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tion, which is often called a reaction–convection–diffusion
equation, is representative of many problems which areIt is well known that moving mesh and upwinding schemes are

two kinds of techniques for tracking the shock or steep wave front solved by moving mesh methods in one dimension.
in the solution of PDEs. It is expected that their combination should Much work has been devoted to the construction of
produce more robust methods. Several upwinding schemes are shock capturing schemes on uniform grids, such as Godu-
considered for non-uniform meshes. A self-adaptive moving mesh

nov, MUSCL, PPM, FCT, ENO, and PHM (see Salari andmethod is also described. Numerical examples are given to illustrate
Steinber [21] and its references, Shu and Osher [22], andthat in some cases, especially for hyperbolic conservative laws with

nonconvex flux, the upwinding schemes improve the results of the Marquina [16] for more information). Most of these
moving mesh methods. Comparing the results of several upwinding schemes possess the total variation diminishing (TVD) fea-
schemes, we find the local piecewise hyperbolic method (PHM) is ture which is necessary for high order oscillation-free
very efficient and accurate when combined with a moving mesh

schemes. The conventional scheme on a uniform grid needsstrategy. Q 1997 Academic Press

enough points to capture the shock or steep wave front,
which often puts too many points in the area where the
solution is very flat and smooth. Moving mesh methods,1. INTRODUCTION
on the other hand, can redistribute the nodes to those

Moving mesh methods are becoming increasingly popu- areas where the solution varies rapidly at each time step to
lar for several kinds of parabolic and hyperbolic partial gain computational efficiency. Thus, many useful schemes
differential equations (PDEs) involving fine scale struc- have been applied on moving grids in recent years. Hyman
tures such as steep moving fronts, emerging steep layers, and Harten [8] applied the Godunov method on a nonuni-
pulses, shocks, etc. Moving mesh methods use nonuniform form grid where the grids move along the characteristic
spatial grids and move the grid continuously in the space– direction. Salari and Steinberg [21] developed a FCT
time domain. The discretization of the PDE and the grid method on a moving grid (FCTMG) based on adaptive
selection procedure are intrinsically coupled. grid generation algorithms. Zarnowski [26] introduced a

In this paper we investigate moving mesh methods ap- moving grid method for scalar conservation laws based on
plied to PDEs of the form nonlinear interpolation with a means of adding or remov-

ing grid points accordingly as characteristics either spread
in a rarefaction fan or merge into a shock wave. All these­u

­t
5

­f(u)
­x

1 euxx 1 h(u), (1)
methods use the full discretized PDE form and a fixed
time step in time integration.

where f(u), h(u) are differentiable functions. This equa- In this paper, we apply the method of lines (MOL) to
discretize the PDEs. The advantages and disadvantages of

1 The work of this author was partially supported by the Army High MOL have been discussed by many authors. The moving
Performance Computing Research Center and by ARO Contract

grid method we chose is the class of methods based on theDAAL03-92-6-0247.
equidistributing principle (see [3, 5, 10, 11, 22, 23] for2 The work of this author was partially supported by NIST Contract

60 NANB2D1272, NSF Contract NSF CCR-95-27151, by the Minnesota detailed information). During discretization using MOL,
Supercomputer Institute, and by the Army High Performance Computing the most troublesome term is the convection term ­f(u)/
Research Center under the auspices of the Department of the Army, ­x. If the central difference scheme, which is adopted by
Army Research Laboratory Cooperative agreement Number DAAH04-

most moving mesh software, is used to discretize this term95-2-0003/Contract DAAH04-95-C-0008, the content of which does not
the odd-order derivatives predominate in the truncationnecessarily reflect the position or the policy of the government, and no

official endorsement should be inferred. error. The extra term can cause the solution to have an
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oscillatory behavior (Gibbs oscillations) that the proper where f̂ j11/2, j 5 1, 2, ..., n 2 1, is called the numerical flux.
It is a function of 2k variablessolution did not possess in the vicinity of the transition.

Although the moving mesh method can place enough
nodes in the wave front and works very well for a convex f̂ j11/2 5 f̂ (un

j2k11, ..., un
j1k),

flux function and sufficiently smooth initial conditions (see
the result of [5 or 11] for Burgers’ equation), for nonconvex which satisfies the consistency condition f̂ (u, ..., u) 5 f(u).
flux functions or piecewise initial conditions, there are still The most commonly used scheme in moving mesh systems,
some oscillations appearing in the solution (see the result central difference, is also of the form (3), in which f̂ j11/2 5
in Section 4). High-order upwinding schemes are needed As( fj11 1 fj ). For solutions with a rapid transition, the central
in these cases. Almost all the upwinding schemes can be difference is insufficient to resolve the solution in the tran-
constructed on a nonuniform mesh. We will examine the sition area. Spurious oscillations often occur in those cases.
ENO scheme, the flux-limited scheme, and the PHM Many useful schemes have been proposed to solve this
scheme. ENO schemes work very well with the constant problem. Among them, several classes of nonlinear higher
time-step integration method but have great trouble when order upwinding schemes have been shown to be stable
solved by adaptive time integration. The flux-limited and to avoid spurious oscillations. ENO is one of the most
scheme can be used for adaptive time integration; however, commonly used classes of upwinding schemes to gain high
it does not yield good results for some problems. The local resolution and accuracy with a uniform mesh. It can be of
third-order PHM method [16], however, can be solved high order and some of them can be used for nonuniform
efficiently using a conventional ODE or DAE solver and mesh without any modification. The most efficient imple-
can yield very good results. mentation of ENO methods has been investigated by Shu

When Eq. (1) is of hyperbolic form (i.e., e 5 0), a and Osher in [22]. To be concise, we omit the detailed
very small artificial viscosity can be added to improve the discussion of Shu and Osher on how to construct high
computational stability. Numerical results show that this order ENO schemes and give only the explicit form of
does not affect the accuracy of the solution very much. the second- and third-order ENO schemes following their
Under the moving mesh frame, an additional convective algorithm ENO–Roe, because to our knowledge, second
term, uxx

.
, appears in the equation. Equation (1) becomes order or third order is state of the art in moving mesh

computation and higher order differencing in moving mesh
has proven to be unstable by numerical experiments. In

u
.

5
­f(u)

­x
1 euxx 1 h(u) 1 uxx

.
our experience, the first-order Roe scheme [20] can give
a good result in many cases and it is the basis for other

0 5 g(u, x, x
.
),

(2)

higher order methods. Thus, we first give the Roe scheme.

First-Order Roe Schemewhere mesh moving is governed by g(u, x, x
.
).

In Section 2, we describe upwinding schemes which can The numerical flux of the Roe scheme is given by
be used on a nonuniform mesh following the construction
methods of Shu and Osher [22] and other authors. In Sec-

f̂ (1)
j11/2 5 As( fj 1 fj11 2 uaj11/2u(uj11 2 uj )), (4)tion 3, we discuss moving mesh methods based on equidis-

tribution. In Section 4, numerical experiments are given
where aj11/2 is called the ‘‘Roe’’ speed, which is defined byto illustrate the advantages of combining the moving mesh

with an upwinding scheme and in particular the advantages
of the PHM method.

aj11/2 5 5
fj11 2 fj

uj11 2 uj
, uj11 ? uj

­f
­uUuj11/2

, uj 5 uj11.

(5)2. UPWINDING SCHEMES ON NONUNIFORM MESH

In this section, we consider the discretization of the
convective terms on a nonuniform mesh. Unless specified,
we consider the general convective term f(u)x only. For It is easy to see that for the Roe scheme f̂ (1)

j11/2 5 fk1
, where

simplicity, we consider the 1D scalar problem. k1 is defined by
Generally, the convective term is discretized into conser-

vation form, e.g.,
k1 5 Hj, aj11/2 $ 0

j 1 1, aj11/2 , 0,
(6)

­f(u)(x))
­x U

xj

5
2( f̂ j11/2 2 f̂ j21/2)

xj11 2 xj21
, (3)

which is in agreement with the principle of upwinding. In
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the moving mesh system, there is another convection term Third Order ENO Scheme
x
.
(­u/­x). When we want to improve the stability of systems

The idea of the third order ENO scheme is to compute
solved by moving mesh methods, this term should also be

the third order approximation to f at xj11/2 in a non-oscilla-
discretized via upwinding. We give here the first order

tory way by choosing the smaller of the second order di-
upwinding scheme,

vided differences at xk2
, i.e., to choose

k3 5 Hk2 2 1, if u f [xk212, xk211, xk2
]u $ u f [xk211, xk2

, xk221]u

k2, otherwise.x
.

? ux 5 5x
.

i
ui11 2 ui

xi11 2 xi
, x

.
i $ 0,

x
.

i
ui 2 ui21

xi 2 xi21
, x

.
i , 0.

(7)

Then the numerical flux is

The upwinding discretization (7) has been shown to im- f (3)
j11/2 5 f (2)

j11/2 1 c[(xj11/2 2 xk211/2)(xj11/2 2 xk213/2)
prove the stability of the moving mesh system [15]. How-

1 (xj11/2 2 xk221/2)(xj21/2 2 xk213/2) (10)
ever, for some problems it does not yield a very accurate

1 (xj21/2 2 xk221/2)(xj11/2 2 xk211/2)],solution. We note that when stability is not a problem, the
central difference is to be recommended over first-order
upwinding because it is more conservative and accurate in where
those cases.

Second-Order ENO Scheme c 5
1
3

f [xk312, xk311] 2 f [xk311, xk3
]

xk312 2 xk3

.
The second-order ENO scheme is based on the first-

order Roe scheme. By choosing the smaller of the first-
order divided differences of f at xk1

, i.e., Equation (10) is also derived from an interpolation formula
and is given by Shu and Osher [22]. From Eq. (3) and Eq.
(10), it is easily seen that third-order ENO schemes are
functions of four or five variables. Similarly, we can also

k2 5 5k1 2 1, if U fk111 2 fk1

xk111 2 xk1

U$ U fk1
2 fk121

xk1
2 xk121

U
k1, otherwise.

localize Eq. (10) and restrict the interval to [xj21, xj12].
Equations (8) and (10) appear complicated, however j is
between [ki 2 1, ki 1 1] and some terms can be eliminated.
Therefore the computational cost is relatively small.

the estimate of the flux f̂ j11/2 is then
Other High Order Upwinding Schemes

There are many other kinds of upwinding schemes.f̂ (2)
j11/2 5 fk1

1 S fk211 2 fk2

xk211 2 xk2

D ?
1
2

(2xj11/2 2 xk111/2 2 xk121/2).
Among them, the flux-limited scheme due to Van Leer [14]
and local third-order PHM (piecewise hyperbolic method)(8)
scheme due to Marquina [16] can be used in the moving
mesh system with slight modification. The second-order

Equation (8) is derived from interpolation at xk1
(see Shu flux-limited scheme has been used in the latest NAG li-

and Osher [22]). It is second order on a quasi-uniform brary software for first-order partial differential equations
mesh (see [23]). In practice, we find when replacing the (see [18]). The method constructs numerical flux as
interval As(2xj11/2 2 xk111/2 2 xk121/2) with

fj11/2 5 f̂ j11/2(uL, uR) 5 As( f (uL) 1 f (uR)). (11)
0.5(xj11 2 xj ), if k1 5 j, (9.1)

Denote hi 5 xi 2 xi21. Then we have
or

0.5(xj 2 xj11), if k1 5 j 1 1; (9.2) uL 5 uj 1
hi11

2
­u
­xUx5xj

5 uj 1
hi11

2 Suj 2 uj21

hj
D ? B(ri),

the method is still second order and can be solved more
efficiently when combined with the moving mesh. where B(ri) is a flux limiter defined by
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practice, some special cases like uj11 5 uj can be easily
B(ri) 5

ri 1 uriu
1 1 uriu settled separately.

3. THE SELF-ADAPTIVE MOVING MESH STRATEGYand

As discussed by Furzeland et al. [5], in the classical La-
ri 5

uc
i11/2 2 ui

uu
i11/2 2 ui

5
(ui11 2 ui)/hi11

(ui 2 u
i21

)/hi
, grange method for fluid-flow problems, the movement of

the nodes is attached to a physically motivated, specific
flow quantity. For example, for a problem like (1), it makes

where uc
i11 5 As(ui 1 ui1) is the central difference term, and sense to attach the movement of the nodes to the convec-

uu
i11 5 ui 1 (hi11/2) ((ui11 2 ui)/hi) is the left upwinding tion term ­f (u)/­x, i.e., to choose x

.
5 2df (u)/du so as to

term. Similarly, obtain a parabolic equation of diffusion form. The ratio-
nale behind this choice is that parabolic problems without
large first-order terms usually possess smoother solutions

uR 5 ui11 2
hi11

2
(ui12 2 ui11)

hi12
B S 1

ri11
D . and thus may be easier to solve numerically. However, the

numerical realization of the prescription x
.

5 2df(u)/du
involves its own difficulties, such as mesh point crossings.

The construction of a local PHM scheme was introduced In order to obtain a robust moving mesh method which
by Marquina [16] for scalar conservation laws. The idea could solve a wide variety of problems, we follow many
of the PHM scheme is to construct the primitive function authors in adopting the equidistribution principle mesh
of flux via a piecewise hyperbolic equation. Because during moving strategy with arclength monitor function. We give
our implementation of the moving mesh, we put as many a brief discussion on how to regularize the mesh moving
nodes as possible in the transition area, we can simplify equation to get a robust and efficient mesh movement and
the algorithm PHM-REF of Marquina and consider only physical solution.
the nontransition cells. Define dj 5 f (u(xj )) and dj11/2 5 The idea of the equidistribution principle (EP) is to
(dj11 2 dj )/(xj11 2 xj ) for all j. We then assign the central equidistribute a given mesh function in space, placing more
derivative dj to be the harmonic mean of dj21/2 and dj11/2 nodes where the spatial error is large so as to gain high

accuracy overall with a small number of nodes. It is natural
to think to incorporate some error measurement into thedj 5

2dj11/2dj21/2

dj21/2 1 dj11/2
,

monitor function. However, in the numerical computation
of the moving mesh, high order derivatives cause much
numerical noise and instability. Numerical experimentsand a to be
show that at least for finite difference methods, the mesh
generated from the error measurement monitor is not very
good (see Blom and Verwer [2]).

Regularization is very important for the mesh movinga 5 52 S! dj

dj21/2
2 1D, if udj21/2u # udj11/2u

2 S1 2 ! dj

dj11/2
D, otherwise.

equation (see [15] for detailed information). It has been
shown by numerical experiment that without regulariza-
tion, the Newton iteration for implicit methods often fails
to converge and the mesh appears very skew. For explicit

Then the numerical flux can be taken to be methods, without regularization, the computation often
exits due to too small time step. The regularization can
also be seen as smoothing and diffusing (see [15]), whichf̂ j11/2 5 Hfj 1 dj ? hj ? h(a), if aj11/2 $ 0,

fj11 2 dj ? hj ? h(2a), if aj11/2 , 0,
(12)

can generate smoother grids and more accurate solutions.
Given a monitor function M(u, x), the equidistribution

principle iswhere h(x) is a differentiable function chosen to ensure
that the scheme is third order for a quasi-uniform mesh.
This scheme is of second order for a nonuniform mesh. For Exi11

xi

M(x, u) dx 5 Exi

xi21
M(x, u) dx 5 Const.

transition cells [xj , xj11], we use the Roe scheme. Although
technically the Roe scheme is only first order, the moving
mesh ensures that the transition cells are very small. In Discretization using the centered integral leads to
practice, we have observed no loss of global accuracy.

M(u, x)xi11/2
(xx11 2 xi) 5 M(x, u)xi21/2

(xi 2 xi21). (13)Remark. We give here only the general formula. In
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We use the arclength monitor k
k 1 1

, max S Dxi

Dxi11
,
Dxi21

Dxi
D,

k 1 1
k

M(u, x)ux
i11/2

5 !1 1 Sui11 2 ui

xi11 2 xi
D2

. for k . 0. Equation (13) can be turned into

Also, the trapezoidal rule can be used in the discretization
Mi

ni
5

Mi21

ni21
,

of the integral. After regularization, we obtain the moving
mesh equation

where ni is node concentration defined by

tAx
.

5 Mx 1 b, (14) ni 5 (Dxi)21, Dxi 5 xi11 2 xi.

where t is a temporal regularization parameter, A can be Thus, the smoothing (15) can be implemented on node
viewed as a smoothing operator, and Mx 1 b is the result concentration by
of Eq. (13). A can be taken to be several forms besides the
identity, each one corresponding to a discretized MMPDE n̂i 5 ni 2 k(k 1 1)(ni11 2 2ni 1 ni21), 1 # i # N.
(see [11]). When A is of the form

This method, called the Dorfi and Drury method, was
first proposed in [3], analyzed by Verwer et al. [24], and
reconsidered by Huang and Russell [12]. In our experience,
Eq. (15) results in a quasi-uniform mesh and can yieldA 5 1

22 1

1 22
??? 1

1 22
2 ,

good results and efficiency if enough nodes are available
(see [24] for the needed number of nodes); otherwise,
the computation can fail. The other strategy is a local
smoothing method, which is implemented by Huang et al.

Equation (14) is called MMPDE6 (see [11]). Numerical [11]. This method restricts the summation of Eq. (15) to
results in [11] show that the Newton iterations converge its adjacent nodes; i.e.,
faster for MMPDE6 than for other MMPDEs. We will use
it in our numerical experiments.

M̂i 5 Oi1p

j5i2p
S k

k 1 1Dui2j u

Mj , (16)We now discuss the spatial smoothing technique. First,
it should be noted that Eq. (13) is not a strict constraint
which should be satisfied during computation of the physi-

where p is often chosen to be 1 or 2. This strategy doescal solution. It is only a strategy which pushes the nodes
not restrict the mesh too much and also smooths the nodesto the locations where we want them to be. The discretiza-
in the transition corners. However, it often puts too manytion of M(x, u) does not affect the accuracy of the physical
nodes in the wave fronts or flat areas and is sensitive tosolution in an analytical sense. But it does affect the mesh
the time scale t. Generally, Eq. (16) is used when thedistribution. From numerical experiments we know that
number of nodes is small, and the Dorfi and Drury methodthe mesh quality affects directly the errors due to the spa-
is used when there are more nodes. Similarly we can imposetial discretization, convergence of the Newton iteration for
the smoothing methods on the mesh nodes themselves,implicit methods, and time step size for explicit methods.
which yieldsBased on Eq. (13), there are two ways in which smoothing

can be applied. One is to smooth the mesh x itself, the other
is to smooth the monitor. In practice, we often smooth the

Dx̂i 5 Oi1p

j5i2p
S k

k 1 1Dui2j u

Dxj .monitor function. There are two smoothing approaches.
One is global smoothing, i.e., smoothing the monitor func-
tion over all mesh nodes, This also can have good results.

4. NUMERICAL EXPERIMENTS
M̂i 5 ON

j51
S k

k 1 1Dui2j u

Mj , (15)
Here we consider the comparison of moving mesh meth-

ods with central difference and moving mesh methods with
upwinding schemes. Throughout, we shall use the arclengthwhere Mi 5 M(u, x)xi11/2

. This approach can restrict the
adjacent intervals of mesh nodes to satisfy monitor. For moving mesh equations of DAE form (e.g.,
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FIG. 1. Result of the Dorfi and Drury method for Burgers’ equation with 20 nodes and (a) central difference, (b) 2nd-order ENO scheme (9).

Eq. (14) or the Dorfi and Drury method), we solve the f(u) 5 u2/2, « 5 1024.
systems using the double precision version of the stiff DAE
solver DASSL [19] with RTOL 5 ATOL 5 1026, in which with piecewise continuous initial condition
the time integration methods are the backward differentia-
tion formula (BDF), where the approximate Jacobian is
computed by DASSL internally using finite differences.
Unless specified otherwise, we select the stiffness parame-
ter k 5 2 and t 5 0.001 for the Dorfi and Drury method;

u(x, 0) 55
0.2, x # 0.1,

8x 2 0.6, 0.1 # x # 0.2,

1.0, 0.2 # x # 0.5,

210x 1 6, 0.5 # x # 0.6,

0.0, 0.6 # x # 1.0,

for other methods, we choose t 5 0.01. All the computa-
tions are done on a Sun SPARC-5.

EXAMPLE I. The first example we consider is the fa-
mous Burgers’ equation

and homogeneous Dirichlet conditions at x 5 0 and x 5­u/­t 5 2­f(u)/­x 1 «­2u/­x2, 0 , x , 1, t . 0,
1. This problem has served as a test example for moving
mesh methods by Verwer et al. [24]. The solution is a wavewhere
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TABLE I

Comparison of Different Schemes for Example 1

Scheme NSTP NJAC NRES CPU

CD 327 77 650 6.43
PHM (12) 368 109 761 10.38
Eq. (9) 1409 2931 1653 82.85
Eq. (11) 556 132 1181 14.87

We have also tested this problem using other schemes and
find scheme (8) is prohibitively slow (it takes 4573 time
steps and 6361 Jacobian evaluations to reach
t 5 0.6.); scheme (9) works well before the wave front
reaches the left side but takes a much longer time to adjust
itself when the shock hits the wall (it takes 203 time steps

FIG. 2. Result of the Dorfi and Drury method for Burgers’ equation and 45 Jacobian evaluations before t 5 0.6 but takes 1386
with 40 nodes and central difference. time steps and 1650 Jacobian evaluations to reach t 5 1.0.);

scheme (11) works faster than schemes (8) and (9) but
yields a poor solution (even worse than central difference).that steepens and moves to the right until a layer is formed
The solution results for schemes (8) and (9) are very similarat the end point x 5 1. This takes place for t P 0.2. Then
to PHM scheme (12). The computational efficiency (withthe solution slowly decays to zero, near x 5 1, because of
40 nodes) can be seen from Table I, where CD denotesthe zero boundary condition. We solved this problem using
the central difference, NSTP denotes the number of timethe Dorfi and Drury method and DASSL. First, with N 5
steps used, NRES denotes the number of calls to the resid-20 nodes, the method generates spurious oscillations in
ual subroutine and NJAC denotes the number of Jacob-Fig. 1a and then the Newton iteration fails to converge
ian evaluations.around t 5 0.9433. When we use the second-order ENO

scheme, instead of central difference, most of the spurious EXAMPLE II. For convection–diffusion problems with
oscillations disappear. The result is shown in Fig. 1b. Next, convex flux (convection term), the moving mesh with cen-
we use 40 nodes. There is still some oscillation for the tral difference works well when the number of nodes is
central difference (the result is shown in Fig. 2). However, great enough or sufficient smoothing is used. To test the
the result for PHM (12) is very good as shown in Fig. 3. moving mesh methods on more difficult problems, we con-

sider the Riemann problem with nonconvex flux,

ut 1 (f(u))x 5 «­u2/­2x, 21 , x , 1, t . 0, « 5 1024, (23)

where

f (u) 5 Af(u2 2 1)(u2 2 4).

The initial condition is given by

u(x, 0) 5 H23, if x # 0,

3, if x . 0.

This problem has been chosen as a test example for ENO
schemes by many authors [22], [16]. For initial condition
(23), instead of the expected sonic rarefaction fan that
appears for convex fluxes, a nonconvex sonic stationary
shock at x 5 0 develops. Our choice of scheme solves this
problem well. In Figs. (4)–(7), we compare the numericalFIG. 3. Result of the Dorfi and Drury method for Burgers’ equation

with 40 nodes and PHM (12). resolution of (23) solved with central difference, 2nd-order
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FIG. 4. Result of moving mesh with central difference for Problem II.

TABLE IIENO scheme (9), 2nd-order flux limited scheme (11) and
PHM scheme (12). We solved this problem using the Comparison of Different Schemes for Example 2
MMPDE6 ([11]) and DASSL. We observe that for the

Scheme NSTP NJAC NRES CPUcentral difference, there is a spurious oscillation. However,
the results for the upwinding schemes are good. The PHM

CD 7148 1224 12678 144.283
scheme is the best. The advantages of the PHM scheme PHM 216 31 409 5.7833
can also be seen from Table II (with 40 nodes).

FIG. 5. Result of moving mesh with 2nd-order ENO scheme (9) for Problem II.
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FIG. 6. Result of moving mesh with flux limiter scheme (11) for Problem II.

Remark. The moving mesh schemes we have consid- methods have been developed in [13]. Upwinding
schemes can also be used advantageously in combinationered here all result in a DAE, with stiffness depending

on the original PDE, the mesh spacing, and the time with these methods. We performed the same numerical
experiments using the moving mesh method of [13] andscale t. We have solved this DAE using implicit numer-

ical methods. For nonstiff systems, explicit methods can the explicit ODE solver DDRIVE (down load from
netlib) by Kahaner and Sutherland, with quite similarbe more efficient. Moving mesh methods which result

in an ODE which can be solved efficiently by explicit results.

FIG. 7. Result of moving mesh with local PHM scheme (12) for Problem II.
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