
MSTK: Mesh Toolkit, v 1.7

Rao V. Garimella
T-5, Theoretical Division,

Los Alamos National Laboratory, Los Alamos, NM, USA.
E-mail: rao@lanl.gov

LA-UR-04-0878

March 23, 2010

1 Introduction

1.1 What is MSTK?

MSTK or Mesh Toolkit is a mesh framework that allows users to represent, manipulate and
query unstructured 3D arbitrary topology meshes in a general manner without the need to
code their own data structures.

1.2 What MSTK is not?

MSTK is not a mesh generator - it can be used to write more easily than starting from scratch.
Also, MSTK cannot answer computational questions related to the mesh (for example, is
this point in the given mesh element?).

1.3 Salient Features of MSTK

MSTK is a flexible framework in that it allows a variety of underlying representations for
the mesh while maintaining a common interface. It will allow users to choose from different
mesh representations either at initialization (implemented) or during the program execution
(not implemented) so that the optimal data structures are used for the particular algorithm.
The interaction of users and applications with MSTK is through a functional interface that
acts as though the mesh always contains vertices, edges, faces and regions and maintains
connectivity between all these entities.

MSTK allows for the simultaneous existence of an arbitrary number of meshes. However,
any entity in MSTK can belong to only one mesh at a time.

MSTK will eventually support distributed meshes for parallel computing. However, this is
still not in place.

To support numerical analysis and other applications, MSTK allows applications to attach
application or field data to entities. This data may be integers, reals (doubles), integer
vectors, real (double) vectors, integer tensors, real (double tensors) and pointers.

The basis for development of MSTK is laid out in the following paper:

Garimella, R. “Mesh Data Structure Selection for Mesh Generation and FEA Applications,”
International Journal of Numerical Methods in Engineering, v55 n4, pp. 441-478, 2002.

2

1.4 Why should I use MSTK?

MSTK offers a flexible infrastructure for representing and manipulating meshes so that mesh-
based application developers do not have to deal with the complexitiies of managing their
own data structures. The functional interface of MSTK is designed to provide easy access
to mesh data and allow for easy-to-read but efficient code to be written for mesh based
applications. Accessing the mesh data through the functional interface allows the high level
application to be unchanged even if the lower level data structures in MSTK change. MSTK
supports a wide array of element types and several representations, all of which can take
a new developer years to write and make robust. New users of MSTK can typically start
writing their own codes to query and manipulate meshes within a few days of familiarizing
themselves with MSTK. Finally, use of MSTK allows easy integration with other codes using
MSTK as their mesh data framework.

2 MSTK Concepts

2.1 Unstructured mesh representation

Meshes are made up of topological entities of different dimensions. In a “traditional” 3D
finite element mesh, nodes are topological entities called vertices and are topologically 0-
dimensional entities, while elements are topological entities called regions and are topo-
logically 3-dimensional entities. In general, meshes can be described using vertices (0-
dimensional entities), edges (1-dimensional entities), faces (2-dimensional entities) and re-
gions (3-dimensional entities). MSTK has multiple ways of representing meshes as shown in
the below. For example, representation F1 has entities of all dimensions up to the dimension
of the mesh while representation R1 has entities of the lowest and highest dimension only.
Currently, the application has to choose a particular representation type when a mesh is
created although it may choose different representations for different meshes in the same
program. In the future, the code will be allowed to switch between different representations
depending on the needs of the particular algorithm being executed at that time.

NOTE: CURRENTLY THE F1 REPRESENTATION IS THE MOST ROBUST
IMPLEMENTATION SINCE IT IS MOST COMMONLY USED. THIS REP-
RESENTATION HAS GENERALLY BEEN STABLE FOR SEVERAL YEARS.
THE REDUCED REPRESENTATIONS HAVE NOT BEEN AS HEAVILY DE-
BUGGED AND IT MAY HAVE SOME BUGS. IF YOU CHOOSE TO USE
SOME OF THE OTHER REPRESENTATIONS PLEASE REPORT ANY PROB-

3

LEMS IMMEDIATELY TO rao@lanl.gov.

Even when using reduced representations, MSTK can provide the full set of topological adja-
cencies as if a full representation were being used. When necessary, entities not represented
explicitly in the mesh are created on-the-fly and represented as volatile entities. Even though
it is possible to take an algorithm that is written for a full representation and use it as is
with a reduced representation, application developers are urged to be aware of the costs of
each operation for different representations and use this information to design algorithms
optimized for each representation.

2.2 Volatile mesh entities in reduced representations

As discussed above reduced representations, do not explicitly represent all types of mesh
entities. For example, R1 representations do not explicitly represent edges and faces while
R4 representations do explicitly represent edges only. However, whenever an implicit entity
is requested from MSTK, the software creates a temporary entity so that it appears that
the entity actually exists in the database. Since these entities are created-on-the-fly they are
called volatile mesh entities. For example, if an application asked for the faces of a region
in an R1 representation, MSTK will create as many volatile faces as necessary, put them in
a list and return them to the calling application. Thus the application can pretend to work
with a full representation (although it is not always efficient to do so).

Volatile entities are stored for a period of time in internal data structures in MSTK. Whenever
there is a request for a new volatile mesh entity, the code first checks if this entity has already
been created. If the volatile already exists in the database, then the entity is returned as is
and if it does not, it is created. This ensures that many copies of the same entity are not
created in MSTK. However, to ensure that MSTK also does not store every volatile entity
forever (thereby, recreating a full representation), there is a mechanism to perform garbage
cleaning on volatile entities. Periodically through the execution of the code, volatile entities
that have not been used for a long time are deleted from the database freeing up valuable
memory (which was the main point of using a reduced representation after all).

To ensure that garbage cleaning does not delete a volatile mesh entity that is being processed
or stored by a calling application, MSTK also provides a mechanism for locking entities. One
can specify an autolock mechanism for the entire mesh which means that no volatile entity
will ever be deleted once it is created. On the other hand, applications may lock specific
entities and unlock them when they cease to be useful.

4

Region (5n)

Face (12n)

Edge (7n)

Vertex (n)

4 2

3 5

2 14

Representation F1

Region (5n)

Face (12n)

Edge (7n)

Vertex (n)

4

14

3

2

5

Representation F4

Region (5n)

Face (12n)

Edge (7n)

Vertex (n)

4 23

4

3

2

Representation R1

Region (5n)

Vertex (n)

4

3

14

4 23

Edge (7n)

Face (12n)

Representation R2

Region (5n)

Face (12n)

Edge (7n)

Vertex (n)

4 2

3

14
3 35

Representation R4

Figure 1: Mesh representations in MSTK

2.3 Mesh entity classification

The concept of mesh entities of various dimensions is actually derived from field of B-rep
geometric modeling in which a model is comprised of a hierarchy of topological entities of

5

v6 --> V19 (GEntDim=0, GEntID=19)
v1 --> E8 (GEntDim=1, GEntID=8)
v7 --> F1 (GEntDim=2, GEntID=1)

e1 --> E8 (GEntDim=1, GEntID=8)
e2 --> F1 (GEntDim=2, GEntID=1)

f1 --> F1 (GEntDim=2, GEntID=1)

Lower case letters: mesh entities
Upper case letters: geometric model
 entities

F1

E1

E2 E59

E8 V3

V10V4

V19

v1

v4

v6

v7

e1

e2

f1

Figure 2: Example mesh and model showing the classification of mesh entities on geometric
model entities

different dimensions. Classification is the relationship of each mesh entity to the model entity
is represents the whole or a part of.

To clarify further, every mesh is a discrete representation of a geometric model. This geo-
metric model may exist in the analyst’s mind, as schematic on paper or as a full model in a
geometric modeling system. Encoding the relationship of the mesh to this geometric model
to the extent possible provides enormous algorithmic benefits to the users of meshes.

Recognizing that one may have varying degrees of information about the geometric model
in different situations, MSTK allows mesh entities to store different levels of classification
information or no classification information.

Every mesh entity can store the dimension of the model entity it is on (GEntDim), the ID
of the model entity it is on (GEntID) and a pointer to the model entity it is on (GEntity).
The following picture illustrates the classification of various entities in a simple mesh.

Classification information is very useful to have for simplifying algorithms in meshing and
analysis applications. For example, using classification information, one can trivially extract
all nodes on the boundary and apply a different smoothing algorithm than nodes in the
interior of the domain. An FEA code can apply boundary conditions on nodes and faces
more easily if it has classification information.

6

If the application developer has nothing but the material IDs of the mesh elements, MSTK
can build the classification information to the best of its ability using topological and geo-
metric information. However, it must be noted that this is procedure is not perfect and some
classification information cannot be derived unambiguously. So, wherever possible, users are
encouraged to generate classification information during mesh generation and supply it to
MSTK.

2.4 MSTK Application Programming Interface (API)

Even though MSTK is written in C, MSTK is designed in an object oriented manner. Mesh
entities, mesh attributes and entity lists are considered to be objects which have their private
data and a set of operators to query and manipulate this data. Even though methods may
be devised to circumvent the data hiding in MSTK, this is highly discouraged. If you think
that a particular operator is not efficient or you don’thave access to some mesh data, please
contact the developer for assistance.

An important feature of MSTK is its ability to provide the full set of mesh operators regard-
less of the representation used. When using reduced representations, entities not represented
explicitly in the mesh are returned as volatile objects. However, it is possible to use most
MSTK operators on such objects as well.

Currently, MSTK offers only a C API but C++ and Fortran APIs are planned for the near
future.

2.5 Getting meshes in and out of MSTK

There are a few ways of getting mesh data into MSTK. The first is to prepare an MSTK file
with the full connectivity of an F1 representation and to read it in using MESH InitFromFile.
This is typically a difficult task for many applications which only have element-node data.
In such cases, one can prepare an MSTK file in the R1 file format (in which the node
listing is followed by the region-node connectivity) and read it in to any of the other rep-
resentations, say F1. The other possibility is to write a file in the GMV format and use
MESH ImportFromFile to import the mesh in.

MSTK can write meshes out to different formats including GMV, STL and FLAG X3D.
When compiled with the appropriate options and using a partitioner from an external library,
MSTK can also write out a parallel X3D file.

7

3 MSTK Data Types

List ptr: Handle to a List object.

Mesh ptr: Handle to a Mesh object.

MVertex ptr: Handle to a Mesh Vertex object (Topological Dimension 0).

MEdge ptr: Handle to a Mesh Edge object (Topological Dimension 1).

MFace ptr: Handle to a Mesh Face object (Topological Dimension 2).

MRegion ptr: Handle to Mesh Region object (Topological Dimension 3).

MEntity ptr: Handle to a generic Mesh Entity object. Any of the above types of entities
can be cast as MEntity ptr.

GModel ptr: Handle to a Geometric Model object.

GEntity ptr: Handle to a Geometric Entity object.

MAttrib ptr: Handle to a mesh attribute.

RepType: Enumerated type describing the type of mesh representation. Can be UN-
KNOWN REP, F1, F4, R1, R2, R4. See Appendix 1 for schematics of these represen-
tations. Currently only representation types F1 and F4 are supported.

MType: Enumerated type for mesh entity type. Can be MDELETED, MVERTEX,
MEDGE, MFACE, MREGION, MUNKNOWNTYPE, MALLTYPE.

MFType: Enumerated type for mesh face type. Can be FDELETED, FUNKNOWN, TRI,
QUAD, POLYGON.

MRType: Enumerated type for mesh region type. Can be RDELETED, RUNKNOWN,
TET, PYRAMID, PRISM, HEX, POLYHED.

AttType: Enumerated type for attribute data. Can be INT, DOUBLE, POINTER, VEC-
TOR or TENSOR.

8

4 MSTK Functional Interface

4.1 List

Unordered sets or lists of entities in MSTK are returned as type List ptr. The following are
the set operations available in MSTK:

List ptr List New(int inisize): Create a new list with an initial size, inisize. If inisize
is 0, the initial size is set to be 10.

void List Delete(List ptr l): Delete a list.

List ptr List Compress(List ptr l): Compress a list (delete all the null entries created
when entities are removed from the list). Doing this while an algorithm is iterating
through the set can currently cause problems!! Calling List Compress could change
the pointer for the list due to reallocation.

List ptr List Copy(List ptr l): Return a copy of a list.

List ptr List Add(List ptr l, void *entry): Add an entry to the list. The entry is
strictly appended to the end of the list.

List ptr List ChknAdd(List ptr l, void *entry): Add an entry to a list only if it is
not already in the list.

List ptr List Insert(List ptr l, void *nuentry, void *b4entry): Insert an entry into
the list in the position before ’b4entry’.

List ptr List Inserti(List ptr l, void *nuentry, int i): Insert an entry into the list
at the i’th valid position and push the entries previously at the i’th and later position
back.

int List Rem(List ptr l, void *entry): Remove an entry from the list. Returns 1 if
successful, 0 otherwise.

int List Remi(List ptr l, int i): Remove the i’th valid entry in the list. Returns 1 if
successful, 0 otherwise.

int List RemSorted(List ptr l, void *entry, int (*entry2int)(void *)): Remove an
entry from a list that is sorted according to some correspondence between an entry

9

and an integer value, e.g., MEnt ID(entry) gives the ID of an entity. The mapping
between the entry and the integer is given by a call to the routine entry2int. The list
could be one from which entities have previously been removed. The routine makes
use of the sorted nature of the list to locate entries in O(log(n)) time where n is the
size of the list. An example call to this routine is

fnd = List RemSorted(mregionslist,region,&(MR ID));

int List Replace(List ptr l, void *entry, void *nuentry): Replace ’entry’ with ’nu-
entry’ in set. Returns 1 if successful, 0 otherwise.

int List Replacei(List ptr l, int i, void *nuentry): Replace the i’th valid entry in the
list with ’nuentry’. Returns 1 if successful, 0 otherwise.

int List Contains(List ptr l, void *entry): Returns 1 if list contains the entry, 0
otherwise.

int List Locate(List ptr l, void *entry): Returns the positional index of the entry in
the list. Returns -1 if the list does not contain the entry.

void *List Entry(List ptr l, int i): Return the i’th valid entry in the list. Returns a
NULL pointer if the i’th valid entry could not be found.

void *List Next Entry(List ptr l, int *i): Return the next valid entry in the list.
This routine works like an iterator. To start iterating through the list, set the iteration
index i=0 and call the routine to get the first entry in the set. Subsequent calls to the
routine will iterate through the entries in the list. The routine will return a NULL to
indicate that the end of the set is reached.

The value of the iteration index i will be modified by the routine on each call to indicate
where in the list it is. This value should not be modified externally while iterating
through the list. Also, no specific meaning should be derived from the iteration index
by other applications since the internal implementation and interpretation of the index
may change at any time.

Finally, there may be unexpected consequences if entries are removed from the list
while an iterator is iterating through it using List Next Entry.

int List Num Entries(List ptr l): Return the number of entries in a list.

10

4.2 Mesh Object

A mesh object is a set of vertices (nodes) possibly connected by other entities such as edges,
faces, regions. Depending on the representation chosen and type of mesh, some or all of
the entities may be explicitly stored. Full representations contain all types of entities up to
the highest dimension of the mesh. For example, a full representation of a tetrahedral mesh
contains vertices, edges, faces and regions. However, one type of reduced representation of
this mesh may contain only vertices and regions. For a surface mesh, a full representation
includes vertices, edges and faces while a reduced representation only has vertices and faces.
Also, depending on the type of representation, some adjacencies (information about which
entities are connected to which other entities) are stored and others are derived.

Mesh ptr MESH New(RepType type): Initialize a new mesh object with the given
representation type which can be F1, F2, F3, F4, F5, F6, R1, R2, R3, R4. Of these
types F1, F4, R1, R2 and R4 are implemented. If the representation type is not known
at the present time (e.g. before reading the mesh from a file), the representation type
of UNKNOWN REP can be specified. Note that this only initializes a mesh object,
it does not create or generate a mesh which is the work of high level mesh generation
routines.

int MESH InitFromFile(Mesh ptr mesh, const char *filename): Initialize or read
a mesh from a file in the MSTK format into the given mesh object. Returns 1 if
successful, 0 otherwise. It is possible to have a an MSTK file in the R1, R2 and R4
format into a mesh initialized as type F1 or F4. This routine imports any attributes
that are into the mesh.

int MESH InitFromGenDesc(Mesh ptr mesh, int nv, double (*xyz)[3], int *nfv,
int **fvids, int nr, int *nrv, int **rvids, int *nrf, int ***rfvtemplate):
Initialize a mesh from a minimal description of the mesh passed into the routine.
In the routine, nv is the number of vertices or nodes and xyz is the array of node
coordinates. If the mesh is a surface mesh, nf is the number of mesh faces, nfv gives
the number of vertices for each face, fvids gives the array indices of the face vertices
in ccw manner (starting from 0, not 1). If the mesh is a solid mesh, nr specifies the
number of solid elements or regions. If the mesh has only standard element types (tets,
pyramids, triangular prisms and hexes), then nrv indicates the number of vertices of
each region and rvids gives the array indices of the region vertices. If, on the other
hand, the mesh has polyhedral elements, regions have to be described in terms of faces
which are in turn described in terms of vertices. Therefore, nrf indicates the number

11

of faces for each region and rfvtemplate gives the array indices of the vertices for
each face of the region.

int MESH ImportFromFile(Mesh ptr mesh, const char *filename, const char
*format): Import a mesh data from an external file format and construct MSTK
mesh. Currently the only format supported is the GMV1 file format. The routine
imports as many attributes as it can from the input file. It also uses special attributes
or keywords as data about element and node classification. For GMV files, the routine
uses the “material” data to indicate region or face classification depending on the
dimensionality of the mesh. If “material” data is not specified, it uses the “itetclr”
attribute to assign region or face classification. It also uses the “icr” keyword describing
the number of constraints on a node to interpret if the node is classified on a model
region, model face, model edge or a model vertex. The “itetclr” and “icr” keywords
are usually present in meshes generated by LAGRIT2.

int MESH BuildClassfn(Mesh ptr mesh): Build classification information for mesh
entities if only partial information is present. In other words, if the only data known
is the IDs of geometric model entities (“material regions”) of the highest level mesh
entities (faces or regions), then this procedure will build information about the type
of geometric model entities that the lower dimension entities are on. Faces will be
classified as being on a model face (external or interior) or inside model region. Edges
will be classified as being on a model edge, model face or in a model region. Vertices
will be classified as being on a model vertex, model edge, model face or in a model
region. If no classification data is associated with even the highest level entities, the
procedure will assume that all the highest level entities are classified on one model
entitiy of that dimension. If partial information is available for lower order entities,
this routine will not destroy that information. The procedure also tries to detect mesh
edges that should be classified on model edges based on the fact that the dihedral angle
between the boundary faces connected to the edge is smaller than some tolerance.

int MESH DelInterior(Mesh ptr mesh): Delete the interior of a mesh and retain
only its boundaries (including interior boundaries). For solid meshes, this results in
a surface mesh (i.e., all mesh regions, and mesh faces, edges and vertices classified on
model regions are deleted). For surface meshes, this results in curve mesh. For an edge
mesh, only the end vertices are retained (unlikely to be used this way). Undefined for
a vertex mesh.

1http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html
2http://lagrit.lanl.gov

12

void MESH WriteToFile(Mesh ptr mesh, const char *filename): Save a mesh
to a filename. The file is created if it does not exists. It is recommended that the
.mstk extension be used for MSTK mesh files. However, there is no such requirement.
The routine will write out the mesh and any attributes attached to the mesh except
attributes of the type POINTER.

void MESH ExportToFile(Mesh ptr mesh, const char *filname, const char *for-
mat, int natt, char **attnames): Export a mesh to an external file format. Cur-
rently, the only formats supported is the GMV file format (format string: “gmv”)
and X3D (format string: “flag”). Only integer and double attributes of the mesh are
exported to GMV files and no attributes are exported to X3D files.

void MESH ExportToGMV(Mesh ptr mesh, const char *filname, const char
*format, int natt, char **attnames): Export a mesh to a GMV file format.

void MESH ExportToFLAGX3D(Mesh ptr mesh, const char *filname, const
char *format, int natt, char **attnames): Export a mesh to the FLAG X3D
format.

void MESH ExportToFLAGX3D Par(Mesh ptr mesh, const char *filname, const
char *format, int natt, char **attnames, int *procids): Export a mesh to the
FLAG X3D format given a partitioned mesh. The owning processor for each element
is given in the array procids.

void MESH ExportToSTL(Mesh ptr mesh, const char *filname): Export a mesh
to the STL format (SURFACE MESHES ONLY!).

void MESH Tet2Hex(Mesh ptr tetmesh, Mesh ptr *hexmesh): Convert a tet
mesh to a hex mesh by splitting the tets - the quality of the resulting hex mesh is
usually not very good.

void MESH Renumber(Mesh ptr mesh): Renumber the entities of a mesh to avoid
gaps in entity IDs. Note that in the current implementation, renumbering mesh entities
can make removal of and searching for mesh entities much slower, so this must be
avoided as much as possible.

int MESH PartitionWithMetis(Mesh ptr mesh, int nparts, int **part): Parti-
tion a mesh with the METIS libraries. ’part’ is an array that contains the partition
number for each mesh face (surface meshes) or mesh region (volume meshes).

13

NOTE THAT MSTK HAS TO HAVE BEEN COMPILED USING THE
COMMAND ’make PAR=1’ AND THE CALLING APPLICATION MUST
LINK WITH THE METIS LIBRARY.

GModel ptr MESH GModel(Mesh ptr mesh): Return a handle to the underlying
geometric model. If there is no geometric model associated with the mesh, NULL
pointer is returned.

RepType MESH RepType(Mesh ptr mesh): Representation type currently being
used by the mesh.

char *MESH RepType(Mesh ptr mesh): Representation type currently being used
by the mesh returned as a 2-character string.

int MESH Num Vertices(Mesh ptr mesh): Number of vertices in the mesh.

int MESH Num Edges(Mesh ptr mesh): Number of edges in the mesh. For reduced
representations, this routine returns 0 since it is impractically expensive to count the
number of edges when they do not explicitly exist. Applications must find a way to
avoid using this routine for reduced representations.

int MESH Num Faces(Mesh ptr mesh): Number of faces in the mesh. For reduced
representations R1 or R2, this routine counts only the faces that are explicitly repre-
sented i.e. faces not connected to any mesh region. Therefore, a value of 0 will be
returned for the number of faces of a tetrahedral mesh with representation R1 or R2
but the correct number will be reported for a tetrahedral mesh in other representations.
Also, the correct number will be reported for the number of faces in a surface mesh in
representation R1 or R2. Therefore, this routine must be used carefully.

int MESH Num Regions(Mesh ptr mesh): Number of regions in the mesh.

MVertex ptr MESH Vertex(Mesh ptr mesh, int i): Return the i’th vertex in the
mesh. Returns NULL if i < 0 or i > number of mesh vertices.

14

MEdge ptr MESH Edge(Mesh ptr mesh, int i): Return the i’th edge in the mesh.
Returns NULL if i < 0 or i > number of mesh edges. Returns NULL for reduced
representations.

MFace ptr MESH Face(Mesh ptr mesh, int i): Return the i’th face in the mesh. Re-
turns NULL if i < 0 or i > number of mesh faces. Only faces explicitly represented in the
mesh are returned for reduced representation (See explanation for MESH Num Faces).

MRegion ptr MESH Region(Mesh ptr mesh, int i): Return the i’th region in the
mesh. Returns NULL if i < 0 or i > number of mesh region.

MVertex ptr MESH Next Vertex(Mesh ptr mesh, int *idx): Returns the next ver-
tex while iterating through the vertices of the mesh. See the routine List Next Entry
above for an explanation of how the iteration works. This routine is in general faster
than using the routine MESH Vertex.

MEdge ptr MESH Next Edge(Mesh ptr mesh, int *idx): Returns the next edge
while iterating through the edges of the mesh. See the routine List Next Entry above
for an explanation of how the iteration works. The routine always returns NULL for
reduced representations.

MFace ptr MESH Next Face(Mesh ptr mesh, int *idx): Returns the next face
while iterating through the faces of the mesh. See the routine List Next Entry above
for an explanation of how the iteration works. Only faces explicitly represented in the
mesh are returned for reduced representation (See explanation for MESH Num Faces).

MRegion ptr MESH Next Region(Mesh ptr mesh, int *idx): Returns the next re-
gion while iterating through the regions of the mesh. See the routine List Next Entry
above for an explanation of how the iteration works.

MVertex ptr MESH VertexFromID(Mesh ptr mesh, int id): Return mesh vertex
with given ID if it exists; return NULL otherwise.

MEdge ptr MESH EdgeFromID(Mesh ptr mesh, int id): Return mesh edge with
given ID if it exists; return NULL otherwise. This routine will return NULL for all
reduced representations.

15

MFace ptr MESH FaceFromID(Mesh ptr mesh, int i): Return mesh face with given
ID if it exists; return NULL otherwise. If faces are not explicitly represented in the
mesh, it will return NULL.

MRegion ptr MESH RegionFromID(Mesh ptr mesh, int id): Return mesh region
with given ID if it exists; return NULL otherwise.

int MESH Num Attribs(Mesh ptr mesh): Number of attributes associated with the
mesh.

MAttrib ptr MESH Attrib(Mesh ptr mesh, int i): Return the i’th attribute in the
mesh. Returns NULL if i < 0 or i > number of mesh attributes.

MAttrib ptr MESH Next Attrib(Mesh ptr mesh, int *index): Returns the next
attribute while iterating through the attributes of the mesh. See the routine List Next Entry
above for an explanation of how the iteration works.

MAttrib ptr MESH AttribByName(Mesh ptr mesh, const char *name): Return
a mesh attribute with given name if it exisists in the mesh. Returns NULL if mesh
has no such attribute.

void MESH Set GModel(Mesh ptr mesh, GModel ptr geom): Assign a geometric
model handle to the mesh.

void MESH Add Vertex(Mesh ptr mesh, MVertex ptr v): Add a vertex to the
mesh. It is assumed that the vertex and its coordinates set are properly defined.
Normally, one need not call this since MV New will add the vertex to the mesh. Use
this only if you know exactly what you are doing.

void MESH Add Edge(Mesh ptr mesh, MEdge ptr e): Add an edge to the mesh.
It is assumed that the edge is and its topology is defined. Normally, one need not call
this since ME New will add the edge to the mesh. Use this only if you know exactly
what you are doing.

16

void MESH Add Face(Mesh ptr mesh, MFace ptr f): Add a face to the mesh. It is
assumed that the face and its topology is properly defined. Normally, one need not call
this since MF New will add the face to the mesh. Use this only if you know exactly
what you are doing.

void MESH Add Region(Mesh ptr mesh, MRegion ptr r): Add a region to the
mesh. It is assumed that the region and its topology is properly defined. Normally,
one need not call this since MR New will add the region to the mesh. Use this only
if you know exactly what you are doing.

void MESH Rem Vertex(Mesh ptr mesh, MVertex ptr v): Remove vertex from
mesh. Vertex is not deleted and must be deleted afterward separately. Normally, one
need not call this since MV Delete will remove the vertex from the mesh. Use this
only if you know exactly what you are doing.

void MESH Rem Edge(Mesh ptr mesh, MEdge ptr e): Remove edge from mesh.
Edge is not deleted and must be deleted afterward separately. Normally, one need not
call this since ME Delete will remove the edge from the mesh. Use this only if you
know exactly what you are doing.

void MESH Rem Face(Mesh ptr mesh, MFace ptr f): Remove face from mesh.
Face is not deleted and must be deleted afterward separately. Normally, one need not
call this since MF Delete will remove the face from the mesh. Use this only if you
know exactly what you are doing.

void MESH Rem Region(Mesh ptr mesh, MRegion ptr r): Remove region from
mesh. Region is not deleted and must be deleted afterward separately. Normally, one
need not call this since MR Delete will remove the region from the mesh. Use this
only if you know exactly what you are doing.

void MESH Set AutoLock(Mesh ptr mesh, int autolock): If autolock is 1, all
volatile mesh entities created in reduced representations will be automatically locked
and cannot be removed by garbage cleaning procedures (They can still be removed
by explicitly calling a delete on them). If it 0, volatile mesh entities can be deleted
internally after a period of disuse.

int MESH AutoLock(Mesh ptr mesh): Return the autolock status for volatile entities
(See MESH Set AutoLock for details).

17

4.3 Mesh Vertex Object

MVertex ptr MV New(Mesh ptr mesh): Create a new vertex object. No geometric
or topological information is embedded in the vertex when it is created. The vertex
only knows which mesh it belongs to. The ID of the vertex is set by this function.

void MV Delete(MVertex ptr mvertex, int keep): Delete the vertex. If keep is 0,
the vertex is removed from the mesh and all topological and geometric information
embedded in the vertex is destroyed. If keep is 1, the vertex is marked as type
MDELVERTEX and removed from the mesh but the vertex is not destroyed.

NOTE: MV Delete AND ITS COUNTERPARTS WILL, IN GENERAL,
REMOVE AN ENTITY IN O(log(N)) TIME WHERE N IS THE TOTAL
NUMBER OF ENTITIES ADDED TO THE MESH SINCE THE START
OF THE PROGRAM. HOWEVER, IF THE MESH ENTITIES HAVE
NOT BEEN RENUUMBERED (EITHER USING MESH RENUMBER
OR EXPLICITLY USING MENT SET ID) OR THE MESH ENTITY LISTS
HAVE NOT BEEN COMPRESSED THEN THE REMOVAL TIME IS O(1)
WHICH IS CLEARLY MUCH SUPERIOR.

void MV Restore(MVertex ptr mvertex): Restore a deleted vertex. The vertex type
is restored from MDELVERTEX to MVERTEX and the vertex is added back to the
mesh.

void MV Set Coords(MVertex ptr mvertex, double *xyz): Set the coordinates of
the vertex.

void MV Set GEntity(MVertex ptr mvertex, GEntity ptr gent): Set the geomet-
ric model entity on which vertex is classified.

void MV Set GEntDim(MVertex ptr mvertex, int gdim): Set topological dimen-
sion of model entity on which vertex is classified.

void MV Set GEntID(MVertex ptr mvertex, int gid): Set ID of model entity on
which vertex is classified.

void MV Add AdjVertex(MVertex ptr mvertex, MVertex ptr adjvertex): Add
neighboring vertex, adjvertex, to ajdacent vertex list of vertex, mvertex.

18

void MV Rem AdjVertex(MVertex ptr mvertex, MVertex ptr adjvertex): Delete
neighboring vertex of given vertex.

void MV Set ID(MVertex ptr mvertex, int id): Explicitly set ID of a vertex and
overwrite the ID set by the MV New operator. Does not check for duplication of edge
IDs.

Mesh ptr MV Mesh(MVertex ptr mv): Returns the mesh that this vertex belongs
to.

int MV ID(MVertex ptr mvertex): Returns the ID of the vertex.

int MV GEntDim(MVertex ptr mvertex): Returns the dimension of the geometric
model entity that the vertex is classified on. Returns -1 if not known.

int MV GEntID(MVertex ptr mvertex): Returns the ID of the geometric model en-
tity that the vertex is classified on. Returns 0 if this information is not known.

GEntity ptr MV GEntity(MVertex ptr mvertex): Returns a pointer or handle to
the geometric model entity that the vertex is classified on. Returns NULL if this
information is not known.

void MV Coords(MVertex ptr mvertex, double *xyz): Returns the coordinates of
the vertex.

int MV Num AdjVertices(MVertex ptr mvertex): Returns the number of edge con-
nected neighboring vertices of vertex. Not efficient for all representations.

int MV Num Edges(MVertex ptr mvertex): Returns the number of edges connected
to the vertex.

int MV Num Faces(MVertex ptr mvertex): Returns the number of faces connected
to the vertex.

int MV Num Regions(MVertex ptr mvertex): Returns the number of regions con-
nected to the vertex

List ptr MV AdjVertices(MVertex ptr mvertex): List of adjacent or edge connected
neighboring vertices of vertex.

19

List ptr MV Edges(MVertex ptr mvertex): List of edges connected to the vertex.
The list returned by this operator must be deleted by the calling application
using List Delete.

List ptr MV Faces(MVertex ptr mvertex): List of faces connected to the vertex.
The list returned by this operator must be deleted by the calling application
using List Delete.

List ptr MV Regions(MVertex ptr mvertex): List of regions connected to the vertex.
The list returned by this operator must be deleted by the calling application
using List Delete.

20

4.4 Mesh Edge Object

MEdge ptr ME New(Mesh ptr mesh): Create a new edge object. No topological
information is embedded in the edge when it is created. The edge only knows which
mesh it belongs to. The ID of the edge is set by this function.

void ME Delete(MEdge ptr medge, int keep): Delete the edge. If keep is 0, the edge
is removed from the mesh and all topological and geometric information embedded in
the edge is destroyed. If keep is 1, the edge is marked as type MDELEDGE and
removed from the mesh but the edge is not destroyed. Also, the vertices of this edge
no longer point to this edge.

void ME Restore(MEdge ptr medge): Restore a temporarily deleted edge. The edge
type is restored from MDELEDGE to MEDGE and the edge is added back to the mesh.
The vertices of the edge once again point back to the edge.

void ME Set GEntity(MEdge ptr medge, GEntity ptr gent): Set the geometric
model entity on which the edge is classified.

void ME Set GEntDim(MEdge ptr medge, int gdim): Set the topological dimension
of model entity on which edge is classified.

void ME Set GEntID(MEdge ptr medge, int gid): Set ID of model entity on which
edge is classified.

void ME Set GInfo Auto(MEdge ptr medge): Derive the classification (GEntDim,
GEntID) of the mesh edge automatically (if possible) from the classification of its
vertices. If it is not possible to unambiguously get this information, the procedure
will keep the default information. THIS MAY GET WRONG OR INCOR-
RECT INFORMATION WHEN THERE IS AMBIGUOUS DATA. FOR
EXAMPLE, IF THE VERTICES OF A MESH EDGE ARE CLASSIFIED
ON TWO DIFFERENT MODEL VERTICES, IT IS NOT POSSIBLE TO
KNOW WHAT ENTITY THE MESH EDGE IS CLASSIFIED USING
JUST THE VERTEX INFORMATION.

void ME Set ID(MEdge ptr medge, int id): Explicitly set ID of an edge and overwrite
the ID set by the ME New function. Does not check for duplication of edge IDs.

21

void ME Set Vertex(MEdge ptr medge, int i, MVertex ptr vertex): Set the i’th
vertex of the edge. i can be 0 or 1.

void ME Replace Vertex(MEdge ptr medge, MVertex ptr vert, MVertex ptr
nuvert): Replace i’th vertex by new vertex.

Mesh ptr ME Mesh(MEdge ptr medge): Returns the mesh that this edge belongs to.

int ME ID(MEdge ptr medge): Returns the ID of the vertex. Returns -1 if not known.

int ME GEntDim(MEdge ptr medge): Returns the dimension of the geometric model
entity that the vertex is classified on. Returns -1 if not known.

int ME GEntID(MEdge ptr medge): Returns the ID of the geometric model entity
that the vertex is classified on. Returns 0 if this information is not known.

GEntity ptr ME GEntity(MEdge ptr medge): Returns a pointer or handle to the ge-
ometric model entity that the vertex is classified on. Returns NULL if this information
is not known.

int ME Num Faces(MEdge ptr medge): Returns the number of faces connected to
the edge.

int ME Num Regions(MEdge ptr medge): Returns the number of regions connected
to the edge.

MVertex ptr ME Vertex(MEdge ptr medge, int i): Returns the i’th vertex of the
edge. i=0 returns the first vertex and i=1 returns the second vertex.

MVertex ptr ME OppVertex(MEdge ptr medge, MVertex ptr ov): Return the
vertex opposite to given vertex in edge.

int ME UsesEntity(MEdge ptr medge, MEntity ptr mentity, int etype): Check
if edge uses given lower dimension entity, mentity. The dimension of the entity is
specified by the etype variable. For an edge, the only lower dimensional entity is a
vertex. If the edge uses the vertex, the function returns 1; otherwise it returns 0. If
any other type of entity is specified, the function returns 0.

22

List ptr ME Faces(MEdge ptr medge): Returns the set of faces using this edge. The
list returned by this operator must be deleted by the calling application
using List Delete.

List ptr ME Regions(MEdge ptr medge): Returns the set of regions using this edge.
The list returned by this operator must be deleted by the calling application
using List Delete.

MEdge ptr MVs CommonEdge(MVertex ptr v1, MVertex ptr v2): Return the
edge connecting vertices v1 and v2, if it exists. If such an edge does not exist, the
function returns 0.

double ME Len(MEdge ptr e): Return the length of the straight line connecting the
two vertices of the edge.

double ME LenSqr(MEdge ptr e): Return the square of the length of the straight line
connecting the two vertices of the edge.

void ME Vec(MEdge ptr e, double *evec): Return the vector going from the first
vertex of the edge to the second vertex of the edge.

int MEs AreSame(MEdge ptr e1, MEdge ptr e2): Applicable only to reduced rep-
resentations. Check if two edges described by only their vertices are the same. In a
reduced representation, edges are temporary objects described by their end vertices.
If two temporary edges are described by the same vertices, the edges are considered to
be the same.

void ME Lock(MEdge ptr e): Lock a volatile edge so that it cannot be deleted by
garbage cleaning procedures (It can still be deleted by ME Delete.

void ME UnLock(MEdge ptr e): Unlock a volatile edge so that it may be deleted freely
by garbage cleaning procedures.

23

4.5 Mesh Face Object

MFace ptr MF New(Mesh ptr mesh): Create a new face object. No topological in-
formation is embedded in the face when it is created. The face only knows which mesh
it belongs to. The ID of the face is set by this function.

void MF Delete(MFace ptr mface): Delete the face. If keep is 0, the face is removed
from the mesh and all topological and geometric information embedded in the face is
destroyed. If keep is 1, the face is marked as type MDELFACE and removed from
the mesh but the face is not destroyed. Also, the vertices/edges of this face no longer
point up to this face.

void MF Restore(MFace ptr mface): Restore a temporarily deleted face. The face
type is restored from MDELFACE to MFACE and the face is added back to the mesh.
The vertices/edges of the face once again point back to the face.

void MF Set GEntity(MFace ptr mface, GEntity ptr gent): Set the geometric
model entity on which the face is classified.

void MF Set GEntDim(MFace ptr mface, int gdim): Set the dimension of the ge-
ometric model entity on which the face is classified.

void MF Set GEntID(MFace ptr mface, int gid): Set the ID of the geometric model
entity on which the face is classified.

void MF Set GInfo Auto(MFace ptr mface): Derive the classification (GEntDim,
GEntID) of the mesh face automatically (if possible) from the classification of its
vertices or edges. If it is not possible to unambiguously get this information, the
procedure will keep the default information. THIS MAY GET WRONG OR
INCORRECT INFORMATION WHEN THERE IS AMBIGUOUS DATA.

void MF Set ID(MFace ptr mface, int id): Explicitly set ID of a face and overwrite
the ID set by the MF New operator. Does not check for duplication of face IDs.

void MF Set Edges(MFace ptr mface, int n, MEdge ptr *edges, int *dirs): Set
the edges of the face along with their directions. The ordered set of edge pointers and
their directions are passed in through arrays along with the number of edges. The
edges are assumed to be ordered clockwise around the face. If an edge direction is

24

along the clockwise direction of the face then the entry in the ’dirs’ array must be 1;
otherwise it must be 0. This function is relevant only for full representations in MSTK.

void MF Set Vertices(MFace ptr mface, int n, MVertex ptr *verts): Set the
vertices of the face. The ordered set of vertices (ccw around the face) is passed in
through an array along with the number of vertices. This routine will collect/build all
lower order topological information (edges, edge directions in the face) as needed by
the face.

void MF Replace Edges(MFace ptr mface, int nold, MEdge ptr *oldedges, int
nnu, MEdge ptr *nuedges): Replace a set of edges in the face with another set of
edges. The direction in which the new edges are to be used in the face are automatically
deduced. This function is relevant only for full representations in MSTK. The old and
new edge sets must be comprised of edges connected to each other and the end vertices
of the new set must match the end vertices of the new set.

void MF Replace Edges i(MFace ptr mface, int nold, int i, int nnu, MEdge ptr
*nuedges): Replace the nold edges in the face starting with the i’th edge and going
ccw around the face with a new set of edges. The directions in which the new edges
are used in the face are automatically deduced. This function is relevant only for full
representations in MSTK.

void MF Replace Vertex(MFace ptr mface, MVertex ptr mvertex, MVertex ptr
nuvertex): Replace a vertex in the face with another vertex. This function is relevant
only for reduced representations in MSTK.

void MF Replace Vertex i(MFace ptr mface, int i, MVertex ptr nuvertex): Re-
place the i’th vertex in the face with a new vertex. This function is relevant only for
reduced representations in MSTK.

void MF Insert Vertex(MFace ptr mface, MVertex ptr nuvertex, MVertex ptr
b4vertex): Insert a vertex in the face before b4vertex w.r.t. a ccw ordering of the
vertex faces.

void MF Insert Vertex i(MFace ptr mface, MVertex ptr nuvertex, int i): Insert
a new vertex before vertex i in the face w.r.t. a ccw ordering of vertices.

Mesh ptr MF Mesh(MFace ptr mf): Returns the mesh that this mesh belongs to.

25

int MF ID(MFace ptr mface): Returns the ID of the face. Returns 0 if not known.

int MF GEntDim(MFace ptr mface): Returns the dimensions of the geometric model
entity that the vertex is classified on. Returns -1 if not known.

int MF GEntID(MFace ptr mface): Returns the ID of the geometric model entity
that the vertex is classified on. Returns 0 if this information is not known.

GEntity ptr MF GEntity(MFace ptr mface): Returns a pointer or handle to the ge-
ometric model entity that the vertex is classified on. Returns NULL if this information
is not known.

int MF Num Vertices(MFace ptr mface): Returns the number of vertices of the face.

int MF Num Edges(MFace ptr mface): Returns the number of edges of the face.

int MF Num AdjFaces(MFace ptr mface): Returns the number of adjacent faces of
a face. This operator is relevant only in planar or surface meshes, i.e., for boundary
faces not connected to any regions.

List ptr MF Vertices(MFace ptr mface, int dir, MVertex ptr mvert): Return
the ordered set of the vertices of the face. The vertices are ordered in ccw direction
while looking down the face ’normal’, if ’dir’ is 1 and in the cw direction, if ’dir’ is
0. If ’mvert’ is specified, the vertex set is reordered so that it is the first vertex (This
argument will be added soon to the function. For now, omit this argument). The
behavior of this function can be illustrated using Figure 3. For the face shown in the
figure, a vertex set with ccw ordering or ’dir’ = 1 is V0, V1, V2, V3 and a vertex set with
cw ordering or ’dir’ = 0 is V0, V3, V2, V1. A vertex set with ccw ordering starting with
vertex V2 is V2, V3, V0, V1. The list returned by this operator must be deleted
by the calling application using List Delete.

List ptr MF Edges(MFace ptr mface, int dir, MVertex ptr mvert): Return the
ordered set of edges of the face. The edges are ordered in the ccw while looking down
the face ’normal’ if dir is 1 and in the cw if dir is 0. If ’mvert’ is specified, the edge set
is reordered so that the first edge in the set contains this vertex. More precisely, if ’dir’
is 1, and the first edge is ’e’ used in the face in direction ’d’, then ME Vertex(e,!d) =
mvert. With reference to Figure 3, the edges of the face in the ccw direction or ’dir’ =
1 are E0, E1, E2, E3 and in the opposite dir are E3, E2, E1, E0. If ’mvert’ or the starting
vertex is specified as V2, the edge set in ccw direction or ’dir’ = 1 is E2, E3, E0, E1

26

Side 1

side 0

Figure 3: Face definition

and in the opposite direction is E1, E0, E3, E2. The list returned by this operator
must be deleted by the calling application using List Delete.

List ptr MF AdjFaces(MFace ptr mface): List of adacent faces of a face. This oper-
ator is relevant only in planar or surface surface meshes, i.e., for boundary faces not
connected to any regions. The list returned by this operator must be deleted
by the calling application using List Delete.

int MF EdgeDir(MFace ptr mface, MEdge ptr medge): Returns the direction in
which the face uses the given edge. If the faces use the edge in the positive direction,
the function returns 1; otherwise it returns 0.

int MF EdgeDir i(MFace ptr mface, int i): Returns the direction in which the face
uses its i’th edge. If the face uses the edge in the positive direction the function returns
1; otherwise it returns 0;

List ptr MF Regions(MFace ptr mface): Return the set of regions connected to the
face. If the face is not used by any regions, the function returns NULL to indicate that
the set is empty. If not the set may contain one or two regions. The list returned by
this operator must be deleted by the calling application using List Delete.

27

MRegion ptr MF Region(MFace ptr mface, int side): Returns the region on the
specified side of the face. The positive side of the face (side = 1) is the side towards
which the face normal points. The negative side of the face (side = 0) is the opposite
side.

int MF UsesEntity(MFace ptr mface, MEntity ptr mentity, int type): Check if
the face uses the given lower dimension entity, ’mentity’. The type of the entity is
specified by the ’etype’ variable. For a face, a lower dimensional entity can be a vertex
or an edge. If the face uses the vertex or the edge, the function returns 1; otherwise it
returns 0. If any other type of entity is specified, the function returns 0.

MFace ptr MVs CommonFace(int nv, MVertex ptr *fverts): Return a face con-
nected to all the given mesh vertices. Returns NULL if no such face exists.

MFace ptr MEs CommonFace(int ne, MEdge ptr *fedges): Return a face con-
nected to all the given mesh edges. Returns NULL if no such face exists.

int MFs AreSame(MFace ptr f1, MFace ptr f2): Applicable only to reduced repre-
sentations. Check if two faces described by vertices are equivalent. For example, a face
described by vertices {1, 2, 3} is equivalent to faces described by vertices {1, 3, 2} and
{3, 1, 2}.

void MF Coords(MFace ptr mface, int *n, double (*xyz)[3], int dir): Returns
the coordinates of the face vertices in an array along with the number of vertices.

void MF Lock(MFace ptr f): Lock a volatile face so that it cannot be deleted by
garbage cleaning procedures (It can still be deleted by MF Delete.

void MF UnLock(MFace ptr f): Unlock a volatile face so that it may be deleted freely
by garbage cleaning procedures.

28

4.6 Mesh Region Object

MRegion ptr MR New(Mesh ptr mesh): Create a new region object. No topological
information is embedded in the region when it is created. The region only knows which
mesh it belongs to. The ID of the region is set by this function.

void MR Delete(MRegion ptr mregion, int keep): Delete the region. Deletes all
topological information embedded in the region. If keep is 0, the region is removed
from the mesh and all topological and geometric information embedded in the region
is destroyed. If keep is 1, the region is marked as type MDELREGION and removed
from the mesh but the region is not destroyed. Also, the vertices, edges and faces of
this region no longer point up to this region.

void MR Restore(MRegion ptr mregion): Restore a temporarily deleted region. The
region type is restored from MDELREGION to MREGION and the region is added
back to the mesh. The vertices, edges and faces of the region once again point back to
the region.

void MR Set GEntity(MRegion ptr mregion, GEntity ptr gent): Set the geomet-
ric model entity on which the region is classified.

void MR Set GEntDim(MRegion ptr mregion, int gdim): Set the dimension of the
geometric model entity on which the region is classified.

void MR Set GEntID(MRegion ptr mregion, int gid): Set the ID of the geometric
model entity on which the region is classified.

void MR Set GInfo Auto(MRegion ptr mregion): Derive the classification (GEntDim,
GEntID) of the mesh region automatically (if possible) from the classification of its ver-
tices or faces. If it is not possible to unambiguously get this information, the procedure
will keep the default information. THIS MAY GET WRONG OR INCORRECT
INFORMATION WHEN THERE IS AMBIGUOUS DATA.

void MR Set ID(MRegion ptr mregion, int id): Explicitly set ID of a region and
overwrite the ID set by the MR New function. Does not check for duplication of
region IDs.

void MR Set Faces(MRegion ptr mregion, int nf, MFace ptr *mfaces, int *dirs):
Set the faces of the region along with their directions. The unordered set of faces and

29

their directions are passed in through arrays along with the number of faces. If the
normal of the face points out of the region, the associated direction to be passed in is
1; otherwise it is 0. This function is only relevant for full representations in MSTK.

void MR Set Vertices(MRegion ptr mregion, int nv, MVertex ptr *mvertices,
int nf, int **rfv template): Set the vertices of the region. This routine will col-
lect/build all lower order topological information (edges, edge directions in the face) as
needed by the face. For standard elements, the vertices must be ordered as indicated
in Appendix A, while nf can be 0 and rfv template can be NULL. For non-standard
elements, nf is the number of faces of the polyhedron and rfv template gives the
vertices used in each face. More precisely, rfv template has nfv pointers to integer
array i. The first entry of each rfv template[i] represents the number of vertices in
that face and the remaining entries represent the list of vertices of the face listed so
that the face defined by them points out of the region.

void MR Replace Face(MRegion ptr mregion, MFace ptr mface, MFace ptr nu-
face, int dir): Replace a face of the region with another face. The direction in which
the new face is used in the region must also be supplied. This function is only relevant
for full representations in MSTK.

void MR Replace Vertex(MRegion ptr mregion, MVertex ptr mvertex, MVer-
tex ptr nuvertex): Replace a vertex of a region with another vertex. This function
is relevant only for reduced representations in MSTK.

void MR Replace Face i(MRegion ptr mregion, int i, MFace ptr mface, int dir):
Replace the i’th face in the region with another face.The direction in which the new
face is used in the region must also be supplied. This function is only relevant for full
representations in MSTK.

void MR Replace Vertex i(MRegion ptr mregion, int i, MVertex ptr mvertex):
Replace the i’th vertex of the region with another vertex. This function is only relevant
for reduced representations in MSTK.

Mesh ptr MR Mesh(MRegion ptr mregion): Returns the mesh that the region be-
longs to.

int MR ID(MRegion ptr mregion): Returns the ID of the region. Returns 0 if not
known.

30

int MR GEntDim(MRegion ptr mregion): Returns the dimension of the geometric
model entity the region is classified on. Always returns 3 since a mesh region can be
classified only on a model region.

int MR GEntID(MRegion ptr mregion): Returns the ID of the geometric model
entity that the region is classified on. Returns 0 if not known.

GEntity ptr MR GEntity(MRegion ptr mregion): Returns a pointer or handle to
the geometric model entity that the vertex is classified on. Returns NULL if this
information is not known.

int MR Num Vertices(MRegion ptr mregion): Returns the number of vertices of a
region.

int MR Num Edges(MRegion ptr mregion): Returns the number of edges of a region.

int MR Num Faces(MRegion ptr mregion): Returns the number of faces of a region.

int MR Num AdjRegions(MRegion ptr mregion): Returns the number of adjacent
regions of a region, i.e., regions sharing a face with this region.

List ptr MR Vertices(MRegion ptr mregion): Returns the set of vertices of a region.
For standard elements the vertices are ordered as indicated in Appendix A. For non-
standard elements the set is unordered. The list returned by this operator must
be deleted by the calling application using List Delete.

List ptr MR Edges(MRegion ptr mregion): Return the unordered set of edges of a
region. The list returned by this operator must be deleted by the calling
application using List Delete.

List ptr MR Faces(MRegion ptr mregion): Returns the set of faces of a region. The
list returned by this operator must be deleted by the calling application
using List Delete.

List ptr MR AdjRegions(MRegion ptr mregion): Returns the set of adjacent regions
of a region, i.e., regions sharing a face with this region. The set is not ordered.

31

int MR FaceDir(MRegion ptr mregion, MFace ptr mface): Returns the direction
in which the region uses the given face. Returns 1 if the face normal points out of the
region and returns 0 if the face normal points into the region.

int MR FaceDir i(MRegion ptr mregion, int i): Returns the direction in which the
region uses the i’th face. Returns 1 if the face normal points out of the region and
returns 0 if the face normal points into the region.

int MR UsesEntity(MRegion ptr mregion, MEntity ptr ment, int type): Check
if the region uses the given lower dimension entity, ’mentity’. The type of the entity is

void MR Coords(MRegion ptr mregion, int *n, double (*xyz)[3]): Returns the
coordinates of the region vertices in an array along with the number of vertices. For
standard elements, the ordering is as given in Appendix A. For non-standard elements,
the ordering is arbitrary.

32

4.7 Generic Entity Object

The following functions operate on generic mesh entities of type MEntity ptr. This implies
that variables of type MVertex ptr, MEdge ptr, MFace ptr, MRegion ptr can all be passed in
place of MEntity ptr variables in the following functions.

int MEnt ID(MEntity ptr mentity): Returns the ID of a generic entity.

int MEnt Dim(MEntity ptr mentity): Returns the topological dimension or type of
generic entity.

int MEnt OrigDim(MEntity ptr mentity): Returns the original topological dimension
or type of generic entity before it was temporarily deleted.

int MEnt IsVolatile(MEntity ptr) mentity): Is the entity a temporary (volatile) en-
tity in a reduced representation or an explicitly represented persistent entity. For
example, this query will return 1 on any edge in a reduced representation.

Mesh ptr MEnt Mesh(MEntity ptr mentity): Returns the mesh that the entity be-
longs to.

int MEnt GEntDim(MEntity ptr mentity): Returns the dimension of the geometric
model entity that the entity is classified on.

GEntity ptr MEnt GEntity(MEntity ptr mentity): Returns a pointer or handle to
geometric model entity that the entity is classified on.

void MEnt Delete(MEntity ptr mentity, int keep): Delete a generic mesh entity.
If keep is 0, the entity is removed from the mesh and all topological and geometric
information embedded in the entity is destroyed. If keep is 1, the region is marked as
deleted and removed from the mesh but the entity is not destroyed. Also, lower order
entities in the mesh no longer point up to this entity.

void MEnt Set AttVal(MEntity ptr ent, MAttrib ptr attrib, int ival, double
lval, void *pval): Set the value of an attribute for given mesh entity. Depending on
the attribute type, different arguments of this function are relevant. If the attribute
type is:

• INT – specify the integer value in ival,

33

• DOUBLE – specify the the real value in rval,

• VECTOR – specify a pointer to an array of doubles in pval3 - the number of
doubles should equal the number components specified in the definition of the
VECTOR attribute,

• TENSOR – specify a pointer to an array of doubles in pval - the number of
doubles should equal the number of components specified in the definition of the
TENSOR attribute,

• POINTER – specify the pointer value in pval.

void MEnt Rem AttVal(MEntity ptr ent, MAttrib ptr mattrib: Clear the value
of the given attribute from the entity.

int MEnt Get AttVal(MEntity ptr ent, MAttrib ptr int *ival, double *rval,
double **pval): Get the value of an attribute from an entity. Depending on the
attribute type, different arguments of this function are relevant. If the attribute type
is:

• INT – ival contains the integer value,

• DOUBLE – rval contains the real value,

• VECTOR – pval contains a pointer to an array of doubles,

• TENSOR – pval contains a pointer to an array of doubles,

• POINTER – pval conntains the pointer value.

void MEnt Rem AllAttVals(MEntity ptr): Remove all attribute values attached to
an entity.

3Remember to not free the array specified in pval without telling the attribute system because MSTK
stores the pointer to the array directly and does not make a copy of the array.

34

4.8 Mesh Attributes

MAttrib ptr MAttrib New(Mesh ptr mesh, const char *att name, MAttType
att type, MType entdim, <int ncomponents>): Define a new mesh attribute.
Along with the mesh to which this attribute is assigned (mesh) and the name of the
attribute (att name), the type of the attribute (att type) must be specified as INT,
DOUBLE, VECTOR, TENSOR or POINTER. Also, the dimension of the entity
for which the attribute value can be set must be specified as MVERTEX, MEDGE,
MFACE, MREGION or MALLTYPE. The last argument ncomponents is an op-
tional argument for attributes of type INT, DOUBLE or POINTER but is required
for attributes of type VECTOR and TENSOR.

char *MAttrib Get Name(MAttrib ptr attrib, char *att name): Get the name of
the given attribute.

MAttType MAttrib Get Type(MAttrib ptr attrib): Get the type of the attribute
(Can return INT, DOUBLE, PVAL).

MType MAttrib Get EntDim(MAttrib ptr attrib): Get the dimension (or type) of
entity attribute can be asssigned to. Can be MVERTEX, MEDGE, MFACE,
MREGION or MALLTYPE.

void MAttrib Delete(MAttrib ptr attrib): Delete an attribute.

35

4.9 Entity Marks

Entity marks or markers are a way of tagging entities. Such functionality is useful in algo-
rithms which must keep track of processed entities to avoid duplication of work. An example
of such an operation is creating a union of entity sets while extracting upward adjacency
information such as the regions connected to an edge. Use of entity marks avoids calling
List ChknAdd (search through the list and add item if it is not there) or using attributes
to tag entities with 0 or 1. As a result it is much more efficient than either option.

int MSTK GetMarker(): Returns a unique marker ID which may be used to tag entities.

void MEnt Mark(MEntity ptr ent, int mkr): Mark an entity with the given marker
’mkr’.

int MEnt IsMarked(MEntity ptr ent, int mkr): Check if an entity is marked with
the given marker ’mkr’.

void MEnt Unmark(MEntity ptr ent, int mkr): Unmark an entity with respect to
the given marker ’mkr’

void List Mark(List ptr list, int mkr): Mark a set of entities with given marker.

void List Unmark(List ptr list, int mkr): Unmark a set of entities with respect to
the given marker.

void MSTK FreeMarker(int mkr): Release the marker ID given by MSTK GetMarker()
so that it can be reused. Care must be taken to unmark all entities marked with this
marker ID before releasing it. If not, subsequent operations with reassigned marker
will find a tag on some entities and mistake them for being processed.

An example use of entity marks is given below:

36

/* Code to get the faces of a vertex */

/* NOTE: This code is for illustration of entity marks only. */

/* This functionality is already available through MV_Faces */

vedges = MV_Edges(v); /* Edges of vertex */

mkid = MSTK_GetMarker(); /* Get a new marker */

vfaces = List_New(10); /* Initialize list of faces cncted to v */

idx = 0;

while ((ve = List_Next_Entry(vedges,&idx))) { /* For each edge */

efaces = ME_Faces(ve); /* Get faces of edge */

idx1 = 0;

while ((ef = List_Next_Entry(efaces,&idx1))) {

if (!MEnt_IsMarked(ef,mkid)) { /* Is the face already in list? */

List_Add(vfaces,ef); /* No? Add it to the list and */

MEnt_Mark(ef,mkid); /* mark it as being in the list */

}

}

List_Delete(efaces);

}

List_Delete(vedges);

List_Unmark(vfaces,mkid); /* Unmark all the marked faces */

MSTK_FreeMarker(mkid); /* Very important to free the marker!! */

/* otherwise, we’ll run out of markers */

37

4.10 Mesh Modification

int ME Swap2D(MEdge ptr e, MEdge ptr *enew, MFace ptr fnew[2]): Swap
an edge in a triangular mesh. No checks are performed for topological or geometric
validity.

MVertex ptr MVs Merge(MVertex ptr v1, MVertex ptr v2): Merge two vertices,
v1 and v2, and return the retained vertex. By default, v1 is retained.

MFace ptr MFs Join(MFace ptr f1, MFace ptr f2, MEdge ptr e): Join two faces
along common edge and create new face by eliminating the common edge as shown in
Figure 4. If ’f1’ has ’n1’ edges and ’f2’ has ’n2’ edges, then the new face has (’n1’+’n2’-
2) edges.

(a) (b)

Figure 4: Joining two faces (a) Two faces F1 and F2 sharing a common edge (b) New
pentagonal face Fnew created by eliminating the common edge.

38

4.11 Utilities

void MSTK Report(char *module, char *message, ErrType severity): Error
handler for MSTK. ’module’ is the name of the function in which the error occurs.
’message’ is the error message and is recommended to be less than 1024 characters in
length. ’severity’ is an error code and can be MESSG, WARN, ERROR or FATAL. If
the error code is FATAL, the program will quit after printing the error. If the same
message is repeated successively, then the message is printed only the first time.

void List PrintID(List ptr l): Debugging utility to print the IDs of the entities in a set.

void MV Print(MVertex ptr v, int lev): Debugging utility to print information about
a mesh vertex, v. The argument lev controls the level of detail of the information
printed. lev = 0 prints the minimum information, i.e., vertex pointer, its ID and its
coordinates. If lev = 1, the function prints classification information for the vertex
(if available), i.e., ID and dimension of the model entity that the vertex is on. If lev
> 1, then upward detailed adjacency information is also printed for the vertex, i.e.,
information is printed about the edges, faces and regions connected to the vertex.

void ME Print(MEdge ptr e, int lev): Debugging utility to print information about a
mesh edge, e. The argument lev controls the level of detail of the information printed.
lev = 0 prints the minimum information, i.e., edge pointer, its ID and the IDs of its
two vertices. If lev = 1, the function prints classification information for the edge (if
available), i.e., ID and dimension of the model entity that the edge is on. Also, more
detailed vertex information printed in this case. If lev > 1, the function prints detailed
upward adjacency information for the edge, i.e., information is printed about the faces
and regions connected to the edge.

void MF Print(MFace ptr f, int lev): Debugging utility to print information about a
mesh face, f. The argument lev controls the level of detail of the information printed.
lev = 0 prints the minimum information, i.e., the face pointer and its ID. If lev =
1, the function prints classification information for the edge (if available), i.e., ID and
dimension of the model entity that the face is on. Also, a signed list of the edges of
the face is printed. If lev > 1, the function prints detailed downward and upward
adjacency information for the face, i.e., information is printed about the edges and
vertices of the face, and about the regions connected to the face.

void MR Print(MRegion ptr r, int lev): Debugging utility to print information about
a mesh region, r. The argument lev controls the level of detail of the information

39

printed. lev = 0 prints the minimum information, i.e., region pointer and its ID. If lev
= 1, the function prints classification information for the region (if available), i.e., ID
of the model entity that the region is on. Also, a signed list of the faces of the region
is printed. If lev > 1, the function prints detailed downward adjacency information
for the region, i.e., information is printed about the faces, edges and vertices forming
the region.

40

A Conventions for Vertex, Edge Numbering in Stan-

dard Region Types

(a)
Tetrahedron

(b)
Pyramid

(c)
Triangular Prism

(d)
Hexahedron

41

B MSTK File Format

B.1 MSTK ASCII File Format

This is a comment
The string “MSTK” and File version number (1.0)

MSTK Ver

char *reptype - Type of representation
int NV, NE, NF, NR - Number of vertices, edges, face, regions

RepType NV NE NF NR

VERTEX INFO
Each record has
double X,Y,Z Coordinates
int Mdim - Topological type or dimension of model entity that
the vertex is on
int Mid - ID of model entity the vertex is on
Mdim and Mid can be -1 and 0 resp. if model info. is absent

X Coord Y Coord Z Coord Mdim Mid
X Coord Y Coord Z Coord Mdim Mid
. . .
Repeated NV times

EDGE INFO - present only if NE 6= 0
Keyword ’edges’ followed by edge records # Each edge record has
int Vid 1, Vid 2 - IDs of first, second vertex of edge
int Mdim, Mid

edges Vid 1 Vid 2 Mdim Mid
Vid 1 Vid 2 Mdim Mid
. . .
Repeated NEdges times

42

FACE INFO - present only if NF 6= 0
Keyword ’faces’ # char *FLtype: Keyword for lower order entity describing

faces
Values: Vertex, Edge (case insensitive), e.g. VeRteX or EDGE

faces FLtype

If face described by vertices, then each face record has
int NFV - Number of face vertices
int Vid 1 - ID of first vertex of face
int Vid 2 - ID of second vertex of face
. . .
int Vid 1 - ID of NFV’th vertex of face
int Mdim, Mid

NFV Vid 1 Vid 2 ... Vid NFV Mdim Mid
NFV Vid 1 Vid 2 ... Vid NFV Mdim Mid
. . .
Repeated NFaces times

If face described by edges, then each face record has
int NFE - Number of face edges
int ±Eid 1 - signed ID of first edge of face
int ±Eid 2 - signed ID of second edge of face
. . .
int ±Eid NFE - signed ID of NFE’th edge of face
int Mdim, Mid
#
if sign of edge is +, face uses edge in direction it was defined
if sign of edge is -, face uses edge in opposite direction

NFE ±Eid 1 ±Eid 2 ... ±Eid NFE Mdim Mid
NFE ±Eid 1 ±Eid 2 ... ±Eid NFE Mdim Mid
. . .
Repeated NFaces times

REGION INFO - present only if NR 6= 0
Keyword ’regions’ # char *RLtype - keyword for lower order entity describing

region

43

Values: Vertex, Face (case insensitive), e.g. VERtex or faCE

regions RLtype

if region described by vertices, then each region record has
int NRV - Number of region vertices
int Vid 1 - ID of first vertex of region
int Vid 2 - ID of second vertex of region
. . .
int Vid NFE - ID of NRV’th vertex of region
int Mid, (NOTE: Mdim is not specified, since it has to be 3)

NRV Vid 1 Vid 2 ... Vid NRV Mid
NRV Vid 1 Vid 2 ... Vid NRV Mid
. . .
Repeat NR times

if region described by faces, then each region record has
int NRF - Number of region faces
int Fid 1 - signed ID of first face of region
int Fid 2 - signed ID of second face of region
. . .
int Fid NRF - signed ID of NRF’th face of region
int Mdim, Mid
#
if sign of face is +, face normal points out of region
if sign of edge is -, face normal points into region

NRF ±Fid 1 ±Fid 2 ... ±Fid NRF Mid
NRF ±Fid 1 ±Fid 2 ... ±Fid NRF Mid
. . .
Repeated NR times

ATTRIBUTES
#
char *Attrib name 1 - Name of first attribute
int Attrib type 1 - Type of attribute (INT, DOUBLE, VECTOR, TENSOR
int Attrib len 1 - 0 (scalars), number of components (vectors), number of com-

ponents (tensors)

44

char *Attrib ent 1 - Type of mesh entity attribute is applicable to (VERTEX,
EDGE, FACE, REGION, ALLTYPES)

int Nent - Number entities for which this attribute is specified - Useful if
an attribute is to be specified for only a small subset of mesh entities, e.g.
boundary conditions

Entity dim 1 Entity ID 1 Attrib components
Entity dim 2 Entity ID 2 Attrib components
Entity dim 3 Entity ID 3 Attrib components
.
.
.
Entity dim n Entity ID n Attrib components

.

.

.
char *Attrib name N - Name of first attribute
int Attrib type N - Type of attribute (INT, DOUBLE, VECTOR, TENSOR)
int Attrib len N - 0 (scalars), number of components (vectors), number of

components (tensors)
char *Attrib ent N - Type of mesh entity attribute is applicable to (VERTEX,

EDGE, FACE, REGION, ALLTYPES)

int Nent - Number entities for which this attribute is specified
Entity dim 1 Entity ID 1 Attrib components
Entity dim 2 Entity ID 2 Attrib components
Entity dim 3 Entity ID 3 Attrib components
.
.
.
Entity dim n Entity ID n Attrib components

45

C Example Mesh and Files

In this section we show a simple square geometric model and an example 2D mesh of that
model comprised of triangles, quads (convex and non-convex) and polygons. Assume that the
mesh vertices have a velocity associated with them and mesh faces have a symmetric second-
order diffusivity tensor associated with them. We then present the MSTK files describing
the mesh in the F1 and R1 formats.

GV2

GV3
GV4

GV1

GE1

GE2GE4

GE3

GF1

V1 V2 V3 V4

V18

V13

V15
V7V17V14

V5

V9

V10
V11

V16

V6

V12V8

E1 E2 E3

E4E5

E18

E11

E16

E27

E20

E6

E15

E7

E12

E8

E9

E21

E29

E19
E26

E17

E13

E31

E25
E24

E30
E23

E10

E22

E14

E28
F1

F14

F7

F8
F12

F9F3

F4

F2

F13

F10

F6

F11

F5

Figure 5: Geometric model and a two-dimensional mesh of mixed elements of the model.

46

File in F1 format:

MSTK 1.0

F1 18 31 14 0

vertices

0.00 0.00 0.00 0 1

0.33 0.00 0.00 1 1

0.66 0.00 0.00 1 1

1.00 0.00 0.00 0 2

0.00 0.33 0.00 1 4

0.66 0.66 0.00 2 1

0.66 1.00 0.00 1 3

0.16 0.84 0.00 2 1

0.00 0.66 0.00 1 4

0.16 0.33 0.00 2 1

0.50 0.33 0.00 2 1

0.40 0.84 0.00 2 1

1.00 0.66 0.00 1 2

0.00 1.00 0.00 0 4

1.00 1.00 0.00 0 3

0.66 0.50 0.00 2 1

0.33 1.00 0.00 1 3

1.00 0.33 0.00 1 2

edges

2 1 1 1

2 3 1 1

3 4 1 1

4 18 1 2

2 11 2 1

15 7 1 3

14 8 2 1

18 16 2 1

12 16 2 1

10 5 2 1

11 16 2 1

15 13 1 2

14 17 1 3

17 7 1 3

47

8 9 2 1

18 13 1 2

14 9 1 4

10 11 2 1

10 2 2 1

9 10 2 1

16 6 2 1

6 13 2 1

7 6 2 1

17 12 2 1

8 17 2 1

3 11 2 1

11 18 2 1

1 5 1 4

5 9 1 4

7 12 2 1

8 12 2 1

faces edge

4 3 4 -27 -26 2 1

6 18 11 -9 -31 15 20 2 1

3 25 -13 7 2 1

3 31 -24 -25 2 1

3 2 26 -5 2 1

4 -28 -1 -19 10 2 1

4 16 -22 -21 -8 2 1

4 22 -12 6 23 2 1

3 -30 -14 24 2 1

3 -10 -20 -29 2 1

3 19 5 -18 2 1

4 9 21 -23 30 2 1

3 -15 -7 17 2 1

3 27 8 -11 2 1

attributes

velocity

VECTOR

3

MVERTEX

18

48

0 1 0.0 0.0 0.0

0 2 3.3 0.0 0.0

0 3 6.6 0.0 0.0

0 4 10.0 0.0 0.0

0 5 0.0 3.3 0.0

0 6 6.6 6.6 0.0

0 7 6.6 10.0 0.0

0 8 1.6 8.4 0.0

0 9 0.0 6.6 0.0

0 10 1.6 3.3 0.0

0 11 5.0 3.3 0.0

0 12 4.0 6.6 0.0

0 13 10.0 6.6 0.0

0 14 0.0 10.0 0.0

0 15 10.0 10.0 0.0

0 16 6.6 5.0 0.0

0 17 3.3 10.0 0.0

0 18 10.0 3.3 0.0

diffusity

TENSOR

3

MFACE

14

2 1 1.0 10.0 2.0

2 2 1.0 10.0 2.0

2 3 1.0 10.0 2.0

2 4 1.0 10.0 2.0

2 5 1.0 10.0 2.0

2 6 1.0 10.0 2.0

2 7 1.0 10.0 2.0

2 8 1.0 10.0 2.0

2 9 1.0 10.0 2.0

2 10 1.0 10.0 2.0

2 11 1.0 10.0 2.0

2 12 1.0 10.0 2.0

2 13 1.0 10.0 2.0

2 14 1.0 10.0 2.0

49

File in R1 format:

MSTK 1.0

R1 18 0 14 0

vertices

0.00 0.00 0.00 0 1

0.33 0.00 0.00 1 1

0.66 0.00 0.00 1 1

1.00 0.00 0.00 0 2

0.00 0.33 0.00 1 4

0.66 0.66 0.00 2 1

0.66 1.00 0.00 1 3

0.16 0.84 0.00 2 1

0.00 0.66 0.00 1 4

0.16 0.33 0.00 2 1

0.50 0.33 0.00 2 1

0.40 0.84 0.00 2 1

1.00 0.66 0.00 1 2

0.00 1.00 0.00 0 4

1.00 1.00 0.00 0 3

0.66 0.50 0.00 2 1

0.33 1.00 0.00 1 3

1.00 0.33 0.00 1 2

faces vertex

4 3 4 18 11 2 1

6 9 10 11 16 12 8 2 1

3 14 8 17 2 1

3 8 12 17 2 1

3 2 3 11 2 1

4 1 2 10 5 2 1

4 6 16 18 13 2 1

4 6 13 15 7 2 1

3 7 17 12 2 1

3 5 10 9 2 1

3 2 11 10 2 1

4 12 16 6 7 2 1

3 9 8 14 2 1

3 11 18 16 2 1

50

attributes

velocity

VECTOR

3

MVERTEX

18

0 1 0.0 0.0 0.0

0 2 3.3 0.0 0.0

0 3 6.6 0.0 0.0

0 4 10.0 0.0 0.0

0 5 0.0 3.3 0.0

0 6 6.6 6.6 0.0

0 7 6.6 10.0 0.0

0 8 1.6 8.4 0.0

0 9 0.0 6.6 0.0

0 10 1.6 3.3 0.0

0 11 5.0 3.3 0.0

0 12 4.0 6.6 0.0

0 13 10.0 6.6 0.0

0 14 0.0 10.0 0.0

0 15 10.0 10.0 0.0

0 16 6.6 5.0 0.0

0 17 3.3 10.0 0.0

0 18 10.0 3.3 0.0

diffusity

TENSOR

3

MFACE

14

2 1 1.0 10.0 2.0

2 2 1.0 10.0 2.0

2 3 1.0 10.0 2.0

2 4 1.0 10.0 2.0

2 5 1.0 10.0 2.0

2 6 1.0 10.0 2.0

2 7 1.0 10.0 2.0

2 8 1.0 10.0 2.0

2 9 1.0 10.0 2.0

51

2 10 1.0 10.0 2.0

2 11 1.0 10.0 2.0

2 12 1.0 10.0 2.0

2 13 1.0 10.0 2.0

2 14 1.0 10.0 2.0

D Example program

NOTE: This program is included in the distribution.

#include <stdio.h>

#include <stdlib.h>

#include "MSTK.h"

#include "test.h"

int main(int argc, char *argv[]) {

int i, idx, idx2, ok, edir, nv, ne;

double xyz[3];

char meshname[256];

Mesh_ptr mesh;

MVertex_ptr v;

MEdge_ptr e;

MFace_ptr f;

GEntity_ptr gent;

List_ptr fedges;

if (argc == 1) {

fprintf(stderr,"Usage: %s meshfilename (without .mstk extension)\n",argv[0]);

exit(-1);

}

/* Initialize MSTK - Always do this even if it does

not seem to matter in this version of MSTK */

MSTK_Init();

52

/* Load the mesh */

strcpy(meshname,argv[1]);

strcat(meshname,".mstk");

mesh = MESH_New(UNKNOWN_REP);

ok = MESH_InitFromFile(mesh,meshname);

if (!ok) {

fprintf(stderr,"Cannot find input file %s\n\n\n",meshname);

exit(-1);

}

/* Print some info about the mesh */

nv = MESH_Num_Vertices(mesh);

for (i = 0; i < nv; i++) {

v = MESH_Vertex(mesh,i);

/* Basic info */

printf("\n");

printf("Vertex: 0x%-x ID: %-d ",v,MV_ID(v));

/* Classification w.r.t. geometric model */

if (MV_GEntDim(v) == -1)

fprintf(stderr,"Unknown Classification\n");

else {

printf("GEntID: %-d GEntDim: %-d\n",MV_GEntID(v),MV_GEntDim(v));

if ((gent = MV_GEntity(v)))

printf("Model entity pointer: 0x%-x\n",gent);

}

/* Coordinates */

MV_Coords(v,xyz);

printf("Coords: %16.8lf %16.8lf %16.8lf\n",xyz[0],xyz[1],xyz[2]);

}

53

idx = 0;

while (f = MESH_Next_Face(mesh,&idx)) {

/* Basic info */

printf("\n");

printf("Face: 0x%-x ID: %-d ",f,MF_ID(f));

/* Classification w.r.t. geometric model */

if (MF_GEntDim(f) == -1)

fprintf(stderr,"Unknown Classification\n");

else {

printf("GEntID: %-d GEntDim: %-d\n",MF_GEntID(f),MF_GEntDim(f));

if ((gent = MF_GEntity(f)))

printf("Model entity pointer: 0x%-x\n",gent);

}

printf("\n");

/* Edges of face */

fedges = MF_Edges(f,1,0);

ne = List_Num_Entries(fedges);

printf("Edges: %-d\n",ne);

printf("Object ID GEntID GEntDim Vertex IDs\n");

idx2 = 0; i = 0;

while (e = List_Next_Entry(fedges,&idx2)) {

edir = MF_EdgeDir_i(f,i);

if (edir)

printf("0x%-8x %-8d %-8d %-1d %-d %-d\n",

e,ME_ID(e),ME_GEntID(e),ME_GEntDim(e),

MV_ID(ME_Vertex(e,0)),MV_ID(ME_Vertex(e,1)));

else

printf("0x%-8x %-8d %-8d %-1d %-d %-d\n",

e,-ME_ID(e),ME_GEntID(e),ME_GEntDim(e),

MV_ID(ME_Vertex(e,0)),MV_ID(ME_Vertex(e,1)));

i++;

}

printf("\n");

List_Delete(fedges);

54

}

if ((natt = MESH_Num_Attribs(mesh))) {

fprintf(stderr,"Attributes on the mesh:\n\n");

for (i = 0; i < natt; i++) {

attrib = MESH_Attrib(mesh,i);

attentdim = MAttrib_Get_EntDim(attrib);

/* Won’t print out edge, face and region based attributes

but the code should be quite similar */

if (attentdim != MVERTEX) continue;

fprintf(stderr,"Attribute Number %-d\n",i+1);

MAttrib_Get_Name(attrib,attname);

fprintf(stderr,"Name: %-s\n",attname);

atttype = MAttrib_Get_Type(attrib);

switch(atttype) {

case INT:

fprintf(stderr,"Type: Integer\n");

break;

case DOUBLE:

fprintf(stderr,"Type: Double\n");

break;

case VECTOR:

fprintf(stderr,"Type: Vector\n");

break;

case TENSOR:

fprintf(stderr,"Type: Tensor\n");

break;

default:

fprintf(stderr,"Unrecognizable or unprintable attribute type\n");

55

continue;

}

switch(attentdim) {

case MVERTEX:

fprintf(stderr,"Applicable to vertices only\n");

break;

case MEDGE:

case MFACE:

case MREGION:

case MALLTYPE:

/* Won’t print out edge, face and region based attributes

but the code should be quite similar */

continue;

default:

fprintf(stderr,"Unrecognized entity type\n");

continue;

}

ncomp = MAttrib_Get_NumComps(attrib);

fprintf(stderr,"Number of components: %-d\n",ncomp);

switch(attentdim) {

case MVERTEX:

idx = 0;

while ((v = MESH_Next_Vertex(mesh,&idx))) {

if (MEnt_Get_AttVal(v,attrib,&ival,&rval,&pval)) {

fprintf(stderr,"V %-d: ",MV_ID(v));

switch (atttype) {

case INT:

fprintf(stderr," %-d\n",ival);

break;

case DOUBLE:

fprintf(stderr," %-lf ",rval);

break;

case VECTOR: case TENSOR:

rval_arr = (double *) pval;

for (k = 0; k < ncomp; k++)

56

fprintf(stderr," %-lf ",rval_arr[k]);

break;

default:

break;

}

fprintf(stderr,"\n");

}

}

break;

case MEDGE: case MFACE: case MREGION: case MALLTYPE:

/* Skipped code to print out attributes for all other

entity types but it is almost identical */

break;

default:

break;

} /* switch (attentdim) */

} /* for (i = 0; i < natt) */

} /* if (Mesh_Num_Attribs(mesh)) */

/* Write out a copy of the mesh */

strcpy(meshname,argv[1]);

strcat(meshname,"-copy.mstk");

MESH_WriteToFile(mesh,meshname,F1);

/* No need to delete a mesh if program ends right afterwards */

MESH_Delete(mesh);

return 1;

}

57

E Acknowledgements

This work was performed under the auspices of the National Nuclear Security Administration
of the US Department of Energy at Los Alamos National Laboratory under contract No.
DE-AC52-06NA25396 with partial support from the Advanced Simulation Capability (ASC)
program.

This manual has been reviewed by LANL and deemed suitable for unlimited release (LA-UR-
04-0878). MSTK has been reviewed by LANL and deemed suitable for unlimited distribution
(LA-CC-04-010). MSTK is distributed under an LGPL open-source license.

58

