
Solution Adapted Mesh Refinement and

Sensitivity Analysis for Parabolic Partial

Differential Equation Systems?

Shengtai Li1,2, Linda R. Petzold1, and James M. Hyman2

1 University of California, Santa Barbara, CA 93106, USA
2 T-7, Los Alamos National Laboratory, Los Alamos, NM 87544

Abstract. We have developed a structured adaptive mesh refinement (SAMR)
method for parabolic partial differential equation (PDE) systems. Solutions are
calculated using the finite-difference or finite-volume method in space and backward
differentiation formula (BDF) integration in time. The combination of SAMR in
space and BDF in time is designed for problems where the fine-scale profile of sharp
fronts in space should be resolved and implicit integration in time is necessary to
improve the efficiency of the computation. Methods for forward sensitivity analysis
on the adaptive mesh are presented.

1 Introduction

Structured adaptive mesh refinement (SAMR) has been used extensively to
solve partial differential equations (PDEs) [3,11,15]. SAMR uses a hierarchi-
cal block data structure where each block (called patch) can be solved as
a single grid. Most implementations of SAMR have used an explicit time
integration, and refined time as well as space by taking local smaller time
steps for finer grids. The time stepsize for explicit integration is limited by
the Courant-Friedrichs-Lewy (CFL) condition [9]. Explicit methods are ap-
propriate for hyperbolic systems, where the CFL number is proportional to
∆t/∆x. However, for a parabolic system the CFL number is proportional to
∆t/(∆x)2. Hence the time step for an explicit integration needs to be very
small to ensure stability. It is desirable to solve this type of problem with im-
plicit time integration. Implicit time integration is also preferred for solving
steady-state and slow-transient problems, because the stepsize restrictions
are less stringent than for explicit schemes (there may not be any). Although
SAMR has been available for more than a decade, its combination with im-
plicit time integration is still in its infancy. Before describing our algorithm
and implementation, we first discuss two available adaptive grid implemen-
tations for parabolic PDE systems.
Verwer et al. [17] designed a local uniform grid refinement (LUGR) with

second order backward differentiation formula (BDF) method in time. Instead

? This work was partially supported by DOE contract number DE-FG03-
00ER25430, NSF grant CCR-9896198, NSF/ARPA PC-239415, and NSF ACI-
0086061.

2 Shengtai Li et al.

of using a hierarchical block data structure, LUGR uses a data structure
specially designed for its algorithm. A standard second-order finite difference
is used in the spatial discretization, central on the internal domain and one-
sided at the boundaries. A fixed second-order two-step implicit BDF method
with variable stepsizes is used for the time integration. The resulting system of
nonlinear equations in each time step is solved by a modified Newton method
and (preconditioned) iterative linear solver. LUGR is not flexible with respect
to changes in the spatial discretization or time integration method.

Flaherty et al. [10] designed an adaptive overlapping grid (AOG) method
using Galerkin’s method with a piecewise polynomial basis in space and a
singly implicit Runge-Kutta (SIRK) integration method in time. A tree-based
hierarchical data structure is used. The grid refinement strategy is based on
error estimates for Galerkin’s method. Due to the frequent stops and starts
that are needed in conjunction with the refinement/coarsening process, AOG
opted for single-step SIRK methods for the time integration. Unfortunately,
these methods often proved to be more costly than a multistep method. The
integration of each local patch is done separately, and a Schwarz alternation
iteration is used to obtain satisfactory accuracy in overlapping regions. AOG
also uses overlapping and rotated grids in the refinement processing, which
proved to be disadvantageous for general problems.

In this paper, we study how to combine the SAMR method with variable
order and variable stepsize BDF time integration. The BDF methods are
implicit multistep methods for solving systems of ordinary differential equa-
tions (ODEs) or differential-algebraic equations (DAEs). An efficient BDF
code DASSL, developed by Petzold [4], has been widely used. In DASSL, the
implicit system is solved by a modified Newton iteration. The linear system at
each Newton iteration is solved by a dense or banded direct solver. An exten-
sion of DASSL, DASPK, was developed by Brown, Hindmarsh and Petzold
[5]. DASPK has an additional option of using a preconditioned incomplete
GMRES method to solve the linear system at each Newton iteration, which is
particularly effective in the method of lines (MOL) solution of time-dependent
PDEs in two or three dimensions.

Sensitivity analysis is important in many engineering and scientific ap-
plications. The information contained in the sensitivity trajectories is useful
for parameter estimation, optimization, model reduction and experimental
design. A DASPK package (DASPK3.0) with forward sensitivity analysis
capability was developed by the authors [13]. DASPK3.0 also incorporated
many other new features for the efficient integration of the ODE/DAE.

Compared with explicit integration, applying implicit time integration
with an AMR system has a lot of difficulties. First, each patch cannot be
integrated independently in one time step, because it may share boundary
points with other patches. Second, the implicit system needs to be solved in
each time step. Therefore at least one linear system must be solved in each
time step. How to solve the linear system efficiently is essential to the success
of the PDE solver. Related issues of how to reuse the previously-evaluated

AMR and Sensitivity Analysis for Parabolic PDEs 3

Jacobian or preconditioner for the current time step, and how to get the
initial guess for the Newton iteration are also important. Third, it is more
difficult to take a local time step for the finer grid for an implicit method than
for an explicit method. The time stepsize at each level is usually determined
by accuracy instead of stability for the implicit method. Thus, the ratio of
the stepsizes for different levels usually is not an integer(which is required
for the hierarchical AMR data structure). There are some other difficulties,
such as storing and updating the Jacobian or other linear system information
for each level/patch if it is solved separately, restarting the integration after
each refinement, etc.
In the following sections, we propose some strategies to overcome or cir-

cumvent these difficulties. We also study how to efficiently compute the sen-
sitivities of adaptive solutions for the PDEs. Difficulties related to adaptive
data structure and discretization are addressed.

2 AMR with Hierarchical Block Structure

Our SAMR method makes use of the AMR data structure and refinement
strategy in [11]. In order to be read independently, we outline the method
here.

2.1 Hierarchical block structure

To efficiently manage the data on each level in the AMR algorithm, the points
are grouped (clustered) into logically-rectangular blocks called patches. These
patches are the building blocks for the hierarchical grid structure and are the
basic data unit for refining the grid in space. A patch is treated as a single
grid with all the attributes of a single grid.
We use an indexed linear array hierarchical data structure in [11]. The

hierarchical grid data structure G=|n|G1|G2|...|Gn| contains the number of
levels of the grid and pointers to the grid on each of the lower levels. The
data structure on the i-th level Gi=|mi|p1|Gi,1|p2|Gi,2|...|pmi

|Gi,mi
| contains

information on the patches, where mi denotes the number of patches. The
data structure Gi,j contains information for the j-th patch on the i-th level.
For a 1-D grid, the pointer pj is the index of the patch in the coarse grid
that is the parent of the patch Gi,j . For a 2-D and 3-D grid, the variable pj

contains the number of parent coarse grids for the patch Gi,j . An auxiliary
array is used to store the indices of the parent grids.

2.2 Refinement strategy

The core of the AMR algorithm is in choosing how to cover the regions that
need refinement with a finer grid. The Remesh stage to cover subdomains
with higher resolution patches is the most algorithmically complex AMR

4 Shengtai Li et al.

Remesh(level)
begin

maxlevel = the maximum level allowable, flevel = the finest level existing;
flevel = max(flevel + 1, maxlevel);
while (flevel-1 needs no refining) decrease flevel by 1;
// Readapt the current grid
for slevel = flevel-1 downto level do

Refine(slevel)
Select (slevel): flag the inaccurate points which need refining;
Expand (slevel): add buffer zones around the flagged region;
Cluster (slevel): group the flagged points into clusters;

for slevel = level upto flevel-1 do
Regrid (slevel +1): define the solution values for the readapted grid;

// Refine to generate new finer grid
while (flevel < maxlevel and flevel needs refining) do

Refine (flevel);
Regrid (flevel + 1);
increase flevel by 1;

end

Fig. 2.1. Pseudo-code for AMR remeshing algorithm.

operation in the refinement process. The remesh stage is divided into two
processes (see Fig. 2.1): readapt (including refine and coarsen) the current
grid and refine to generate a new finer grid. Both processes have two small
steps (see Fig. 2.1): refine and regrid.

The readaptation must be designed to capture the features that appear
in the finer levels but would not be identified if the process started with the
solution on the coarsest grid and then adapted the grid to the finer levels.
Therefore, we initiate the mesh readaptation on the finest level possible.
Note that this is different from the local uniform grid refinement (LUGR)
method [17]. This grid is then coarsened or refined based on the selection
algorithm. This process continues until all of the indicated levels have been
readapted. The regridding step (see Fig. 2.1) (defining the solution values
for the readapted grid) is done in reverse. It starts from the coarsest level
possible. After the first process, if the finest level available does not reach the
maximum level allowable and needs further refinement, we start the second
process to refine and generate finer level patches.

We adopt the monitor function proposed by Verwer et al. [17] to identify
the regions to coarsen or refine. The monitor function is defined for each
grid point (i, j). We initiate a level refinement if there is a point where the
monitor function exceeds the tolerance. In order to ensure proper nesting,
if the current level grid has grandchildren, those points are also flagged. To

AMR and Sensitivity Analysis for Parabolic PDEs 5

be flexible, our software has an option to allow users to provide monitor
functions.
For some applications, the monitor function may fail to identify all the

regions that need to be refined. Also, there are situations where we may only
be interested in the final steady state solution. In these cases, the efficiency
can be improved if the user has control over the AMR process. In an extreme
situation, a user may want complete control to guide the refinement process
at any time and any place.
We incorporate several options in our software for user control of the

refinement. The user can force a refinement through a grid file and modify
the refinement parameters at any time [11].

3 Time Integration

It would be appealing to take a local time step for a local finer grid, as is
done in conjunction with explicit time integration [11]. However, due to the
difficulties mentioned in Section 1, we decided to synchronize the time step
for all the grids. In fact, for a parabolic problem solved by an implicit method,
the time step is determined by accuracy rather than stability considerations,
and the difference in stepsize between grids in different refinement levels is
generally small.
As pointed out in [17], the solution injected from a finer grid is in general

not a solution of the PDE system discretized on a coarser grid and hence can
cause convergence problems in the Newton iteration if it is used as the initial
guess. Therefore, we solve the whole AMR system simultaneously. That is,
the entire AMR hierarchical structure is transformed into one linear structure
used by the implicit time integration solver.
To design software that is easy to use by an application scientist, we use

the method of lines (MOL) approach. That is, the PDEs are first discretized
into ODEs/DAEs, and then existing ODE/DAE software is used in the time
integration. Our implementation has no restriction on the spatial discretiza-
tion and time integration solver. We use DASPK3.0 for the time integration
because of its capabilities for DAEs, implicit time integration and sensitivity
analysis. In the next subsection, we describe the transformation between the
DASPK3.0 and AMR data structures.

3.1 Transformation between DASPK and AMR data structures

The hierarchical data structure of AMR provides us a possibility to integrate
each level or patch separately. However, the difficulty of such a separate
computation is synchronization of the time step. Because the time stepsize is
computed inside the time integration solver (DASPK in our case), we cannot
expect that different levels or patches would use the same time stepsize.
Another problem with separate computation is that the Schwarz alternation
iteration must be used.

6 Shengtai Li et al.

To avoid these complications and difficulties, we integrate the whole sys-
tem as one big ODE/DAE system. Thus, we must transform the hierarchical
data structure into a flat structure that can be used by DASPK. In order
that the equations or residuals can be evaluated patch by patch in the AMR
hierarchical system and the solutions visualized easily, the transformation
must also be done in the reverse.
To eliminate redundancy and inconsistency, we require that any point

or cell in the AMR system be evaluated only once. The transformation is
illustrated in Fig. 3.1 and is designed as follows. Beginning with the finest
level, each point in each patch in a level is copied to a linear array and
marked after it is copied; if a point is marked by a previous patch or level, it is
skipped. This process is done level by level until the base grid is finished. The
inverse transformation is a little more complex. After the inverse copying from
the linear array to the AMR hierarchical structure is done, the uninitialized
points in the AMR hierarchical structure are collected by copying from the
sibling grid and finer children grids.
For the inverse transformation, the ghost boundaries are also required in

evaluation of the equations or during refinement. The ghost boundaries for
each patch must be collected from three sources. First they are calculated
from external boundary conditions if any of its boundaries reaches the ex-
ternal boundary. Then they are copied from the sibling internal grid points.
Finally, if there are still uninitialized ghost boundary points, interpolation
from the parent coarse grid is used.

3.2 Warm restart after refinement

After a new grid is generated and the solution has been interpolated from the
old mesh to the new one, the simplest approach would be to restart the time
integrator as though solving a new problem. This is called a full restart by
Berzins et al.[2] and is appropriate for single-step time integration methods
such as singly implicit Runge-Kutta (SIRK) [6] integration. For multistep
methods, a full restart would cause the ODE/DAE solver to choose the lowest
order single-step method and to reduce the time step size to satisfy the error
tolerance of the lowest order method.
In a warm restart (or flying restart [2]) the history array used by the

ODE/DAE solver is also interpolated to the new mesh, and the integration is
continued with almost the same step size and order as would have been used
had the remeshing not taken place. Because the number of equations may
have changed during the remeshing and the Jacobian matrix (preconditioner
in our case) is difficult to interpolate accurately, we always reevaluate the
Jacobian matrix in a warm restart.
Compared with a global rezone method [12], the interpolation from an old

grid to a new one in AMR involves less error, because the most interesting
portion of the fine grid overlaps with that of the old grid, and the overlapping
part can just be copied from the old mesh. If the refinement in the AMR

AMR and Sensitivity Analysis for Parabolic PDEs 7

Level 1

Level 3

H
i
e
r
a
r
c
h
y

65 66 67 68

69 70

71 72

73 74 75

77 78 80

81 86

87 92

99 100 104

105 106 107 108

82 83 84

101 102

Overall
Structure

Level 2

 KEY
parent/
Child

siblings1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32

33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52
53 54 55 56
57 58 59 60
61 62 63 64

33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52
53 54 55 56
57 58 59 60
61 62 63 64

65 66 67 68

69 70

71 72

73 74 75 76

77 78 79 80

81 82 83 84 85 86

76

79

65

87 88 89 90 91 92

93 94 95 96 97 98

99 100 101 102 103 104

105 106 107 108

109 110 111 112 113 114

115 116 117

118 119 120

121 122 123

124 125 126

127 128 129

x x
x x
x x
x x

x x
x x
x x

x x

x x x

x x x

x x x

x x x

x x x

88 89 90 91

93 94 95 96 97 98

103

109 110 111 112 113 114

115 116 117

118 119 120

121 122 123

124 125 126

127 128 129

Fig. 3.1. The hierarchical data structure for AMR and its transformation to the
DASPK flat structure. The number inside the mesh is the order number in the
DASPK flat structure. The cells with “x” inside have been defined by other patches.
A total of 129 cells is copied from the AMR hierarchical data structure to the
DASPK flat structure.

8 Shengtai Li et al.

system is timely, the interpolation occurs only near the coarse-fine interface,
where the new grid points are generated by the refinement process. Since the
discretization error near the coarse-fine interface is generally much smaller
than at the internal points, linear interpolation is sufficient in most cases.
When a new grid has more refinement levels than the old one, bivariate cubic
interpolation can be applied.
The interpolation errors in a warm restart may not be sufficiently small

and may cause the ODE/DAE solver to reduce the stepsize and/or order.
In our experience, even if the ODE/DAE solver eventually restarts with the
first-order method, the time-step size is much larger than that for a full
restart.

3.3 Reducing the overhead related to mesh adaptation

Even with the warm restart, the overhead of the mesh adaptation is relatively
high. The most significant cost is evaluation of the Jacobian. The adaptation
process (including refining and regridding steps) and interpolations for the
history array actually take less time than the evaluation of the Jacobian.
Since the Jacobian must be evaluated after each adaptation, it is important
to reduce the number of adaptations and/or reduce the computational work
of evaluation of the Jacobian.
The number of adaptations is determined by the number of time steps

kamr between two adjacent refinements. kamr is affected by many factors. One
of them is the number of buffer zones (kbuf) added during the refinement. We
note in our experiments that if kbuf increases, kamr can be larger. However,
when kbuf increases, the finer grid becomes larger and requires more time to
solve. In our numerical tests, we found that kbuf = 2 and kamr ≈ 10 have
good performance for most problems. How to choose kamr dynamically, as
we did in [12] in the case of explicit integration, is under investigation.

Replacing with the new grid adaptively An alternative approach to
reduce the overhead of the adaptations is to replace the old mesh with the
new adaptive one only when the variance is big enough. A fixed kamr can be
taken for this approach.
As we have mentioned, the new adaptive mesh shares the most interesting

part with the old one. In our implementation, we calculate the number of grid
cells shared by both the new grid and the old one after each adaptation. A
ratio that measures the shared percentage is calculated as follows,

ratio =
2 ∗Nshare

Nold +Nnew

, (1)

where Nshare is the number of shared grid cells, Nold is the number of cells
in the old grid and Nnew is the number of cells in the new adaptive grid.
The old mesh is replaced by the new one only if ratio < 0.92. This number

AMR and Sensitivity Analysis for Parabolic PDEs 9

was determined experimentally to give the best performance over a wide
range of problems. Otherwise, the old mesh is used as if no adaptation has
occurred. This strategy can sharply reduce the number of warm restarts and
the number of Jacobian evaluations.

ILU preconditioner and ADIFOR To evaluate the Jacobian efficiently,
we can choose a simple preconditioner that requires less computational work,
such as a block-diagonal or block-Jacobi preconditioner. However, the per-
formance for these simple preconditioners was not very promising during our
numerical experiments. We opted for an incomplete LU (ILU) factorization
preconditioner [16] in our software.
For an ILU preconditioner, the Jacobian should be evaluated and stored

in each evaluation of the preconditioner. Unlike a single nonadaptive grid, the
bandwidth of the Jacobian in our system can be very large because the solu-
tion in one patch/level can be related to the solution in another patch/level
and they can be far away in different locations in the flat DASPK structure
after transformation. Note that in Fig. 3.1, the cell at position 33 relates to
the cells at positions 100 and 105.
The cost of evaluating the Jacobian J (Ceval) via ADIFOR, if the sparse

forward mode is used, is related to the cost of residual evaluation (Cfun) by
Ceval ' a ·m · Cfun, where a = 3 for the basic forward mode of automatic
differentiation, and m is the maximum number of nonzero entries in any row
of the Jacobian. However, when the finite-difference method is used, the cost
is Ceval ' b · Cfun, where b is the bandwidth of the Jacobian matrix. For
a PDE in a 2-D domain, m is usually small (m = 5 if central difference in
space is used for a scalar PDE) but b is large. Therefore, we recommend using
ADIFOR to evaluate the Jacobian whenever possible.

Reducing the computation of data structure transformation The
transformation between the AMR hierarchical data structure and the DASPK
linear structure is frequently used during function evaluations, mesh refine-
ments and warm restarts. To reduce the overhead of the adaptations, we must
reduce the computation time of each interface transformation.
We can go through the matching process proposed in Section 3.1 each

time to do the transformation or inverse transformation. Noting that the
matching process is the same if the mesh does not change, we propose to do
the matching process only once for a new mesh.
The algorithm is as follows. When a new mesh is generated, we go through

the AMR hierarchical data structure and the DASPK linear structure and
match them one by one using the algorithm of Section 3.1. During the pro-
cessing, we can take advantage of the indexed linear array implementation
for the hierarchical data structure. We actually do the matching between two
linear structures instead of one hierarchical (tree) structure and one linear
structure. The solutions in the AMR hierarchical data structure contain data

10 Shengtai Li et al.

at the ghost boundaries and shared internal points among different patches.
Hence there are more of them than those in the DASPK linear structure.
Two index arrays are used to store the locations of the solutions in each lin-
ear structure during the matching process. One is used to store the indices of
the elements in the AMR structure for the elements in the DASPK structure.
The other is used to store the indices of the already marked elements in the
AMR structure and their corresponding elements in the DASPK structure.
For the transformation from the AMR structure to the DASPK struc-

ture, we use only the first pointer array. For the inverse transformation, both
pointer arrays are used. The ghost boundary data for the AMR structure,
if needed, are collected separately. The transformations can be done much
faster with the help of the two arrays. Since these two arrays are computed
only once for a new mesh, the total computational efficiency is improved.

4 Sensitivity Analysis for PDEs

DASPK3.0 has a capability for forward sensitivity analysis[13]. The sensitiv-
ity equations for the DAEs have many good properties which can be taken
advantage of. First they are linear with respect to the sensitivity variables.
Second, the Jacobian matrix for the sensitivities is the same as for the original
DAEs. We would like to make use of this sensitivity analysis in the SAMR
solution of PDEs.

4.1 Sensitivity ODEs vs. sensitivity PDEs

There are two possibilities for evaluating the sensitivity residuals of a PDE
system. First, we can use the MOL approach and transform the PDE system
into an ODE/DAE system. Then the sensitivity methods in DASPK3.0 can
be used. The sensitivity equations can be evaluated by several options in
DASPK3.0, such as the finite-difference or ADIFOR options. This approach
does not require any modification of the PDE discretization codes.
The other approach is to solve the sensitivity PDEs coupled with the

original physical PDEs directly. They are simultaneously discretized in space
and then the coupled ODE/DAE system is solved by DASPK3.0. Similar
to the sensitivity DAEs, the sensitivity PDEs are linear with respect to the
sensitivity variables. Since the PDE system is usually much simpler before
discretization, the sensitivity PDEs can be easily obtained. Some special dis-
cretizations or transformations used for the state PDEs can be reused in the
sensitivity PDEs. Therefore, it is usually more efficient and accurate to eval-
uate the sensitivity equations by this approach than by the first approach.
In fact, we have found that if a nonlinear spatial discretization scheme (e.g.
upwinding scheme) was used, the first approach might produce incorrect sen-
sitivities.
For an implicit solver like DASPK, the cost of the Newton iteration for

solving the nonlinear system of equations often dominates the computation.

AMR and Sensitivity Analysis for Parabolic PDEs 11

It is easy to solve the coupled system without distinguishing the state and
sensitivity variables in the second approach. However, it is much more efficient
if we evaluate the Jacobian/preconditioner only for the state variables, and
reuse them in solving for the sensitivities. DASPK3.0 has an option for the
user to input the residual for the state and sensitivity equations respectively.
Distinguishing the state and sensitivity variables in DASPK also allows the
user to exclude the sensitivity variables from the stepsize control, which in
our experience has led to better performance as well as accurate sensitivities.
For an adaptive grid solver, we must decide whether the selection of mesh

refinement should be based only on the state PDEs or on both the state and
sensitivity PDEs. We observed in our applications that the sensitivity PDEs
for the sensitivity parameters that appears in the PDEs shared the same re-
finement regions as the state PDEs. Therefore, we can exclude the sensitivity
equations from the monitor function evaluations for efficiency considerations
for those applications. This might not be true if the sensitivity parameters
are in the initial or boundary conditions.

4.2 Sensitivity analysis with AMR hierarchical structure

In DASPK3.0, the sensitivity variables are stored separately right after the
state variables, whereas a sensitivity variable is taken as a PDE variable and
all of the variables in a patch are stored together in the AMR data structure.
This causes some difficulty in transformation from the AMR hierarchical
data structure to the DASPK flat structure and in the residual evaluations
of DASPK.
The transformation between the AMR and DASPK data structures pro-

ceeds in two steps. In the first step, we do the transformation only for the
state variables. In the second step, we transform one by one for the sensitiv-
ity variables. If the sensitivity variables are not needed, the second step is
skipped. In sensitivity analysis using DASPK3.0, the Krylov iteration uses
only the residual evaluations of the state variables. The number of residual
evaluations for the state variables is much larger than that for the sensitivity
variables. Therefore, the overhead in the transformation can be much reduced
by the two-step technique.

5 Numerical Experiments

In this section, we give an example to illustrate the effectiveness of our al-
gorithm and software. The number of steps kamr between two adaptations is
chosen to be 6. The refinement ratio is chosen to be 2, and the number of
buffer zones (kbuf) is 2 unless it is specified otherwise. Central-differencing
discretization in space is used. The error tolerance in DASPK is chosen to be
RTOL=ATOL=10−5. All of our computations are done in double precision
on a 450HZ PC with the Linux operating system. For comparison, we give
some key statistics of our computation.

12 Shengtai Li et al.

NWR Number of warm restarts
NTS Number of time steps
NRE Number of residual evaluations
NJE Number of Jacobian evaluations
NETF Number of error test failures
MXEQ Maximum number of equations in DASPK format
CPU Total CPU time taken to solve the problem

5.1 SAMR solution

This example of reaction-diffusion type is described in Zegeling [18]. The
PDE is given by

ut = ∆u+D(2− u) exp(−d/u), on the domain Ω = (0, 1)× (0, 1) (2)

u|t=0 = 1,
∂u

∂n
= 0, at x = 0, y = 0, and u = 1, at x = 1, y = 1,

where ∆ is the Laplacian operator and D = Red/d,R = 5, d = 20.We output
the solution at t = 0.30. Since the solution before t = 0.25 is very smooth, we
turned off the refinement and used only the base grid before t = 0.25. The
tolerance for grid refinement was chosen to be TOLS=0.001.

The full restart is extremely slow. The warm restart, however, is much
faster. We note that after refinement the solver DASPK3.0 uses almost the
same order as before the refinement. The first refinement takes place at about
t = 0.25. We chose kamr = 8 for the later refinements. The comparison for
methods with different refinement levels and different buffer zones are shown
in Table 1. The contour plots and refinement patches are displayed in Fig.
5.1.

Table 1. Comparison of different methods for reaction-diffusion problem (2).

Base grid level kbuf NWR NTS NRE NJE NETF MXEQ CPU

201×201 1 N/A 0 147 687 15 18 40401 155
101×101 2 2 17 188 742 37 22 17450 56
51×51 3 2 18 209 802 38 29 12637 32
51×51 3 1 19 220 854 41 32 11557 31

The warm restart does have some adverse effect on the time step selection,
which is shown in Fig. 5.1-c. We suspect that this is due to the interpolation
errors from the old grid to the new grid.

AMR and Sensitivity Analysis for Parabolic PDEs 13

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

level 2
level 3

contours

Fig. 5.1-a. AMR with 50×50, 3 refine-
ment levels and 2 buffer zones. 9 con-
tours between 1.1 and 1.9 are plotted.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

level 2
contours

Fig. 5.1-b. AMR with 100×100, 2 re-
finement levels and 2 buffer zones. 9
contours between 1.1 and 1.9 are plot-
ted.

0

5e-05

0.0001

0.00015

0.0002

0 50 100 150 200 250

Ti
m

e
S

te
ps

iz
e

Time step

1 buffer zone
2 buffer zones

Fig. 5.1-c. The warm restart can cause
the DAE solver to reduce the time step
after each refinement. Three-level re-
finement and a 50×50 base grid is used.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

refinement
contours for sensitivity

Fig. 5.1-d. Contour plots for the sen-
sitivity with respect to R. 9 contours
between 2 and 18 are used. The con-
tours increase from both sides to the
middle of the refinement.

Figure 5.1: Results for reaction-diffusion problem (2).

5.2 Sensitivity analysis

We also computed the sensitivity with respect to the parameter R in Eq. (2).
The sensitivity PDE is given by

st = ∆s+D/R(2− u) exp

(

−
d

u

)

− sD exp

(

−
d

u

)(

1−
d(2− u)

u2

)

. (3)

We used two refinement levels and a 51 × 51 base grid. The error tolerance
for the sensitivity variables was the same as that for the state variables.
The partial error test (excluding the sensitivity variables from the error test)
and staggered corrector method option was used in DASPK3.0. The other
parameters were the same as those without considering sensitivity.
Two options for sensitivity evaluation in DASPK3.0 were tested: input an-

alytically and by ADIFOR with seed matrix. They produced the same results,

14 Shengtai Li et al.

which is not surprising since no special technique is used during the spatial
discretization. The efficiency for the two options was almost the same. We also
solved Eqs. (2) and (3) without using the sensitivity techniques of DASPK3.0
(see “taken as PDEs” method in Table 2). In this method, we cannot exclude
the sensitivity variables from the temporal error test in DASPK3.0, and the
warm-restart after each refinement does not work well after t = 0.29. We sus-
pect the reason is that the sensitivity changes too rapidly. We should mention
that the accuracy of the sensitivity did not improve much by including the
sensitivity variables in the error test. The contour plots are almost the same.

Table 2. Comparison of different methods for sensitivity analysis of reaction-
diffusion problem (2). ∗This number includes evaluations of the sensitivity equa-
tions.

Sensitivity Evaluation Method NST NRE NJE NETF CPU

Input analytically 191 3817 39 24 79
ADIFOR with seed matrix 191 3817 39 24 82
Taken as PDEs 1315 4336∗ 491 211 329

6 Conclusion

We have presented our implementation of AMR with the implicit DAE solver
DASPK, for parabolic problems where implicit time integration is best suited.
Several difficulties have been described when AMR is combined with implicit
integration. We have provided some strategies to overcome and/or circum-
vent the difficulties. Numerical results demonstrate that these strategies are
effective.
We have also discussed how to combine the sensitivity analysis with the

AMR hierarchical data structure. An interface was designed between the
AMR hierarchical structure and the DAE solver flat structure to facilitate
the use of the DAE solver and data visualizations.
A large-scale sparse linear system must be solved in the implicit time

integration. How to improve the efficiency of the linear solver is key to the
success of our combination of AMR and DASPK. We provide an ILU precon-
ditioner which is evaluated by ADIFOR. Other kinds of preconditioners, such
as additive Schwarz alternation preconditioners, are under investigation.
Although the warm restart technique can greatly improve the efficiency,

the restart/interpolation process still has an adverse effect on the time step
selection. We think this is due to the interpolation error after the refinement.
How to improve the time step selection after each restart is an open problem.
The forward sensitivity method described in this paper is attractive when

there are relatively few sensitivity parameters. When a large number of sen-

AMR and Sensitivity Analysis for Parabolic PDEs 15

sitivity parameters and only a few derived functions are involved, the adjoint
sensitivity method may be more advantageous. With the help of the recent
results on the adjoint method for DAEs [8,7], we have studied several theory
and implementation issues for the adjoint sensitivity method on an adaptive
grid for partial differential-algebraic equations (PDAE) [14].

References

1. C. Bischof, A. Carle, G. Corliss, A. Griewank and P. Hovland, ADIFOR–

Generating derivative codes from Fortran programs, Scientific Programming
(1992).

2. M. Berzins, P. J. Capon and P. K. Jimack, On spatial adaptivity and interpo-
lation when using the method of lines, Appl. Numer. Math., 26 (1998) 117-133.

3. M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydro-
dynamics, J. Comput. Phys. 82 (1989) 64-84.

4. K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations, Second Edition, SIAM,
1995.

5. P. N. Brown, A. C. Hindmarsh and L. R. Petzold, Using Krylov methods in the

solution of large-scale differential- algebraic systems, SIAM J. Sci. Comput., 15
(1994) 1467-1488.

6. J.C. Butcher, On the implementation of Runge-Kutta methods, BIT, 16 (1976),
237-240.

7. Y. Cao, S. Li, L. Petzold, Adjoint sensitivity analysis for differential-algebraic
equations: Part II, Numerical Solution, submitted.

8. Y. Cao, S. Li, L. Petzold and R. Serban, Adjoint sensitivity analysis for

differential-algebraic equations: Part I, The adjoint DAE system, submitted.
9. R. Courant, K.O.Friedrichs, and H. Lewy, Über die partiellen differen-

zengleichungen der mathematicschen physik., Mathematische Annalen, 100
(1928), 32-74.

10. J. E. Flaherty, P. K. Moore and C. Ozturan, Adaptive overlapping grid methods
for parabolic systems, in Adaptive Methods for Partial Differential Equations,
J. E. Flaherty, P.J. Paslow, M. S. Shephard, and J. D. Vasilakis, eds., Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1989.

11. J. M. Hyman and S. Li, Solution Adapted Nested Grid Refinement for 2-D
PDEs, Los Alamos National Lab. Report, LA-UR-98-5463 (1998).

12. J. M. Hyman, S. Li and L. R. Petzold, An Adaptive Moving Mesh Method
with Static Rezoning for Partial Differential Equations, Los Alamos National
Laboratory Report (1998).

13. S. Li and L. R. Petzold, Software and algorithms for sensitivity analysis of large-
scale differential-algebraic systems, J. Comp. and Appl. Math., 125 (2001) 131-
145.

14. S. Li and L. R. Petzold, Adjoint sensitivity analysis for partial differential-
algebraic equations, in preparation.

15. J. Quirk, An Adaptive Grid Algorithm for Computational Shock Hydrodynam-
ics, Ph.D thesis (1991), College of Aeronautics, Cranfield Institute of Tech.

16. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Com-
pany, Boston, 1996.

16 Shengtai Li et al.

17. J. G. Verwer, J. G. Blom, VLUGR2: A Vectorized Local Uniform Grid Refine-
ment Code for PDEs in 2D, Report NM-R9307 (1993), CWI, Amsterdam.

18. P. A. Zegeling, Moving Finite-Element Solution of Time-Dependent Partial
Differential Equations in Two Space Dimensions. Department of Numerical
Mathematics, CWI, Amsterdam, Report NM-R9206 (1992).

