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Abstract

In this article, we explore the calculation of a local (cell based) center of mass derived from a
piecewise constant density field. The method utilizes planar and higher order reconstructions
of the density field to derive a piecewise continuous functional representation of the density
which is then integrated to calculate a local center of mass. We demonstrate this method
in the context of multi-material interface reconstruction where the materials are correctly
located within a mesh cell with the center of mass calculation based on their respective
volume fraction functions. For two-materials, the method is identical to Youngs’ method.
Second order extensions of the reconstruction method are also presented.

1 Introduction

In finite volume flow simulations, the density of a material is often represented as constant
over each mesh cell, where the constant value is equal to the mean value of the density over the
cell [9]. High resolution methods rely on deriving a higher order polynomial representation of
the density based on the cell average data. In some situations (ELABORATE), it becomes
advantageous if the volume of a material within the cell can instead be transformed to a
point mass. The obvious point to choose is the center of mass of the material, xm(Ci) within
the cell, Ci, defined as

xm(Ci) =

∫

Ci
xρ(x) dA

∫

Ci
ρ(x) dA

(1)

However, in many flow simulations, the density is only known as a cell average, that is

ρ̄i =

∫

Ci
ρ(x) dA

∫

Ci
dA

(2)

To obtain a functional representation of the density, a reconstruction of the field is performed.
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Figure 1: The integration paths used in the calculation. The dashed line is the contour used
for the Green-Gauss gradient estimation. The solid line is the bounding square integrated
over to find the approximate material centroids from the linear reconstruction of the volume
fraction function.

We assume the density is continuous and may be approximated locally by a plane taking the
form

ρ̃(x) = ρ̄i + δ · (x− xc(Ci)) (3)

where δ is taken as the gradient of the density and xc(Ci) is the centroid of the mesh cell Ci

defined as

xc(Ci) =

∫

Ci

x dA (4)

The advantage of the representation in Equation 12 is that is preserves the correct mean
value, that is

1

‖Ci)‖

∫

Ci

ρ̃(x) dA = ρ̄i (5)

The gradient, δ, may be calculated using several methods. A Green-Gauss method [1], where
the gradient is estimated by an approximate boundary integral taken over the centroids of all
of mesh cells connected by vertex to the cell being reconstructed, is exact for linear functions.
The contour path is shown in the dashed line in Figure 1. A least-squares methods is also
available [10]. We found the Green-Gauss method to provide more consistent results.

The magnitude of the gradient may be quite large. For determining the interface normal
this is not an issue as it may normalized to unit length. However, as the gradient in planar
reconstruction of the volume fraction function, it is ill-suited. The planar reconstruction
may exceed the local bounds of the density

ρmin ≤ ρ̃(x) ≤ ρmax (6)

where ρmin and ρmax are the largest and smallest values of the mean density ρ̄j in the
neighboring cells. To correct this, the Barth-Jepersen limiter [2, 3] is calculated. It gives
a scalar 0 < φ ≤ 1, such that the linear reconstruction with gradient φδ satisfies the local
bounds.
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Once the limited gradient, φδ, has been calculated, the approximate center of mass, is
determined by integrating the linear reconstruction:

x̃m(Ci) =
1

∫

Ci
ρ̃(x) dA

∫

Ci

xρ̃(x) dA (7)

=
1

‖Ci‖ρ̄i

∫

Ci

x {ρ̄i + φδ · (x− xc(Ci))} dA (8)

The integrals may be evaluated directly using an application of Green’s Theorem. Explicit
formulas for the integrals of the planar reconstruction over a polygon are provided by S. F.
Bockman [6].

2 Application to multi-material interface reconstruc-

tion

The volume of fluid method, originally developed by C. W. Hirt and B. D. Nichols [7], advects
the fractional volumes of each fluid in the cell to track materials in an incompressible flow
simulation. The volume fraction, fm(Ci), of a material, m, in a cell, Ci of volume ‖Ci‖ is
defined as

fm(Ci) =
Am(Ci)

‖Ci‖
(9)

where Am(Ci) is the volume of the material in the cell.

Fundamental to the method is the idea of interface reconstruction, [4, 5, 10, 11] where the
interfaces between materials are located using the volume fractions.

A common problem impacting these reconstruction methods is their dependence on a speci-
fied material ordering, i.e. if more than two materials are present in a cell, the reconstruction
may depend on the sequence in which the materials are processed. This is undesirable as
it may improperly locate materials within the cell. In a finite volume implementation, this
may result in material being incorrectly fluxed into neighboring cells.

If we assume a material occupies a connected subset, Ωm of a mesh cell, Ci, then the natural
representation for the location of a the material is the center-of-mass or centroid of that
material region, Ωm. However, in VOF methods, that information is not generally available.
Instead, it must be inferred from the volume fraction function over a region of the mesh
surrounding the cell that is to be reconstructed.

The center of mass of material m contained with in mesh cell Ci, is defined as

xm(Ci) =

∫

Ci
xχm(x)dx

∫

Ci
χm(x)dx

, (10)

where χm(x) is the characteristic function for material m,

χm(x) =

{

1 x ∈ Ωm

0 x 6∈ Ωm.
(11)
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Since the volume fraction and cell area are known, the volume integral does not need to be
computed, as

∫

Ci

χm(x)dx = ‖Ci‖f̄m(Ci) (12)

Unfortunately, χm(x) is not known and an approximation to the distribution of the ma-
terial within the cell must be found. The volume fraction function is similar to a density
of a material. As such the application of the method detailed in the previous section is
appropriate.

Based on previous results using power diagram based reconstruction for multi-material cells
with the true center of mass a material within the cell [12], we utilize the reconstruction
strategy here with the calculated center of mass as generators of the power diagram.

2.1 Power diagram based interface reconstruction

Briefly, a power diagram is a generalization of a Voronoi diagram generated from a set of
points, S, each with an associated radius or weight. The Laguerre distance from a point
x ∈ R

n to a point mass, si ∈ S with si = (xi, wi) is defined as

d2
L(x, si) = d2(x,xi)− wi (13)

where d2(x,xi) =
∑n

i=1(x− xi)
2 is the usual Euclidean distance. In a power diagram, wi is

replaced with w2
i in Equation 13 and the resulting distance is called the power of the point

x with respect to xi. This may be interpreted as the distance from the point x to a point
on the circle centered at xi with radius wi along the line through x that is tangent to that
circle.

Each cell in the power diagram is the set of points

cell(si) = {x ∈ R
n|dL(x, si) < dL(x, sj) ∀sj ∈ S, sj 6= si} (14)

The power bisector between two points si = (xi, wi) and sj = (xj, wj) is the line perpendic-
ular to the segment connecting the points xi and xj and is located by finding a point, x0 on
that segment such that d2

L(x0, si) = d2
L(x0, sj).

The volume fractions can be matched by adjusting the weights of each point generator and
checking the area of each cell once it has been clipped to the bounding polygon in which it
is contained. This requires the solution of a set of non-linear equations

Am(ω1, . . . , ωNm
) = Aifm, m = 1 . . . Nm (15)

where Am(ω1, . . . , ωNm
) is the area of the power diagram cell corresponding to material m

after it has been clipped by the bounding mesh cell with area Ai. fm is the volume fraction
for material m. The constraint

Nm
∑

m=1

Am(ω1, . . . , ωn) = Ai (16)
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reduces the number of equations to Nm − 1. For three or fewer materials, we have been
able to demonstrate that given a set of generators and volume fractions, a power diagram
reconstruction that matches those volume fractions exists and is unique. While we believe
this is true for an arbitrary number of materials, we have been unable to prove it. To obtain
a unique solution, one weight is set to a specified value and the Nm − 1 other weights are
adjusted. A Newton procedure with a finite difference derived Jacobian is used to solve
Equation 15.

2.2 Material location through linear reconstruction

The power diagram based reconstruction does not require the point generators to be within
the cell being reconstructed. This implies that the domain of integration for calculation of
the approximate material centers of mass does not necessarily have to be the mesh cell which
we are reconstructing. Indeed, we observed noticeable mesh artifacts on unstructured grids
when using the mesh cell as the domain. Instead, a suitable choice of domain is to take the
smallest square, S(Ci) such that Ci ⊆ S(Ci) and the centroids of the square are the same
as that of the mesh cell, i.e. xc(Ci) = xc(S(Ci)). We then define the integration domain
S(Ci) = {x ∈ R

2|x0 ≤ x ≤ x1 and y0 ≤ y ≤ y1} with x1 − x0 = y1 − y0 and

xc(Ci) = xc(S(Ci)) =
1

∫

S(Ci)
dx dy

∫

S(Ci)

x dx dy =

(

x1+x0

2
y1+y0

2

)

(17)

An example of this integration domain is shown with the dark solid line in Figure 1.

Since S(Ci) and Ci have the same centroid, it follows that
∫

S(Ci)

{

f̄m + δ · (x− xc(Ci))
}

dx dy = ‖S(Ci)‖f̄m (18)

which gives the the approximate center of mass as

x̃m =
1

‖S(Ci)‖f̄m

∫

S(Ci)

x
{

f̄m + δ · (x− xc(Ci))
}

dx dy (19)

= xc(Ci) +
1

‖S(Ci)‖f̄m

∫

S(Ci)

x {δ · (x− xc(Ci))} dx dy (20)

Consider the case of two materials, m, and n, in a polygonal cell where the gradient of the
volume fraction functions fm and fn = 1−fm for the two materials have been computed and
are equal to δ and −δ respectively. The power diagram reconstruction of the interface for
the two materials will have an interface normal aligned with x̃m− x̃n, i.e. the line connecting
the approximate material centers of mass.

x̃m − x̃n =
1

‖S(Ci)‖

1

f̄m

∫

S(Ci)

xf̃m(x) dx dy −
1

‖S(Ci)‖

1

1− f̄m

∫

S(Ci)

x(1− f̃m(x)) dx dy(21)
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=
1

‖S(Ci)‖

(

1

f̄m

+
1

1− f̄m

)
∫ y1

y0

∫ x1

x0

x (δ · (x− xc)) dx dy (22)

= .
∆2

12

(

1

f̄m(1− f̄m)

) (

δx

δy

)

(23)

where ∆ = x1 − x0 = y1 − y0 =
√

||S(Ci)||.

So indeed the direction between the two material locations will be aligned with the volume
fraction gradient ensuring the method is identical to a Youngs’ type method for two materials,
that is

δ × (x̃m − x̃n) = 0 (24)

If the gradients are not exactly opposite, but instead ∇fm = −φ∇fn with φ ∈ R, then the
above result still holds, but with a different constant in front of the integral in Equation 23.
Using this domain combined with the limiter on the gradient, the points typically lie within
the cell being reconstructed, although it is not guaranteed.

2.3 Extensions to second order

In general, the method will not exactly reproduce a straight line interface indicating it is not
second order [8]. The LVIRA method performs a local optimization to correct the interface
normals. It works by minimizing an objective function that measures the discrepancy be-
tween the prescribed volume fractions of a material, fm and the volume fractions that would
result from an extension of the interface in a cell into the neighboring cells f ′m. The same
strategy could be use to extends this method to second order.

For each material, the linear reconstruction takes the

fm(x) = f̄m(Ci) + R(θm)δ · (x− xc(Ci)) (25)

where

R(θ) =

(

cos θ sin θ

− sin θ cos θ

)

(26)

is the rotation matrix corresponding to a rotation by angle θ. The optimization procedure
finds a set of angles, θ1, θ2, . . . , θn, corresponding to the materials in the cell, that minimize
the objective function

E(θ1, θ2, . . . , θn) =
n

∑

m=1

∑

Cj∈N (Ci)

(f ′m(Cj; θ1, θ2, . . . , θn)− fm(Cj))
2 (27)

where f ′m(Cj; θ1, θ2, . . . , θn) is the volume fraction of material m that would be obtained
by extending the interfaces for that material from the cell being reconstructed, Ci into the
neighboring cell Cj. The limited gradient, δ, is retained. In two materials reconstructions,
this method is exactly equivalent to LVIRA.
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(a) (b) (c)

Figure 2: Four material interface reconstruction on an unstructured grid using (a) power
diagrams with the reconstructed centroids shown and (b), (c) Youngs’ method with two
different material orderings.

3 Numerical experiments

Numerical experiments confirm that for two materials examples, the reconstruction is identi-
cal to Youngs’. When more than two materials are present, the method correctly locates the
position of each material within the cell and provides a reasonable reconstruction. In Fig-
ures 2 and 3, the power diagram and reconstructed centroid method is identical to Youngs’
in the regions containing only two materials. In the center of each, the method correctly
locates each material in the four material cell and provides the appropriate reconstruction.
It preserves the symmetry in the structured grid example in Figure 2, but fails to do so on
the unstructured grid in Figure 3.

The method does not exactly reproduce a straight line in Figure 3, confirming that, likes
Youngs’ method, it is only first order [8].

In the filament example shown in Figure 4, Youngs reconstruction with the correct material
ordering is identical to the power diagram based reconstruction. However, with the incorrect
material ordering, white material is placed on the right hand side of the filament, leading
to the so called flotsam and jetsam problem with small pieces of material separating off.
The power diagram reconstruction does not depend on any material ordering and avoids this
problem.

4 Conclusions

We have developed a new, first order material order independent method for interface re-
construction in multi-material cells. It is a natural extension of Youngs method, in that it
relies the gradient of the volume fraction function and it is identical to Youngs method in
two material cases. For three or more materials, it automatically locates the position of each
material in the cell and provides a decomposition of a convex mesh cell into convex regions
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(a) (b) (c)

Figure 3: Four material interface reconstruction on an unstructured grid using (a) power
diagrams with the reconstructed centroids shown and (b), (c) Youngs’ method with two
different material orderings.

(a) (b) (c)

Figure 4: Multi-material interface reconstruction for a filament: (a) reconstructed centroids
and power diagrams and (b),(c) Youngs’ reconstruction with different material orderings.
Notice the presence of the white material on the right hand side of the filament in Youngs’
reconstruction in (c). By construction, the power diagram reconstruction is identical to
Youngs method in two material cells.
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(a) (b) (c)

Figure 5: Interface reconstruction for a bubble rising to a free surface. (a) reconstructed
centroids and power diagrams and (b),(c) Youngs’ reconstruction with different material
orderings.

for each material that match the required volume fraction functions.
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