimate in (2.74). Thus

L1 1 0w 11 ,
i S it | e
1 1 ow 1 1 ;
S D) —W(=,0)— —(=.2)| <
1 11 .1
W(lai) —2W(§,§)+W(O,§) S CZ (I—D+I—U)27
1 11 1 \

These terms are divided by the area A in the discrete divergence, therefore we need an
estimate of the form

2 2 2 2 2
AC AC AD,L AU,R LD sSin (GD,L) I—U Sin (HU,R) ﬁ
and similarly
(Lp + Ly)® p
—— <4 2.78
Ac - B (2.78)
where (3 is defined in (2.41) and p is defined in (2.40).
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Combining these estimates gives

Tow + T L .
DU T LR < ‘ND-FNU‘ BC3(LD+LU)+‘NL+NR‘ BC3(LL+LR)
Ac B g
+ ‘ND _ NU‘ Co+ ‘NL - NR‘ Cy . (2.79)

Noting that

‘ND+NU‘SLD+LUa ‘NL+NR‘SLL+LR7

N~ No| = [T T

) ‘NL_NR‘ = ‘TL_TR‘ ) (280)
gives the required estimate (2.60).

COROLLARY 2.7 Under the assumptions of Theorem 2.6, the divergence is first-order accu-
rate,

To(W)] < g (Co L + C5 12, (2.81)
in any convex cell with positive sides and second-order accurate,
To(W)] < gcg L2 (2.82)
when the cell is a parallelogram.
Proof. From theorem 2.6, the first order accuracy follows from the trivial estimates
‘T’R—TL < Lp+Ls, ‘TU—TD‘gLU+LD. (2.83)

while in a parallelogram TR = fL and fU = TD.

2.2.9 The Accuracy of the Gradient

Because of the complexity of the vector inner product, the discrete divergence theorem (2.50)
does not provide us with a simple formula for G. It is possible, using a computer algebra
system to find the formula for the gradient in terms of the coordinates of the corners of
the quadrilateral, but the resulting expressions are so large that they are computationally
useless and difficult to analyze. We will take an indirect route to analyze the accuracy of
the gradient.

The vector inner product (2.48) can be written in the form

(W w®)y = > L LMy, ww®, (2.84)
o,7€{L,R,D,U}
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where M, ; = M, , and

L2 L2 Tp-Tr Ty - T,
Mpp=—2= R = = Mpy =0
D,D 8AnL + 8AD,R’ D,R 8Ap ) D,L 8AD. ) DU ;
L2 L2 Ty - Tr
Mpp=—2 v Mg, =0 =
R,R 8Ann + 8Aun R,L ) RU 8Avn
L2 L2 T, - T
My, = —2 v My = —~
br 8Apr T 8AyL’ Ly 8AyrL
L7 L%
M = . 2.85
v 8Aur * 8Aur (2.85)

The discrete divergence theorem (2.50) holds for all discrete vector fields w, so collect-
ing the coefficients of the components of w, and then multiplying each component by an
appropriate L,, gives the following system of determining equations for the gradient:

uc—up=LpGpMpp+LrGrMpp+LyGyMyp+ LG Mg p,
ugp —uc =LpGpMpr+LrGrMgrr+ Lo GuMyr+ LG Mrr,
ug —uc =LpGpMpy+LrGrMry + Ly G Myy + L G MLy,
uc—ur=LpGpMpr+LrGr Mg+ Ly Gy My + LG Mg, (2.86)

where we have written G, for (Gu),. The gradient is the unique solution this system of
equations.

Our next goal is to estimate the accuracy of the gradient defined by the system 2.86.
The truncation error 7g for the gradient is defined by

Tg(u) = PyVu — GPsu, (2.87)

where u is any smooth scalar field. We first observe that the truncation error, with the
abbreviations 7, = Tg(u),, satisfies the system of equation

LoToMpp+LgTeMgp+ Ly Ty Myp+ L T M p = Rp,

Lo ToMpr+LrTeMpr+ Ly To Myr+ Ly To ML r = Rg,

LoToMpy +LeTeMery + Ly TuMyy + L To MLy = Ry,

Lo ToMp 1 +LrTrRMpr + Ly Tu My + L Te M1 = Ry, (2.88)

where
Rp = ND -Vu (7p) Mp,p + NR -Vu ("r) Mp,p + NU -Vu (fv) Myp + NL -Vu (1) My p
— (uc —up) , (2.89)

with similar formulas for Rg, Ry, and R;. The symmetry of these equations allows us to
only consider one of the R’ formulas in detail.

We first show that the truncation error is estimated by R,, o € {L, R, D,U}, and then
that the R’s are small.
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THEOREM 2.8 The truncation error for the gradient (2.87) satisfies

16
7'3+7ﬁ+7’3+7f§m%(R%+R§+RZU+R%), (2.90)

where Ly, and Ly, is defined in (2.39), 8 is defined in (2.41), and p is defined in (2.40).
Proof. We first multiply the equations in (2.88) by Lp Tp, Lg Tr, Ly Ty and L T, to obtain

(T, T)v=RplpTp+ReLlrTe+ RuLlu To + R Lo Ty, (2.91)
< (RO, + RL LG+ RELE + R (TE+ TR+ TE+T2)'”

From (2.52) we have

2

7 b (To+ T +T0 +72) <(T. T)v. (2.92)
These two estimates give
16
7}?+7’,§+7’§+7’L2SW(R%L2D+R§ZL2R+R?]L?]+R%L%). (2.93)

Using the fact that L, < Lax and the p defined in (2.40) gives the estimate.

THEOREM 2.9 The R, satisfy

1
max {|Rp| , [Rg| ,|Ru| ,|Re|} < Cy 3 L2 ax (2.94)

where (3 is defined in (2.41), Lynin and L., are defined in (2.39), and Cy is a numerical
constant times the maximum of the absolute values of second derivatives of u over the cell.
Proof.

We can use that fact that My p = Mpy = Mg, = My g = 0 to rearrange (2.89):

Rp = (MD,D ND + Mg p N7R + My p NU +Mip NL) -Vu ("p)
+Mgp Ng - (611 (7r) — Vu (FD))
+ My Ny - (Vi (7y) = Y (7p)
+Myp Ny - (Vu (7) = Vu (7p) ) — (uc = up)
- % (T +T) - Vu () ~ (uc — up)
+ Mp,p Np - (Vu(7r) = Vu (7p)

+ My Ny - (Vu (7) = Vu (7)) (2.95)
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We now have the Rp written as the sum of two types of terms, and each can be estimated
using Taylor series. For example, (2.27) gives

= |u (7o) = u () = (Fe = 7p) - Vu (7p)

<Oy (Lp+Lg)* <0y L2 (2.96)

max ?

where C5 is a numerical constant times the maximum of the absolute values of second
derivatives of u. An example of the second type of terms is

— — — T . Cl_—; — — —
MR,D NR . (Vu (FR) —Vu (FD)) = 8DAD§ NR . (Vu (FR) —Vu (FD))
cos(Opr) = (<. o S
— YN — ) 2.
T (Vu (7r) — Vu (rD)) (2.97)
So . .
‘MR,D Ng - (vu (7r) — Vu (FD)> ‘ < LR Colfn =70l < 5oL, (2.98)

where Cy is a numerical factor times the maximum of the absolute values of the second-
derivative of u. All other terms can be estimated in the same way, which gives the result.
We can now estimate of the accuracy of the gradient.

COROLLARY 2.10 Under the assumptions of Theorems 2.8 and 2.9 the gradient is first order
accurate,
2
[(To), | < Cs G5 Lnax, 0 € {L, R, D,U}. (2.99)
In this section, for a quadrilateral cell, we have introduced inner products for discrete
scalar and vector fields and then defined a divergence and gradient that satisfy a summation
by part theorem. We have given upper and lower bound on the inner products and shown
that the divergence and gradient are first-order accurate in cells that are convex and have
side with positive length.

3 The Global Mimetic Discretization

Global mimetic finite-difference discretizations for the divergence and gradient have been
described in detail [19, 36, 37, 38]. In this section, we give a concise description of how to
use the local discretization described in the previous section to create a global discretization
on logically rectangular grids in one and two dimensions. The global divergence and gradient
satisfy a summation by parts formula and satisfy the same error estimate for global grids as
they do on a single cell. An important result in this section is that the global gradient does
not depend on the auxiliary scalar variables. In two dimensions, we show that the gradient
is defined by a symmetric diagonally-dominant system of linear equations.
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3.1 One-Dimensional Discretization

We begin by describing a one-dimensional general grid in a finite interval [a, b] along with a
recipe for translating single cell quantities to globally indexed quantities. The global inner
products are simply the sum of the cell inner products, while the global divergence is the
same as the local divergence. To preserve the mimetic properties, the global gradient must
be determined by solving a system of linear equations and does not depend on the auxiliary
values of the scalar field except those on the boundary of the region.

3.1.1 A General Grid on the Region

The nodes of the grid are given by the points z; for 0 <7 < I, with £y = a < b = z;. The
cells of the grid are labeled with 7 4+ 1/2 for 0 <4 < I — 1, with the nodes defining this cell
given by w;, and ;1. The center of this cell is ;41 = (z; + 7441)/2 and the length of this
cell is Li1y = 441 — 2, 0 <4 < I — 1. The length of the region is given by

I-1
L:l'[—x():ZLH_%. (31)
1=0

All of the positions in the i + 1/2 cell are given by

1k
1+ -+

5t 5 k| <1, (3.2)

and so these points can be labeled with k¥ € {—1,0,1}. The nodes are given by the condition
that |k| = 1. Most formulas for Section 2.1 can be translated to this global setting by the
replacements zj, — x;, Tc — Tity, TR Tit1, and so forth.

We define

L
Lpin = min Lja L = max L;;1 = =& 3.3
min 0<i<I-1 1+3 max 0<i<i—1 1+35 p I—min ( )

3.1.2 Scalar and Vector Fields on the Grid

As in the local discretization, we introduce discrete scalar and vector fields on the global
grid by giving their values for each cell. The space Hs of scalar-valued fields have a value
for each cell:

Uipy, 0<i<I-1, (3.4)

while the auxiliary values of scalar fields are given by
u;, 0<i<I. (3.5)
The space of vector-valued fields Hy have a value for each node:

wi, 0<i<I. (3.6)
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3.1.3 Grid Inner Products

Mimetic finite-difference method satisfy the discrete integration by parts theorem. Therefore
a discrete inner product must be defined on the spaces Hs and Hy [38]. So if u™), u® € Hg,
then their inner product is given by the sum over all cells of the cell inner product for scalars
defined in (2.5):

I-1 I-1
(WD, u®)s =3 W, 0@y = 3wl ul, Ly (3.7)

where L, = a:z+1 — ;.
If w®, w® € Hy, then their inner product is given by the sum over all cells of the cell
inner product for vectors defined in (2.5):

= -1 @, 1))
(W, w®), =3 (w®, W), Wi Wi +“%4%HLH%. (3.8)

=0 1=0

t\:

The norms associated with these inner products are ||u||% = (u, u)s and ||w||3 = (w, w)y.
Because the one-dimensional cell scalar and vector bilinear forms are inner products, we
have:

PROPOSITION 3.1 The two symmetric bilinear forms (u(", u(®) s and (w®,w®)y,, are inner
products and consequently the two quadratic forms ||ul|s and ||w]|, are norms.

3.1.4 The Divergence and Gradient

From (2.7) we see that the divergence is given by

(D@leg%i}%, 0<i<I-—1. (3.9)

)

In defining the gradient, we assume the scalar and gradient fields are continuous across
the edges of the cells. That is, at the interface between two cells, the value ug from a cell
on the left equals the value of uy from the cell on the right, and the same holds for (Gu),
from the cell on the left and (Gu), from the cell on the right.

The continuity condition on the gradient gives a system of equations for computing the
cell values of u from the auxiliary values or the auxiliary values of v from the boundary
values and the cell values. For example, Formulas (2.12) give

2 (Ui+% - uz)
Livs

2 (Uz‘+1 - UH—%)

Li+y

Equations (3.10) can be solved in terms of either: 1) the gradients; 2) the values of u;;
or 3) the values of u;; ;. In particular, we have

UH_% — Ui—

=2t Tt
(Gu) iy + Lo

L 1<i<I-—1, (3.11)

(S [N
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with the gradients at ¢ = 0 and ¢ = I being still given by the formulas in (3.10). The
analog of the system of equations (3.10) in two dimensions cannot be solved explicitly for
the gradients, but can be easily solved numerically.

3.1.5 Summation By Parts

A crucial property of the mimetic discrete divergence and gradient operators is that they
satisfy a summation by parts formula.

PROPOSITION 3.2 For any u € Hs and w € Hy
(Dw,u)s + (w, Gu)y = wrur — wo ug - (3.12)

Proof. Both global inner products in (3.12) are sums of the local cell inner products. By
summing the cell summation by parts formula (2.13) over all cells, the boundary terms form
a collapsing sum to give the result.

3.1.6 Accuracy

Let u and w be smooth fields defined on the domain, then the projection of u on cells is

Uy = (Psu),,, =u (i), 0<i<i-1, (3.13)
while the projection of u on the nodes is
u; = (Psu), =u(z;), 0<i<IT. (3.14)

Similarly the projection of w onto the nodes is
w; = (Pyw), =w(z;), 0<i<I. (3.15)

As in (2.16) and (2.18), the truncation errors for the divergence and gradient on any
smooth field u and w defined on the grid are defined by

To(w) = Psw' — DPyw, Tg(u) =Pyu’ —GPsu. (3.16)
The truncation error estimates given for each cell in (2.17) and (2.19) imply that:

PRrOPOSITION 3.3 The divergence given by (3.9) is second-order accurate, the gradient given
by (3.11) is first order accurate:

Ogr?galx—l ‘%(W)Z—%‘ < 03 L?nax ’

max |7g(u);| < Cs Liax - (3.17)

0<i<T

Here C}, is a numerical constant times the maximum of the k-derivative of w or u over the
domain and Ly, is defined in (3.3).
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i+1,j+1
(i+12j+1) (+1j+1) U

(i+1,j+1/2)
(i,j+12)

>i+1,)

(i) (i+1/2)) D

a) Global indexing b) Local indexing

Figure 3.3: The global indexing for a typical cell and the local indexing for defining the parts
of the typical cell.

3.2 Two-Dimensional Discretization

The goal of this section is to create a global two-dimensional mimetic finite-difference dis-
cretization on a two-dimensional logically rectangular grid [22, 23]. We first define the scalar
and vector fields along with their global inner products. The divergence is the same as the
local divergence, but global gradient is implicitly defined by a system of linear equations.
This system is independent of the auxiliary values of the scalar field, and the system has
excellent computational properties. Most importantly, the divergence and gradient satisfy
a summation by parts formula. The local error estimates easily give error estimates on the
global grid.

In two dimensions the region €2 will be a polygon and we assume that the boundary of
the grid and 2 are the same.

3.2.1 A General Logically-Rectangular Grid on the Region

A generic cell in the grid used for the mimetic discretization is displayed in Figure 3.3. Some
of the geometric definitions come from viewing the cell as a two-dimensional projection of a
three dimensional cell. For example, the faces of a cell in three dimensions are the same as the
edges of a cell in two dimensions and the nodes of a cell in one dimension. In two dimensions,
the nodes of the grid are given by the points (z;,v;;) for 0 <4 < I and 0 < i < J. For
0<i<I-1land0<i<J—1,the cellsof the grid are labeled with (i+1/2,j+1/2) and the
nodes deﬁning this cell are (l‘i,ja yi,j)a ('Ti+1,j7 yi—|—1,j)u (xi+1,j+17 yi—|—1,j+1)7 ($Z"j+1, yi,j+1)u while
the center of this cell is (ziy1 +1,¥i+1,5+1). There are two types of edges in the grid, those
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labeled with (i41/2, j) and given by the line joining the nodes (4, j) and (i+1, j), and those
labeled with (7,5 + 1/2) and given by the line joining the nodes (7, j) and (7,7 + 1).

The translation from the cell notation in Figure 2.2 to the global and local indexing given
in the table in Figure 3.3 is clear from the figures. The local positions in the (i+1/2,j+1/2)

cell are given by
. k+1 o l+1
<Z+T’ It

and these points are labeled with (k,1). In particular, the nodes are given by the condition

|k| = |I| = 1, while the edges are given by |k|+ |l| = 1. The local coordinates will be used for

defining the corner angles and the areas of the corner triangles, and for defining the elements

of the bilinear form B, and the elements of the matrices M, A and S (see appendix A).
The formulas for the tangents (2.20) and the normals (2.21) become

), k<1, <1

fz‘+%,j = _;+1,j - 13” ’ N’i-}-%,j =k x fz‘-}—%,j )
T;+1,j+% = ﬁz’+1,j+1 - 13z'+1,j ; Ni+1,j+% = —k x T;—l—l,j—i—% )
T+%,]+1 Pi+1,j+1 - 13;,3'+1 5 Ni+%,j+1 =k x T'i+§,j+1 )
vy = P = Big Vijiy = =k x Tijey, (3.18)

and the lengths of the cell sides are given by

Lijos = |Tijes|, 0<i<I, 0<j<J—1,
Livij= Tz, 0<i<I—1, 0<j<J. (3.19)

The formulas for the areas of triangles (2.32) and the angles in the corners (2.38) become

1,—
9 AL
(-1,-1) _ 7 = = . _ z+;,J+1
2AG 5 = B Ty x T sin (0150,) = L1
Z+1,J i+
—1,41)
(-1+1) _ 7 = = (-1,+1) ) _ Z+;,J+1
2Ai+%,j+% =k- Ti+%,j X Ti+1,j+% ) sin 01+1 J+1 - _—’
H—é,J z+1,J+1
+1,41)
I\
+1,+1) _ 7 4 7 +1,+ _ i+3.0t3
2A’L+1 j+i = k - ,I;'—k%,j—kl X E—Fl,j—}—% ) sin +1j 1 - 2 )
2 +2dts |_ 1
Z+2,J+1 i+1,5+1
(+1,-1)
o AL LT T sin (00070 = 2AZ+2’J+1 (3.20)
i+t 5.0+ % ity z+1,y+1 - Lijz '
Z+;,J+1 itz

The area of the quadrilateral is then

1,-1) (+1,+1) (-1,+ (+1,-1)
AZ+27.7+2 - AZ+ ]+2 AZ—|— ,j—|—1 Az+1,]+1 +AZ+ ,7+1 ) (321)
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and the area of the region is given by

A= Y Ay (3.22)

0<i<I—1
0j<I—1

Using the same notation as in the single cell, we define

Lmin = min | min L;yg;, min L

0<i<I—1 0<i<I
0<G<J 0<j<T—1
Lmax = max | max Ly ;, max Ly (3.23)
0<i<I—1 0<i<I
0<G<J 0<j<T—1
and then set L
max
p= (3.24)
I—min

We also define 3 to be the sine of the smallest angle in the grid:

= min min {sin (92 Ry +1) ,sin (eg;;ﬁ)%) ,sin (92(11 jil) ,sin (9&1 ]+1) } (3.25)
0<i<J-1

3.2.2 Scalar and Vector Fields on the Grid

As in the local discretization, we introduce the space of scalar fields Hs associated with the
cells:
Uiygjri, 0<e<I-1, 0<j<J-1. (3.26)

Additionally, we use the auxiliary values of the scalar on the cell edges:

ui,j-l—%’ OS/LSI’ OS]S‘]_]-’
Uisy,, 0<i<I—1, 0<j<J, (3.27)

The space of vector fields H,, associated with the edges is given by the w has the values:

wijey, 0<i<I—1, 0<j<J (3.28)

3.2.3 Grid Inner Products

The global inner products of scalar and vector fields is the sum of the cell inner products
given in (2.43) and (2.48). We define the global inner product for u*), u(?) € Hs as the sum
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over all cells of the cell inner product (2.43):

I-1J-1
(uW, u®) g = Z( (1) 42 ))H%’ﬁ%
i=0 j=0
-1 J-1
= Uy ey Uity gy Airbiv - (3.29)
1=0 7=0

If w, w® € Hy, then the global inner product is defined by the sum over all cells of the
cell inner product (2.48) as written in (2.84):

I-1J-1
(w®, w®),, = CrRIC) S (3.30)
i=0 j=0
where
Kl 2

(w(l),w(2))z’+%,j+% =Ait1+1 Z B§+;),(;:2 wz(+) I+hgti+s wz(+) sT5Itats (3.31)

[k|+1]=1

ri+sl=1

g0s) _Litirsaries bivgesavies o)
z+2,]+1 Ai+%,j+% it5,0+30

where the matrix M is described in (A.1) in Appendix A. Both M and B are symmetric

in their upper indices. The norms associated with these inner products are ||u|ls = (u,u)s

and ||w||y = (w,w)y. Because the two-dimensional cell scalar and vector bilinear forms are

inner products, we have:

PROPOSITION 3.4 The two bilinear forms (u,v)s and (v, w)y are inner products, and con-
sequently the two quadratic forms ||ul|s and ||w||y are norms.

3.2.4 The Divergence and Gradient

In the global grid notation, the discrete divergence (2.49) is given by:

(Dw)iss s = Lit1,j+2 Wit1,j+1 — Lij+s Wij+1 (3.32)
tait3 Ai+%,j+%

|—z‘+§,j+1 Wit,j+1 — |—z’+%,j Wit4,5

+ , 0<i<I—-1,0<j<J-1.

Airyjts

Recall that the global gradient is required to satisfy the system of determining equations

(2.86). These equations are written out in detail in (A.2) in Appendix A in a form that elim-

inates the auxiliary edge values of the the scalar variable to produce as system of equations
with the stencil or footprint illustrated in Figure 3.4.
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(i,jH12) (i+1,jr1/2)

(i-1/2,j+1) (i+1/2j+1)

(i,j)?

(i,j41/2)

(i,j-1L/2) (i+1,j-1/2)

(i-172,j) (i+2/2)

(G)]
Stencil for the gradient at (4,5 + 1/2)  Stencil for gradient at (i + 1/2, 5)

Figure 3.4: The stencil or footprint of the finite difference equations defining the discrete
gradient in (3.33) and (3.34).

PROPOSITION 3.5 The gradient, with G; ;1 = (Gu), ;,, and Giiy; = (Gu),,, ;, satisfies a
system of equations of the form

0,0 k,l
A Gt D AR Gy =iy —wiogieg s (3.33)
Jkl=l1]=1
1<i<I-1,0<;<J-1;

A00)
ALY Gt D Az+1 Gitd+hits = Yitdi+d — Uitdi—1 > (3.34)
k[=l|=1

0<i<I—-1,1<j<J—1;

(+1,0) .
A( ]+1 gOJ-I-l + ZAOH-IQ;,H— 141 = UL jy1 — U0+ 0<;j<J—-1;

[t]=1
(0,0 (-10) : .
AL Grgry + Y AT gy = wrgey —wiegyeys 0S5 <J—1;
[7]=1
(0 (k,+1) _ . .
AH_I ()gz+1 0o+ E AH_%,() gz+ 14k 1 = Ujpl 1 — Uipl o, 0<i< T~ 1;
k=1

AGY G+ > AL Y Gigig gy =uiny g —uing ooy, 0<i<I—1.  (3.35)
k=1

The explicit formulas for the matrix A and a proof that it is diagonally dominant are given
in Appendix A.
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3.2.5 Summation By Parts

The two-dimensional divergence and gradient satisfy a summation by parts formula obtained
by summing the one-cell summation by parts formula (2.50) over all the cells:

PROPOSITION 3.6 For any u € Hs and w € Hy,

(Dw,u)s + (w,Gu)y = — Z Liti,0 WitsoUitso
i=0,I—1

+ E Livi, s Wirs gtivss
i—0,1—1

— ) LojipwWoiey sy
j=0,7—1

+ D Lrjeswrgesunjes - (3.36)

§=0,0-1

Proof. Both inner products in (3.36) are sums of cells inner products. If we sum the cell
summation by parts formula (2.50) over all cells, then the cell boundary terms form collapsing
sums to give the result.

3.2.6 Accuracy

The projection of the smooth scalar field u on cells is
Wiy gy = (PsWipy jis = W (Tirggep Yirggey) » 0<i<T—1,0<5<J—-1, (3.37)
and the projection of u onto edges is

i1y = (Psu),

m (Tijr1,Yijrs), 0<i<I,0<;j<J~1,

=u
Uirgg = (Psw);yy ;= W(@isg 5, Yirsy), 0<i<I—-1,0<7<J. (3.38)

<.

Similarly the projection of a smooth continuum vector field w onto the edges is

1

Wij+y = ( Jijrs = W(Tigs, Yijrs)

Wit = (

—-1,0<j<J. (3.39)

33
s

The truncation error for the divergence and gradient are defined as in (2.59) and (2.87):
Tp(W) = PsV - W — DPyw, Tg(u) = PyVu — GPsu, (3.40)

where again u and W are any smooth fields defined on the region ).
It follows from (2.60) and (2.99) that:
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PROPOSITION 3.7 The divergence D given by (2.49) the gradient G given by Corollary 3.5
are first order accurate:

max |%(VV)Z+%,J | S (02 + 03 I—max) I—max; (341)

1
0<i<I—1 3
05j<J-1

2
P
ma, ma, u);iy1|, ma u);r14] 2 <O =5 Lnax,
X Ogigxl |TQ( )Z,J+2| Ogiglx—l |TQ( )Z+2,J| S ) 33 a
0<5<J-1 0<5<J
where L.y is defined in (3.23), 5 is defined in (3.25), p is defined in (3.24), and Cy is a
numerical constant times the maximum of the absolute values of k-th derivatives of u or w

over the cell.

4 The Formal Mimetic Theory

We now introduce formal inner products on the spaces of discrete scalar and vector fields
along with the formal discrete divergence and gradient operators. We use these tools to define
the discrete natural divergence and gradient operators introduced in the previous section.
This viewpoint facilitates both the programming and analysis of mimetic finite difference
methods. At the end of this section, we prove a Friedrichs—Poincaré inequality for the
discrete natural operators, critical in the proof of convergence, in one and two dimensions.

4.1 One-Dimensional Formal Operators

If uM u® € Hg and w®, w® € Hy, then their formal inner products are

I-1 I
(), @Yy g = Z“EE% uﬁ)% (D, w®)), = Z wz(l)wZ@) . (4.1)
=0 =0

The associated norms are |||u|||% = ((u,u))s and |||ul[|3 = ((u, u))y.
To represent the natural inner products and the divergence and gradient in terms of
formal objects, we begin by noting that:

PRrROPOSITION 4.1 Because the formal and natural bilinear forms are inner products on the
same space, there exist positive-definite symmetric operators M and S such that

(U(l), u(2)>8 = <<u(1)a MU(2)>>$ ’ <w(1)a w(2)>v = <<w(1)a Sw(2)>>V : (42)
The definition of the scalar inner product (3.7) implies that
while the definition of the vector inner product (3.8) gives
L. Lis+ Ly Lr_:
(8’(1))0:?211)0, (S’LU)Z:%U)Z, (S’LU)I: 122’(1}[, 1§Z§I—1 (44)
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Consequently, we have the estimates

Linin [ |6l [[5 < ({2, Mu))s < Linax |[[u]][5 Lr;m w3 < (w, Sw))y < Luax [[[w][[3,
(4.5)
where Ly, and Ly, are defined in (3.3). Applying Theorem 3 on page 201 of Yosida [39]
bounds the norms of the M and S operators:

I—Inin

2

I—min S H|M|HS S I—maxa S H‘SH‘V S I—max (46)

4.1.1 The Formal Divergence and Gradient
The formal divergence D and the formal gradient G operators are defined by

= Wj41 — Wy, OSZSI—I, (47)
(Gu)y=us —ug, (Gu);,=ujyr —ui—r, (Gu),=ur—u_z, 1<i<I-1. (4.8)

ProprosIiTION 4.2 For any u € Hg and w € Hy, the formal divergence and gradient satisfy
a summation by parts formula:

((Dw,u))s + ((w, Gu))y = wr u; — wo vy . (4.9)
Proof. We start with an analog of the product rule:
(’U)i+1 — ’U)z) U”H—% + w; (U”H-% — Uz_%) = W;+1 ’LLH_% — W; U,i_% y (410)

and sum this to get

I-1 I-1
Z (wi+1 — wz) UH_% -+ sz (’LLH_% - UZ_%) = wy UI_% — W1 U% . (411)
=1 =1

Adding one more term to the first sum gives

I-1 I-1
(wi+1 — wi) UH_% -+ Zwi (UH-% — UZ_%) = Wy ul_% — Wp u% . (4.12)
=0 =1
Now adding
Wy (U% — Uo) —+ wy (U[ — UI_%) (413)

to both sides of the equation gives the result.

ProPOSITION 4.3 The formal divergence and gradient can be represented as

D=M"'D, G=8"G. (4.14)
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Proof. The formula for the natural D follows from (3.9) and Definition (4.3) of the M
operator. The formula for the natural gradient follow from Formula (3.11) and Definition
(4.4).

To motivate the formula for the natural gradient in two-dimensions, compare the natural
summation by parts formula (3.12) with the formal summation by parts formula (4.9) and
note that

(Dw,u)s + (w, Gu)y = ((Dw, u))s + ({w, Gu))y . (4.15)

We also know from (4.2) that

(Dw,u)s = (M 'Dw,u)s = (M 'Dw, Mu))s = ({(Dw, u))s,
(w,Gu)s = (w, S 'Gu)s = ({w, S8 'Gu))s = {(w, Gu))s. (4.16)

These equations are strong consistency requirements between the natural and formal sum-
mation by parts formulas and the formulas for the natural gradient and divergence and their
formal counter parts.

4.2 Two-Dimensional Formal Operators

The formal inner product of v, u® € Hg is

-1 J-1
1 2
(u®, u))s = Uy g Ui gy (4.17)
i=0 j=0
while the formal inner product of w™, w® € H,, is
-1 J I J-1
1 2 1 2 w (2)

(W w®))y =3 Y iy widy; + 30D widy widy (418)

1=0 ]:O =0 j5=0

<.

The associated norms are |||u|||% = ((u, u))s and [||u|||} = ((u, u))y.
PROPOSITION 4.4 There exist positive-definite symmetric operators M and S such that
<U(1), U(2)>s = <<u(1)a Mu(2)>>$ ) <w(1)a w(2)>v = <<w(1)a Sw(2)>>V . (419)

Proof. Because the formal and natural bilinear forms are inner products on the same space,
such operators must exist.

ProrosiTION 4.5 The operator M is given by

(Mu)ips s =Aig e Uirgry, 0<5i<T—-1,0<5<J-1. (4.20)
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In the interior the operator § is given by

_ 0,0 E :
(Sw)i,j+1 Sz J+3 Wi, j+ 1 + Sz]-l—lw’H' NEE R

|k|=ll]=1
1<i<I—1,0<j<J—1, (4.21)
(Sw)z—ké,j = S§+1 wH-l \J + Z Sz+1 wH_ _|_12c,_7+l
|k|=1]=1
0<i<I-1,1<j<J—1, (4.22)

while on the boundary the operator § is given by

0,0 1,0) .
(Sw) :SE)JJZITUOHHLZS&JFM;H i1y, 0<j<J-1,

lfj=1

0,+3

0,0 .
(Sw)y50y = SO wrey + 2 SE W ey, 0<i<T—1,
lt|=1
0,0) k,+1) .
S§+1Owl+10+zss+10wz++§%, OS/LSI_]_’
k=1
O ka_l .
(Sw)iyy, = SEP)J“’H‘ J T Z S§+%,J) Witi+e g1, 0<i<T—1.
|k|=1

(Sw)

i+1,0 T

The formula for M follows from (3.29), while formulas for the S matrix are given in Section
A.3 in Appendix A.
We will also need the operator L : Hy — Hy defined by
(‘Cw)i’j+l = I—i,j—l—% Wi, j+1 0<:< Ia 0<;< J — L,

2

(Ew)H%’j:LH%,ij%,j, OSZSI—l,OSJSJ (423)

PROPOSITION 4.6 The operators £ and M are diagonal matrices with positive entries, while
the operator S has a five-band symmetric matrix with positive entries. All three matrices
are positive definite.

Proof. Because M and S give inner products (see (4.19)), their matrices must be symmetric
and positive definite. The formulas for the matrices, (4.20), (4.23) and (4.22), define the
band structure and also show that they are symmetric. We estimate the positive definiteness
of these operators in the next proposition.

PROPOSITION 4.7 The operators M, § and L satisfy

Lwin B [[ullls < ((u, Mu))s < Ly [[ullls,

2
— Lain [[w][[5 < ((w, Sw))y <

1 L [120][15 (4.24)

Lonin [[[w][5) < ((w, Lw))y < Linax [[[]][5,,

S
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where Ly, and L.y is defined in (3.23), and § is defined in (3.25) is the sine of the smallest

angle. These estimates imply the operators are positive definite.

Proof. The estimate for M follows from (4.20) and the estimate for £ follows from (4.23).
For S8, we sum estimate (2.52) over all of the cells, then except at the boundaries, each value
of w is counted twice, so the lower estimate remains unchanged but the upper estimate must

be multiplied by 2.

COROLLARY 4.8
Lo B < [|IM]]ls < L2

max ?

8%y 2 9
Pz < 18l < 212
4 m1n—H| H|V— 6 max

I—min S |||£|||V S I—max -
Proof. This follows from Theorem 3 on page 201 of Yosida [39].

4.2.1 The Formal Divergence and Gradient
The formal divergence is defined by

(Dw),; 1 5y = Wit1j4) = Wighy + Wirg i1+ Wiy,

where 0 <:<IT—-1,0<53<J—1.
The definition of the formal gradient has two parts: for 0 < j < J — 1,

(G“)o,ﬁ-% = ULj+i — Uo,5+4

(GU)jjys = Uingjes — Uingyrs, 1<i<T—1,

)
S

)14y = ULjth — UI-+d

and for 0 << T -1,

(

(Gu); g = Uirgjos — Uirpj-3, 1<7<J-—-1,

Q

U)H; o — Ui+1,1 — Uitl0,

2

(Gu)jyy g = Uity s = Uirgg—3 -

(4.25)

(4.26)

(4.27)

(4.28)

The formal divergence and gradient satisfy a summation by parts formula in two dimen-

sions:
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PROPOSITION 4.9 For any u € Hgs and w € Hy

((Dw,u))s + {(w, Gu))y = — Z Wit 1,0 Uit 3,0

i=0,I—1

+ E Wit 1,7 Witd,J
i=0,I—1

- E Wo,j+1 U0,j+3

§=0,0-1

+ Z Wrjti ULj+1 - (4.29)
j=0,J—1

Proof. This follows from two parameterized applications of the one-dimensional proof.

THEOREM 4.10 The natural divergence and gradient can be expressed in terms of the formal
divergence and gradient:

D=M'DL, G=S'LG. (4.30)

Proof. The formula for the divergence follows from (3.32). For the gradient, we combine the
natural (3.36) and formal (4.29) summation by parts to get

(D Lw,u))s + ({(Lw, Gu))y = (Dw, u)s + {w, Gu)y . (4.31)
But
(Dw,u)s = (M™D Lw,u)s = ((MID Lw, Mu))s = (D Lw,u))s, (4.32)
and so
<<[’w’ Gu))V = <’LU, gu>V = <<wa8gu>>v - (433)

This implies that LG =S G or G = S~ L G as was required.

COROLLARY 4.11 The matrix of § is diagonally dominant.

Proof. We first observe that (4.30) gives L' S G = G. Comparing this with (3.33) and (3.34),
we see that the matrix for £7! S is given by the matrix A which is shown to be diagonally
dominant in section A.2.1. Multiplying a diagonally dominant matrix by a positive diagonal
matrix does not change the measure of dominance given in (A.14).

4.3 Formal Friedrichs—Poincaré Inequalities

In the continuum, the Friedrichs-Poincaré inequalities estimate the value of a scalar field
in terms of its gradient along with some side condition that takes care of constant fields.
The discrete analogs of these inequalities involve estimating the value of discrete fields in
terms of differences. There are many possible estimates, but the mean-square estimate is
fundamental in the discrete case.
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LEMMA 4.12 Let a,, 0 < n < N be a sequence of real numbers, then

N-1

lany — a0|2 <N Z (Gns1 — a”)2 ) (4.34)

n=0

Proof. : A standard “collapsing sum” argument gives

N-1
ay — ag = Z Uni1 — Qp (4.35)
n=0

and the Cauchy-Schwartz inequality gives

N-1 N-1
lay — ag|” < (Gns1 — an)? Z 12, (4.36)
n=0 n=0

which gives the result.

4.3.1 One-Dimensional Inequalities

PRrROPOSITION 4.13 If u € Hs and uy = 0, then the discrete Friedrichs-Poincaré inequality
holds:
[[ullls < T||Gull]y . (4.37)

Proof. Choosing N =4, a0 = uo =0, a; = u;—3, 1 <1 < I, ary1 = ur and (Gu); = uiyy—ui—3
in (4.34) gives

i1 I
u?_% <1 (Gu); < I Z (Gu)? | (4.38)
k=0 k=0
which implies that
I
ul,, <1 (Gu); . (4.39)
k=0
Summing this equation
-1 I
ulllz =) uiyy <P (Gu), (4.40)
i=0 k=0
and substituting
I
[1Gullly =) (Gu); , (4.41)
i=0
gives
ullls < 12 [[|Gull[3;, (4.42)

which gives the result.
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COROLLARY 4.14 Under the assumptions of Proposition 4.13,

L

min

llullls < — llIGullly, (4.43)
where L = x; — xq is the length of the interval.

We now convert the formal Friedrichs—Poincaré inequality (4.43) to a natural Friedrichs—
Poincaré inequality.

THEOREM 4.15 If u is zero on the boundary of the grid, then there exists a constant K
independent of the grid spacing such that

lulls < K [|Gully - (4.44)
Proof.
[ulls = (u, u)s
= ((u, Mu))s by (4.2)
< Linax []|u[[3 by (4.5)
I—max
<L? B |Gull[5 by (4.43)
I—max _
=L (IS S Gull
I—max
=L 2 1S Gulll5 by (4.14)
< L2 L?nax 2 b 4 6
=" 2. HGullly y (4.6)
L3
<217 L?f‘—” ((Gu, S Gu))y by (4.5)
=217’ [|Gull} - by (3.3)

Here L is the length of the interval and p = Lyax/Lmin is finite by assumption, so we have
the estimate.

4.3.2 Two-Dimensional Inequalities

PROPOSITION 4.16 If u € Hs, upjy3 =0,0<j < J—1,and uj410=0,0<i <1 -1,
then

[l[ullls < min(L, J) |[|Gul|]y. (4.45)
Proof. In two dimensions
-1 J-1
Nl = 33" w2 0, (4.46)
i=0 j=0
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while

I oJ-1 -1 J
NGullly =)D (Gu)y + DD (Gu)yy, (4.47)
i=0 j=0 i=0 j=0
We can rewrite (4.39) as
I
Uiy iy <1 Z (G“)i,ﬂé ’ (4.48)
k=0

and then repeat the one dimensional arguments to get

lullls < 17 [[|Gull[3; - (4.49)
Interchanging the roles of 7+ and j gives

Hullls < 72 1| Gul[[5;- (4.50)
These last two estimates imply the result.

COROLLARY 4.17 Under the assumptions of Proposition 4.16

[ullls <

HGullly- (4.51)

min

where P is the perimeter of the domain in which the grid lies.

Proof. There are 2 (I + J) boundary segments of the grid lying on the boundary of the grid,
and so the sum of their lengths must be less than the perimeter of the domain, but the length
of each segment is longer than L, so

2(I 4 J)Lmin < P. (4.52)
However, min(I, J) < max(I,J) < I+ J so

P

in(/ <
min(7, J) < ST

(4.53)

which when combined with (4.45) gives the result.
We now convert the formal Friedrichs—Poincaré inequality (4.51) to a natural Friedrichs—
Poincaré inequality.

THEOREM 4.18 If u is zero on the boundary of the grid, then there exists a constant K
independent of the grid spacing such that

lulls < K|[Gully - (4.54)
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Proof. If P is the perimeter of the domain, then

lulls = (u, u)s
= ((u, Mu))s by (4.19)
< Lo 115 by (4.24)

P2 LIQIlaX

7 12 Gl by (4.51)

P2 12

Z L12nin

P22

=T e LS Gullf} by (4.30)

P? Liax

- =S Gullly by (4.25)
P? LYo

< ZE [11Gull % by (4.25)
4P2 16

< g o (Gu 5 Gu)y by (4.24)

4 P? p6
5 1Gull5, by (3.24)

where p = Lpax/Lmin and S defined in (3.25) is the sine of the smallest angle are finite by
assumption. So we have the estimate with K = 2P p3/3? .

<

L7881 LGull

IN

<

5 Convergence of Solutions of Boundary-Value Prob-
lems

We discretize the one- and two-dimensional Dirichlet boundary-value problem for the Lapla-
cian using the mimetic discretizations of the divergence and gradient and then estimate the
error in the discrete solution and its gradient. We first estimate the error on a single grid.
The requirement that the constants in the error estimates remain bounded as the grid is
refined gives the modest smoothness conditions the grids need to satisfy to give first-order
converge of the solutions and their gradients.

We begin by introducing an abstract mimetic theory independent of the detailed structure
of the grid, the details of the definition of the inner products, and the details of the definition
of the divergence and gradient. The crucial point is that the discrete divergence and gradient
satisfy an abstract summation by parts formula.
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5.1 Abstract Mimetic Formulation

The abstract mimetic formulation assumes there are two real linear spaces of discrete fields.
The space Hs is associated with values of scalar fields in cells, while Hy, is associated with
values of normal components of vector fields on cell boundaries. Each of these spaces is
endowed with an inner product: (-,-)s on Hs and (-, -)y on Hy, and associated norms || - [|%
and || - [2.
There are also two linear operators, the discrete divergence D and the discrete gradient
G such that
D:Hy—>Hs, G:Hs—Hy, (51)

and most importantly
(Dw,u)s + (w,Gu)yy =0, YueHs, VweHy. (5.2)

The mimetic one- and two-dimensional discretization described in Section 5, with the
assumption that the scalar fields are zero on the boundary of the region €2, both satisfy
these assumptions (see (3.4), (3.6), (3.9), (3.11) and (3.12) for one dimension and (3.26),
(3.28), (3.32), Proposition 3.5 and (3.36) for two dimensions).

The discrete Laplacian defined by

EZ—DQIHS—)Hs, (53)
is positive because, using (5.2),

(Lu,u)s = —(DGu,u)s ={(Gu,Gu)y >0. (5.4)

It is more important to show that the Laplacian is positive definite, as we will do below.

5.2 The Boundary-Value Problem

We consider the continuum boundary-value problem (BVP) for the smooth scalar field u
defined on polygonal domain €2 that satisfies Laplace’s equation

—V-Vu=f, (5.5)

where f is some given smooth scalar field on the interior of {2 and u = 0 on the boundary
of the domain 0€2. We assume that the boundary of the grid is identical to the boundary of
the domain. The discrete BVP is to find a discrete scalar field © € Hs that satisfies

Lu=f (5.6)

where f € Hs is a given discrete scalar field on the interior of the grid and u = 0 for all grid
points on the boundary of the grid.
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5.3 Solvability of the Discrete Boundary-Value Problem

We assume that if u € Hs and v = 0 on the boundary of the grid, then there exists a constant
C > 0 that only depends on €2 such that the discrete Friedrichs—Poincaré inequality

lulls < CllGu v, (5.7)
bounds the discrete scalar field in terms of its gradient (see (4.44) and (4.54)).

THEOREM 5.1 The discrete Laplacian with Dirichlet boundary conditions is positive defi-
nite. That is, if u € Hs and u = 0 on the boundary of the grid, then

(Lo, u)s > % (u, u)s, (5.8)

where C is defined in (5.7). Consequently the discrete boundary-value problem is uniquely
solvable and the solution satisfies

ulls < C I flls - (5.9)
Proof. Formula (5.4) and the Friedrichs—Poincaré inequality (5.7) imply that

1
(Lu,u)s = (Gu,Gu)yy > E(u, u)s (5.10)

which gives the first part of the theorem. A positive matrix that is bounded below is
invertible, so the discrete boundary value problem is uniquely solvable. Setting Lu = f in
the first part of the theorem gives the second part.

5.4 Projections and Truncation Error

We also assume that there are two linear operators: Ps that maps smooth scalar fields u
defined on €2 and zero on 0f) to a discrete scalar field Psu € Hs with Psu = 0 on the
boundary of the grid; and Py, that maps smooth vector fields w defined on €2 to a discrete
scalar field Py w € Hy.

If the continuum divergence is given by V-, then the truncation error of the discrete
divergence D : Hy — Hs is

To(W) =PsV -w — DPyw. (5.11)
If the continuum gradient is given by V, then the truncation error of the discrete gradient

G:Hs — Hyis )
T5(u) = Py Vu — G Psu. (5.12)

If the continuum Laplacian is given by A = —V -V then the discrete Laplacian £L = -D G :
Hs — Hs has truncation error

Tc(u) = Ps Au — LPsu. (5.13)
The truncation error for the Laplacian can be broken into two parts:
Te(w) = - (D To(w) + To(Vu)) . (5.14)
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5.5 The Error in the Solution and Its Gradient

We want to compare the solution of the continuum and discrete boundary value problems,
so let the smooth continuum scalar field u satisfy (5.5), while u is a discrete field that
satisfies the discrete boundary value problem (5.6) where f = Psf. The error e compares
the projection of the solution u of the continuum problem (5.5) to the solution u of the
discrete problem (5.6):

e="Psu—u, (5.15)

while the error in the discrete gradient of the solution is
E=P,Vu—-Gu. (5.16)
We assume that e = 0 on 02 because both u = 0 and u = 0 on 0.
PROPOSITION 5.2 The error satisfies the discrete boundary value problem
Le=—T;(u) (5.17)

and e is zero on the boundary of the grid.
Proof. By assumption e = 0 on dw. Next,

Le=L (Psu—u) by (5.15)
= LPsu—PsV-Vu+PsV-Vu—-Lu
= —Tz(u) +Psf — f by (5.13), (5.5) and (5.6)
= —Tc(u), by the definition of f

as was to be proved.
It is easy to verify that the error in the gradient can be decomposed into two parts:

PROPOSITION 5.3
E =T5(u) +Ge. (5.18)

We estimate the error in the solution and gradient of the solution in terms of the trun-
cation errors for the divergence and gradient.

THEOREM 5.4 The exists a constant K independent of the grid size such that
lells + [Ely < K (176l + [ 7o(Fu)ls) (5.19)
Proof. From (5.18) we have

[Elly < 1Tg(w)llv +1Gellv, (5.20)

and so we need to estimate the second term on the right of this inequality. Equations (5.17)
and (5.14) give
Le=DTg(u)+ Tp(Vu). (5.21)
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If we take the inner product (5.21) with e and apply (5.2) to two of the terms, then

(Ge,Ge)y = (Ge,T5(u)y + (e, To(Vu))s- (5.22)

This implies that .
IGelly < lIGelly [ To(@)lly + llells [ To(Vu)lls - (5.23)

The Friedrichs-Poincaré inequality (5.7) and division by the norm of the discrete gradient
of the error gives

IGelly < 1 75)lly + C | To(Vu)|s (5.24)
Now (5.20) gives

By <2 75()lly + C | To(Vu)|ls, (5.25)

and the Friedrichs—Poincaré inequality (5.7) gives

lells < C1Ts(w)lly + C* | To(Vu)ls - (5.26)

These last two inequalities imply the theorem with K = max {2 + C,C + C?}.

5.6 Solution Error Estimates for the Boundary Value Problems

THEOREM 5.5 In one dimension, if the discrete boundary value problem (5.6) is created
using (3.9) to discretize the divergence and (3.11) to discretize the gradient, then there
exists a constant K independent of the grid such that

lefls + [1Elly < K Luax, (5.27)

where the error in the solution e is defined in (5.15) and the error E in the gradient is defined
in (5.16).
Proof. In the following Cj is a numerical constant times the maximum of the k-derivative of
u over the domain. We need to estimate the right hand side of (5.19) and start by estimating
[To(Vua)ls.

From (3.7) we see that

< 1 .
lulls < VL max fuisyl, (5.28)
so that B )

ITo(Fu)ls < VE max | (To(Fucy], (529

where L is the length of the domain (3.1). From (3.17), with w = Vu, we get

max |Tp(Vu)i_1| < Cy L2, . (5.30)
0<i<i—1 3
Next we estimate ||7g(u)||ly. From (3.8) we see that
lwlly < VL max w4 (5.31)
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so that
To(u)lly < To(wiss] .
[Tg(w)lly < \/[(gliag]| g(u)ity]

It follows from (3.17) that

max |Tg(0);] < CsLmax -

Combining these estimates gives the result with

KSK\/[(02+C4LmaX) .

(5.32)

(5.33)

(5.34)

THEOREM 5.6 In two dimensions, if the discrete boundary value problem (5.6) is created
using the discrete divergence (3.32) and the discrete gradient given by (3.33), (3.34) and

(3.35), then there exists a constant K such that
lells + IElly < K Lunax-

Proof. From (3.41), with w = Vu, we get

= p
OSI?;JIX—I |7'D(VU)Z+%,]+%| < B (03 + 04 I—max) Lmax .
0<j<J-1

Also, from (3.29) we see that

lulls < VA max [uir gl
0<G<T-1

where the area of the region A is defined in (3.22). Replacing u by Tp(Vu) gives
”75)(611)”8 S (03 + C’4 I—max) \/K% I—max .

From (3.41) we have

2
P
max max |Tg(u); a1 max |Tg(u)jr1q| » <Cy =1L .
max |To( )h]+§|70§i§[il| g(W)itl ¢ < > 7 Lmax
0<5<J-1 0<5<J
Also,
AC Z L?ninﬁ;

where (3 is defined in (2.41) and then from (2.52)

2

1Y 2
<4A. =
(w,w)y <4Ac B xe (DX, WX
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(5.38)

(5.39)

(5.40)

(5.41)



where p is defined in (3.3). Summing this over all cells gives

Jwlly < 4VAL max{ max |wiy,|, max |wiilp - (5.42)
153 0<i<I—1 2 0<i<I e
0<j<J 0<j<I—1
Replacing w with 7g(u), we obtain
3
||7?J(u)||v < 202\/'&% I—max- (543)
Combining these estimates gives the result with
K< KVA ((Co+Cilmn) 2420, 2 5.44
< (3+4max)6+ 254 . (5.44)

5.7 Grid Convergence

To study convergence, we will choose a family of grids where L, converges to zero as the
number of grid points goes to infinity, and moreover the grids do not degenerate:

ASSUMPTION 5.7 In one-dimension, there is a finite py such that for every grid in the family,
p < po, where p = Liax/Lmin (3.3).

AssuMPTION 5.8 In two dimensions, there exits finite py and Sy > 0 such that for every
grid in the family, p < po, and 8 > By, where p = Liax/Lmin (3.24) and S is defined in (3.25)
as the sine of the smallest angle in the grid.

THEOREM 5.9 In one dimension, assume we have a sequence of grids containing n points,
with n — oo that satisfy Assumption 5.7 and, in addition, there exists a constant ¢ > 0
such that Ly, < ¢/n. Then the solutions the discrete boundary value problem (5.6) created
using (3.9) to discretize the divergence and (3.11) to discretize the gradient, converge at first
order to the solution of the continuum boundary value problem (5.5).

Proof. This follows from the estimate in Theorem 5.5 and that Assumption 5.7 bounds p.

THEOREM 5.10 In two dimensions, assume we have a sequence of grids containing n points,
with n — oo, and that there exist a constant £ > 0 so that I > k+/n and J > k+/n.
Furthermore, the grids satisfy Assumption 5.8 and there exists a constant ¢ > 0 such that
Lmax < ¢/4/n. Under these assumptions, the solutions the discrete boundary value problem
(5.6) created using (3.32) to discretize the divergence and the discrete gradient given by
(3.33), (3.34) and (3.35) converge at first order to the solution of the continuum boundary
value problem (5.5).
Proof. This follows from the estimate in Theorem 5.6 and that Assumption 5.8 bounds p
and 1/0.

Note that the error for the solution of the boundary-value problem is estimated in different
norms for different grids, so we need to know that the norms converge as the grid is resolved.
We will show that the inner products converge, which implies that the norms converge.
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PROPOSITION 5.11 In one dimension, if u) and u® are smooth scalar fields on [a, b], then
b
(Psu®, Peu®)s — / 1 (z) u® (z) dz, (5.45)
while if w) and w(® are smooth vector fields on [a, b], then
b
Py, Prw®)y, - / w® (2) w® (z) dz (5.46)

for any family of grids satisfying Assumption 5.7, as Ly — 0.

Proof. The discrete inner products (3.7) and (3.8) correspond to midpoint and trapezoid
integration rules which are known to be globally second-order accurate. This implies that the
discrete inner products converge to the global inner products with a second-order convergence
rate.

PROPOSITION 5.12 In two dimensions, if u”) and u(® are smooth scalar fields on the region
Q, then

<P8u(1) ’ PSu(2)>S — / u(l) (‘Ta y) u(2) ('Ta y) dx dy7 (547)
Q

while if w(1 and w(? are smooth vector fields on the region Q, then
(Pyw M) Pyw®)y, — / W (z,y) - WO (z,y) dz dy, (5.48)
Q

for any family of grids satisfying Assumptions 5.8, as Lyax — 0.
Proof. The inner product (3.29) is a Riemann sum for the integral, and therefore converges.
Furthermore the convergence is at least first order.

For the inner product of vector fields, we will estimate the “corner” inner products, such
as (2.47), by the inner product of the projection of the vector fields at the center of a cell.
First, if w is a smooth vector field, then w(r¢c) — W(rp) and wW(rg) — W(ry) are first order
in Lyax, and then consequently so are

— —

(W(ro) = w(rp)) - (W(ro) =w(rp)) - — (5.49)

Lp’
(see (2.45)) because we have taken dot products with unit vectors. We can write these
expressions as

w(re) - L—DD —Wp, W(re)- L_LL — W, . (5.50)

If we substitute these expression into (2.45) we find that

— ‘i} I_ = ‘i} I_ —
W(re) — 2;’; Ty + 2/ipi Tp (5.51)
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is also order one with a constant proportional to p®/3. This implies that
WO (rg) - % (re) — (Pyw, Pyw®)p 1 (5.52)
is first order. Now multiplying by Ap ;/2 and summing over the four corners gives
wO(rc) - w3 (re) A — (Pyw ™), Pyw(),, (5.53)

is order one with a constant that is proportional to A¢c p?/3. As the sum over all cells of the
first part of this expression is a Riemann sum for the integral, we have the convergence at
order 1 for families of grids that satisfy Assumption 5.8.

6 Summary

We have defined mimetic discretizations for the divergence and gradient operators and used
these to discretize the Laplacian with homogeneous Dirichlet boundary conditions in one and
two dimensions. The one-dimensional problem is used to motivate the more complex two
dimension case. The main result is that in two dimensions this discretization is first-order
accurate in logically-rectangular grids with a bounds on the ratio of cell edge lengths and
the size of the angles in the corners of the cells.

The discretization is first defined on a single quadrilateral cell, where we show that the
discrete divergence and gradient satisfy a discrete analog of the divergence theorem and are
first-order accurate. This discretization is then moved to a global logically rectangular grid
where the same results hold. Next, special representations of these natural divergence and
gradient operators are given in terms of formal operators. This provides explicit matrix rep-
resentations for the natural divergence and gradient operators along with the inner products
of scalar and vector fields. These matrices are combined to give a matrix representation
of the Laplacian. Additionally, the formal structure is used to prove a discrete analog of
Friedrichs—Poincaré inequality.

The truncation error for the Laplacian is typically order zero in rough grids and thus
cannot be used to prove convergence. We introduce an abstract version of the mimetic
discretization and prove that the error in the discrete solution and the discrete gradient
of this error are bounded by the truncation error in the discrete divergence and gradient
operators, which leads to the convergence result.
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A Explicit Formulas for the Matrices M, A and S

In this appendix we list the explicit formulas for matrix M required in (3.30). We also derive
the formulas matrix A using in the determining equations (3.33), (3.34), and (3.35). Using
these formulas, in section A.2.1 we give a proof of A is diagonally dominant. Finally, we
give formulas for the matrix S used to define the S operator (4.22).

A.1 Formulas for the matrix M

The vertex-based inner product (3.30) requires formulas for the matrix M. We will translate
the formulas in Table 3.3 by using M, , — M(@b)(©4) where (a, b) gives side o and (c, d) gives
side 7. The symmetry of M in ¢ and 7 gives M(®b)(¢d) = M(d)(@b) 5o we only need the
explicit formulas:

L2 L?

M(O,—l')(o,—l) _ i,j+3 i+1,5+4
i+3.0+3 g ALY g ACLAL)
i+1,5+4 i+1,5+4
0,-(+1,0) _ Litdi - Tit1,5+3
MYy i = ESEE R
B A1+

— =

M(o,—1)(—1,0) _ Ti+%,j ) Ti,j+%

B I N
8Aiyiny
(07_1)(05+1) J—
Mi+%,j+% =0,
L2, L2, .
M(+1,0_)(+1,0) _ i+3,] i+3,j+1
t+3,J+3 8A(*1,+1) 8A(+1’+1) ’
i+4.+4 i+4,J+3

MO0 _ g

i+3,+3
MFLO0+1) _ Ti+%,j+1 ) Ti+1,j+é
i+5,J+3 - 8A(+1,+1) ’
it3,5+3
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2
M( 10)( 0) _ Lz+1,j Li, +1.+1
J+i 8A( 1,-1) 8A(+1 -1)
Z+2,J+1 z+;,a+1
MELOO+1) Tz’+1 j+1 ) T',j+%
it3.+: T At ’
Z+2,J+1
2
M(o +1)(0,+1) __ L; hi+3 LZ+1 Jt+3 (A1)
i+ 5,J+3 8A(+1,—1) 8A(+1,+1) ’
i+4.5+3 i+4.5+3

Recall that the global gradient is required to satisfy the system of determining equations
(2.86) for 0<i<I—1,0<j<.J—1:
0,—1)(0,~1
Uis g j+i — Yitdy = Livy; Givs M§+%,j)£% :
+1,0)(0,—1
+ Lit1,j+2 Git1,5+4 M§+%,j)-|(-% )
0,41)(0,—1
+ Liv1j+1 Git 1,01 M§+§,j)£% )

.. .. (7170)(0771)
tLigy Gigrs Miy ey

— (01_1)(+110)
= Uity ity = Livg,i Givys Mis i)
(+1,0)(+1,0)
+ Livigg Givrgry iy ihs
(0,41)(+1,0)
+ Livg 1 Girggn Mty 7

(_150)(+170)
+Liges Giges May i

Wit1,5+3

— (01_1)(O7+1)
Uitd,jrt — Uitdjrg = Livg,g Girgg Miyy foy

(+1,0)(0,41)

+ Livijtg Givrgry Mgy iy
(0,4+1)(0,41)

+ Livg g Girg e MYy iy

0,+1
+L,]+1g”+1M§+1]>+<1 )

0,—1)(—1,0
Uit lj+1 — Ujj41 = I—i—l—%,j gz’-l—%,j Mz(-+1 l&; )
3] T3

(+150)(_150)
+ Livigrs Givngrs Mig s

(01+1)(71a0)
+ Litvy 01 Girr i+ M1

(_1’0)(_150)

+ Lij+s Gigrs Miy 25 (A.2)

These equations are normalized so that the inhomogeneous terms are differences of the scalar
field so that it is easy to eliminate the the edge scalar fields from the global equations. This
formulation naturally simplifies to the standard discretization on orthogonal grids.
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A.2 Formulas for the matrix A

We derive a system of equations for the gradient on the interior of the domain and then
work on the boundaries. To eliminate the edge values of the scalar field, we need to combine
two of the above equations to eliminate the scalar edge values. In fact there are only two
case that need to be considered and they are illustrated in Figure 3.4. For the horizontal
arrangement, we translate second equation in (A.2) to the cell with center (i —1/2,j+1/2)
by replacing i by ¢ — 1:

(0,—1)(+1,0)
uzaj+1 - ,U/Z_ 7.7+1 - LZ_‘:J gz_ga] MZ— ,j+1

+ L (VR gz,ﬁ-l M(+1 (;)fl—l o
J+1 gz—— J+1 MZ(O_:'—E)_EEI 0)

bR
(—1,0)(+1,0)
+ Lz 15.]+1 gl 15]+1 MZ—*,j‘l‘l ?

+ L1

2.

where 1 <i < I,0<j<J-1. If we add this equation to the fourth equation in (A.2) and

take into account that
1,0)(=1,0 1,0)(+1,0
M =M =0 (A.3)

then we get
_ (=1,0)(=1,0) (+1,0)(+1,0)
Uity = Uimg by = (Mz—l- it M) Ligey Gigey
(07_1)(_ 70)
+ M)y s Livyy Girs
(0,+1)(=1,0)
MV Livgge Girg g

(0,-1)(+1,0)
M2 T Ly G
0,+1 1,0
+ MS_:)S ) Liij+1Gi 1441,

where 1 <7 < T—1,0<j < J—1. These equations can be written in the form (3.33) where

A0 _ Lisis (M(—l,o.)(—l,o) + MO 0))

(VR i+1,5+3 i—1,7+3
2 2 2
_ I_ ( L1+é7] L 7.]+1 L 7.7 LZ72J+1
T ity (-1,-1) (+1 1) (—1,(+1) (+1,41)
8AZ+1 ]+1 8AZ+%,‘7+% 8Az_7’]+1 8AZ_7’J+1
Lits, Litsj+1

4sm i1 ]+1) 4sin(02(1 ’J+1)

Ch
Li—sy Li—g i1
(¢

—bt ) 4 sin (0(1—1’4-—1) ) ’

1 1
=)t

4sm i1t

o6



and

o m Lit14+1 cos (9“—1’_-1)1)
ALY ML Tiry a1 Tijey T et
. . = y y > y = 3 i j =
iyj+1 i+ 5,5+ Vg1 il itgtl AL 4 sin (65D ’
i+3,+4 S\ Vit g5+4
(A.4)
. . —1,-1)
R L-;-cos(@g . )
AL o a0 o T Tigey | TS MM (A.5)
R e T R R LY SACLTD T 4 (Y ’ '
i+3,5+3 S Vit 1,543
. . +1,-1)
L;_1 .1 CcOS (0( " )
(_1,+1) _ L ' (0,+1)(+1,0) - I_ ' ﬂ—%;j‘i‘l . E,]+% _ 2 Ea]"‘l Z*%v]'f’%
Wit T R gty T I (L) T G- ) ’
i~4.5+3 S Vi g+3
(A.6)
. . —1,41)
7 L-,;-cos(ﬁg S )
A(fl,*l) o ,M(O’_l)(+1’0) . I_ ' ,-T'Z_%’J . E,]'i‘% . t—35] Z*%J‘F% (A 7)
ij+1 T St Yhi—lg+l T Niegud 8A(*1a+1) B 4 sin (91 T! . .
=4+ SN\ Vi .i+4

Next we consider the vertical arrangement illustrated in Figure 3.4 and translate the
third equation in (A.2) to the cell with center (i 4+ 1/2,j — 1/2) by replacing j by j — 1:
0,—1)(0,41
Wipgg = Uirgg oy = iy Gingy MGG
+ I—i-{—l,j—% gi+1,j_% MEI;E)EO%#I)
0,41)(0,41
+ Lits,i Girsi Mz(+%,j)£% )
—1,0)(0,+1
+Lig-y Gy Mgy,
If we add this equation to the first equation in (A.2) and take into account (A.3) then we
get
0,41)(0,41 0,—1)(0,—1
Uity gy — it}j—) = (Mg%’]{(% P+ M )) Livga Gisyd

(+1,0)(0,+1)
+ MH—%,jf% Liv1j-4 Git1,-4

D{l(flao)(oﬂ'l) .. ..

+ itl,j—1 I—z,gf% gz,]f%
(+150)(01_1)

+ MH%,J-JF% Livij+1 Givt g

(71:0)(0:71)
M Ligey Giges s
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where 1 <7 < T—1,0<j < J—1. These equations can be written in the form (3.34) where

0,00 _ (0,+1)(0,+1) (0,—1)(
ALY =Linyg (M1+1'% + My iy ))

Lz. , L2 L2 L2
hi—3 i+1,j—3 hi+s i+1,5+3
:L'H‘%,j ( 2 + + _+_ 2

sAYY gAY gAY gAY

Z+%’J_% Z+1a.]_% Z+;a.7+1 Z+é7]+1
_ L1 n Lit1j-1
T (+1,-1) . (+1,41)
4 sin (HH%’]._%) 4 sin (02+1 -_;>
4 I—i,j—i—% i |—i+1,j+1 (A 8)
asin (0, 150)  asin (05370) '
i+4.J+3 i+4,5+3
and
- - o (—1,41)
AGIH MO0 _ o Ty Ty Lit1+ cos (0i+%ﬂ'+%)
PLEE ek patd T TR T G T T (gL ’
i+3.0+3 SIMAYits,5+3
(A.9)
~ - o (+1,41)
AGL-D MOFLOO+) _ Tiyyj-Tivrj-y Livaj—y cos (0”1 j—%)
itgg T LIy Wit gg-y T Sl (+1+1) . 1,41 ’
8A 1 4 sin (951—%; ) )
(A.10)
— — (71771)
Tii1 - T 1 Li,j+1 Cos (0i+l '—I—l)
1,41 ~1,0)(0,~1 +1, J+3 2 Jt3
A§+§,}L )= Lijts Mz('+%,j)-|(-% )= bit3 : AJ 1—1J - . ) ’ (A.11)
8 z+2,]+1 4 sin (92+1]+1)
— — (+17_1)
_ Tipr;-Tij_y  Lij-gc08 (%1,'—%)
ALY =Ly MO =, S T (A12)
i+1 3 1 1= 3 8A(+1 —1) . (+1,-1)
it 4 4 sin (02+1 j__)

The equations on the boundary will retain the scalar values on the boundary

0,
u%a]"’ U'O:]_"l _Lgaj gga] M( j+3( )
0,+1)(—1,0
+ Ly g1 Gy g MO

1,0)(—1,0
+ Loj+1 Goj+1 M( ,]+3( ) ;

_ (0,-1)(+1,0)
Urjty — Wi—g543 =Li—1G1-3,; M;” 1j+1

1,0 1,0
+ Lrjr1 G141 M(Ji_ J)J(j )

(0,41)(+1,0)
+ Loy G- M2 007
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(0,—1)(0,—1)
Uit 1,1 — Ui+ 1,0 —I—z+1 0gz+1 0M1+1 1

+Liy1,1 Giv1g 1\/1(4_1 0©~1)

4.4

i I—z, gz’ +11,0%)(0 —1) ’

_ (+1,0)(0,+1)
Uity,g — Uity g—3 =Liv1,s—3 Gipru—y My 700

+Lirg Gipp s ML)

+ Loy Gigoy MO0 (A.13)

i+1

These boundary equation can be written in the form (3.35) where the the off-diagonal
values of A are the same as above, while the diagonal values are “half” of the values given
above:

Ly, Ly,
0,0 1,0 3.J+1
Aé,jll Lo s My ]+2( )= (+1
4 sin < J+1 ) 4sm(0 ]+1 )
Ly Lr i+t
AE,O 0, M(+1 0)(+1,0) _ ~1,j L.
J+3 T Hhits 3:J+3 1,41) . +1,+41) \’
4 sin < 1(7 i ]+1> 4 sin (0§_%,j+)%)
L; 1 Litq2
AEO ?)0 = I_z-|-1 0 M(O TB)( 1_1) - b2 + s y
" ’ T2t 4 sin (0(+ g )) 4 sin (O(Jr} f1)>
|_- 1 I_ 1
0,0 0,4+1)(0,+1 iy — i+1,J—1
A§+%),J =Litgs M§+J%F,J)(—%+ = . (+1, T (+1,4+1) )
4 sin (OHI 7 1) 4 sin (0i+%7,]—%>

A.2.1 Diagonal Dominance of the Matrix A
The diagonal dominance of the matrix A is measured by
A(0,0) i A(+17+1) —_ A(+1771) i A(711+1) — A(flvfl)
R= 200 . (A.14)

In the interior of the domain, the numerator of R can be broken into four terms, while on
the boundary the expression can be decomposed into two terms, where we can estimate a
typical term using the results used to prove (2.52):

Lity, ( — Cos (014—1 J+11 0))> S B Linin .

4 sin (GH_ j+110)) B

(A.15)

So in the interior,

A0 _ AGLAD AL AL A1) > ﬂl‘;‘i“ (A.16)
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and

ACO < (A.17)
SO
g
R> . (A.18)
2p

The same estimate holds on the boundary.

A.3 Formulas for the Matrix S

The formulas for the matrix S for the S operator given in (4.22) can be computed in the
same way as the formulas for the the matrix A computed above. The diagonal elements of
S in the interior are given by

s =B+ B 1<i<r—1,0<<T -1,

s, =BU)GT 4+ BY YO, o<i<ri-1,1<<U-1,

and on the boundary the diagonal elements of S are given by

Soiry =Byl Y, 0<j< -1,
Sg?ﬁ% = Bﬁt;g?g;,o), 0<j<J-1,
siPy =BTy, 0<i<I-1,
Sty =BE ™, 0<i<i-1.

The off diagonal terms of S are given by

sSUV =B, 0<i<I-1,0<<U-1,
Sy =Bl Y, 0<i<I-1,0<j<T-1,
STV =BYY, 1<i<I0<i< -1,
sty U =BY 0 1<i<ro<i< -1,
and
syt =B %Y, o<i<I-1,0<<U-1,
SV =BIOT . o<i<I-1,1<5< 1,
SV =B 0GY, 0<i<I-1,0<< -1,
Sy V=BG o<i<I-1,1<5< .
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