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New scalar structure functions with different sign-symmetry properties are defined. These structure functions
possess different scaling exponents even when their order is the same. Their scaling properties are investigated
for second and third orders, using data from high-Reynolds-number atmospheric boundary layer. It is only
when structure functions with disparate sign-symmetry properties are compared can the extended self-
similarity detect two different scaling ranges that may exist, as in the example of convective turbulence.
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I. INTRODUCTION

A problem of broad interest is the advection and diffusion
of passive scalars in a turbulent flow. The classical paradigm
of a passive scalar is the temperature fieldusx ,td when the
heating is small. The temperature incrementsDr =usx+r d
−usxd have been studied in the literature[1–3] in search of
scaling in the intermediate range of scales that are unaffected
directly by either the stirring mechanism or diffusive and
viscous effects. For examples of early and recent experimen-
tal studies, see[4,5], respectively. The following two types
of moments ofDr , the so-called structure functions of order
n, have been employed:

Snsr d = ksusx + r d − usxddnl = kDr
nl, s1d

Sunusr d = kuusx + r d − usxdunl = kuDr unl. s2d

Here, r is the separation vector between two spatial posi-
tions, andk·l defines a suitable ensemble average. For con-
venience we will call Eq.(1) the normal structure functions
and Eq.(2) the absolutestructure functions. Whenr ;ur u is
small compared to the large scaleL, both structure functions
are homogeneous, i.e., independent ofx. Clearly, Eqs.(1)
and(2) coincide for evenn. However, remembering that nor-
mal odd moments are zero in the absence of a mean tempera-
ture gradient while that is not so for absolute odd moments,
one may expect, for oddn, that there might be perceptible
differences in the two classes of structure functions. It is
useful to quantify these differences and stress the reasons
why they might be important.

The following two comments put the present work in per-
spective. The first concerns the extraction of scaling expo-
nents of structure functions using the Extended Self-
Similarity (ESS) [6]. Instead of examining the scaling of

normal structure functions,Snsrd, with respect to the scale
separationr directly, the practice is to examine the scaling
relative to another structure function, saySmsrd, mÞn. This
usually leads to the extension of a possible algebraic scaling
range, and the relative scaling exponent,Snsrd,Smsrdzn,m

wherezn,m=zn/zm, can be obtained with greater confidence.
In the literature, the implementation of the method has often
mixed up normal structure functions and absolute structure
functions without exploring the differences between them.
Further, it was recently shown that in the presence of con-
vection, ESS fails to show the existence of two distinct scal-
ing ranges—the nearly passive behavior at small scales and
the dominance of buoyancy at large scales[7]. This point is
illustrated in Fig. 1. In the top figure, we show the second
order structure function with clearly separated scaling
ranges; in the bottom figure, the corresponding ESS plot is
shown to result in a line of nearly constant slope, without
making the necessary distinction between the regions marked
A and B. (The second set of data in the bottom figure corre-
sponds to another set of measurements, with qualitatively
similar conclusion.)

The second comment is that the structure functions, Eqs.
(1) and(2), have different sign-symmetry properties. One has
to distinguish the sign-symmetry with respect to the reversal
of incrementsDr →−Dr from that with respect to spatial re-
flection (also known as parity)—that is, for the transforma-
tion r →−r . The absolute structure functions(2) remain un-
changed for all ordersn under both transformations; they
have evensign-symmetry. The same is true for even-order
normal structure functions but the odd-order normal structure
functions change sign under both transformations; they have
odd sign-symmetry or sign-antisymmetry. Note thatDr
→−Dr does not follow fromr →−r although, for homoge-
neous turbulence, both transformations have the same effect
on Eq.(1). We wish to comment on ESS in the light of the
sign-symmetry properties of structure functions. For this pur-
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pose, it is convenient to introduce new types of structure
functions which explicitly emphasize the sign-symmetry
with respect to the incrementDr . This is our basic goal.

These new quantities, along with Eqs.(1) and(2), will be
calculated from temperature data from a high-Reynolds-
number atmospheric boundary layer. The Taylor microscale
Reynolds number is about 3500. Since the experiments have
been described in some detail in[8], we shall mention only a
few details here. Measurements were made in a boundary
layer above salt flats of the Dugway Proving Ground in Utah,
at a height of 1.75 m above the ground. The ground was
smooth on the order of a millimeter. Taylor hypothesis was

used andurms/ Ū was about 7% with the mean speedŪ
=0.72 ms−1. Measurements were made at various times of
the day, covering intensely convective motion in late after-
noon, essentially neutral conditions in the evening hours and
somewhat stable conditions until about 11 PM. The data
records chosen for analysis corresponded to constant wind
conditions in magnitude as well as direction. Temperature
fluctuations were measured by two cold wires of 0.6mm
diameter and 1 mm length. The data acquisition system was
a standard constant-current anemometer system operated at a
small enough current to minimize velocity sensitivity.

The paper is organized as follows. In Sec. II, we will
construct the new types of structure functions, in line with
the approach of[9] for velocity increments. Since these
structure functions are of intrinsic interest, they are presented
first before considering ESS. Section III contains the results
of the ESS data analysis for structure functions with even
and odd sign-symmetry. In Sec. IV, we discuss a possible
explanation of the effects observed in terms of the SO(3)
rotation group decomposition of structure functions of differ-
ent sign-symmetry. Some concluding remarks are presented
in Sec. V.

II. SIGN-SYMMETRY WITH RESPECT TO THE
TEMPERATURE INCREMENT

Let the probability density function(PDF) of the tempera-
ture increment at fixed distance vectorr be given byfsDrd.
First, we can define Eqs.(1) and (2) as

Sn =E
−`

`

Dr
nfsDrddDr , s3d

Sunu =E
−`

`

uDr unfsDrddDr . s4d

The PDF can be decomposed into its symmetric and anti-
symmetric parts with respect to the increment as

fssDrd =
fsDrd + fs− Drd

2
, s5d

fasDrd =
fsDrd − fs− Drd

2
. s6d

Note thatfa does not have the positive-definite property of a
PDF.

We can also define the positive and negative parts of the
PDF as

psDr ,Dr ù 0d = fsDrd, s7d

nsDr ,Dr ù 0d = fs− Drd, s8d

and define moments ofDr with respect tofs, fa, p and n,
respectively, by the following relations:

Pn =E
0

`

Dr
npsDrddDr , s9d

FIG. 1. Normal structure function of the temperature fluctua-
tions. Top figure:S2sr d is shown for heighth=1.75 m above the
ground. Shown by the vertical arrow on the abscissa is the integral
scaleLu for the temperature fluctuations. Bottom figure:S4sr d as a
function of S2sr d. The data corresponding to the top figure are
marked as circles(multiplied, for convenience, by a factor of 10). A
and B, which have the same slope in the bottom figure, correspond
to the two scaling ranges with slopes of 0.65 and 0.44, respectively,
in the top figure. The crosses in the bottom figure correspond to
another similar situation where A and B, again, have two distinctly
different slopes for normal structure functions. Both figures are re-
produced from Ref.[7].
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Nn =E
0

`

Dr
nnsDrddDr , s10d

Sn,s = 2E
0

`

Dr
nfssDrddDr , s11d

Sn,a = 2E
0

`

Dr
nfasDrddDr . s12d

The following relations are now valid:

Sn,s = Pn + Nn = Sunu, s13d

Sn,a = Pn − Nn. s14d

For odd values ofn=2k+1, Eq. (14) reduces to the normal
odd-order structure function

S2k+1,a = P2k+1 − N2k+1 = S2k+1, s15d

whereas, for evenn=2k, Eq. (14) is a new structure function
which is even order, but sign-antisymmetric. It is not pos-
sible to have this combination in terms of either normal or
absolute structure functions.

On the basis of the discussion of the sign-symmetries offs
and fa, using the definitions(7) and (8), it is clear that

Pn + Nn =E
0

`

Dr
n
„psDrd + nsDrd…dDr

=E
0

`

Dr
n
„fsDrd + fs− Drd…dDr s16d

is sign-symmetric, while

Pn − Nn =E
0

`

Dr
n
„psDrd − nsDrd…dDr

=E
0

`

Dr
n
„fsDrd − fs− Drd…dDr s17d

is sign-antisymmetric.
To illustrate the differences between normal and absolute

structure functions, we plot in Fig. 2 the logarithmic local
slopes for four types of moments:Pn, Nn, Sn,s andSn,a. Fig-
ure 2(a) show these quantities forn=2. HereS2,a is the nor-
mal (and absolute) second order structure function;uS2,au
=N2−P2 is the newly defined sign-antisymmetric second or-
der structure function. Figure 2(b) shows the same four
quantities forn=3. Although the scaling is not impeccable
even at this high Reynolds number(see Ref.[10] for com-
ments in this regard on the scaling of velocity structure func-
tions), a scaling tendency can be discerned in the range be-
tween a few mm and a few cm.

Independent of this detail, it is clear that the exponents, if
one were to assign nominal values in the scaling range, are
not the same for all the different structure functions of the
same order. In particular, the second-order sign-
antisymmetric structure functionuS2,au=N2−P2 has a sub-
stantially larger exponent than the classical exponent of 2/3.
While S3,a=S3 has a scaling exponent close to the Kolmog-
orov prediction of 1, the other curves have measurably
smaller scaling exponents. In particular, the absolute struc-
ture functions have smaller scaling exponents than the nor-
mal structure function.

At the least, these features are disconcerting to anyone
interested in scaling exponents. An understanding of differ-
ences in the exponents of the various types of structure func-
tions may help in this regard. This will be attempted in the
next section.

III. ANALYSIS USING EXTENDED SELF-SIMILARITY

In this section, we shall examine ESS of scalar statistics
in the light of the new objects defined in terms of their parity.

FIG. 2. Local slopes in the log-log graphs of four types of structure functions: positivesPnd and negativesNnd parts, the sum of positive
and negative parts(same as the absolute moment), Sunu=Pn+Nn=Sn,s, and the negative minus the positive part,uSnu=Nn−Pn= uSn,au.
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We first apply ESS as is normally done for velocity statistics:
plot structure functions of all orders against the absolute
third order structure function. We shall follow this practice
for illustrative purposes, even though the third order does not
have a comparably significant meaning for temperature. In
Fig. 3(a), the ESS plot ofS2srd versusSu3u shows a single
relative scaling exponent outside the dissipative range. The
inset shows the local logarithmic slope of the extended self-
similarity plot which is calculated via D2,u3u
=d log(S2srd) /d log(Su3usrd). However, this same signal has
two scaling regions with distinct exponents when plotted
againstr (corresponding to the passive range at small scales
and the convective range at large scales, see top panel of Fig.
1). This two-exponent scaling behavior is masked by ESS.
This is essentially so even if we plot the sign-antisymmetric
structure function of the second-order againstS3 (which is
also sign-antisymmetric, see Sec. II), as seen in Fig. 3(b).

Let us now compare objects of the same order, but differ-
ent sign-symmetry. In Fig. 4(a), we show a plot ofS3srd
which is odd-parity(made of the antisymmetric combination
of the PDF functions) versusSu3usrd, which is the correspond-
ing even-parity object of the same order. The two objects

scale identically in the smallest(dissipative/diffusive) scales
with relative exponent of unity, transitioning into a region of
relative exponent 1.27. This corresponds to the inertial range
scaling, as we already know from Fig. 2. Past this range, the
relative scaling exponent drops back to,1. In Fig. 4(b), we
repeat the ESS comparison for the second order. Instead of
plotting the second-order object against another order, we
choose to compare the even- and odd-parity manifestations
S2,ssrd=S2srd andS2,asrd, respectively. Once again, it is seen
that there are two regions of scaling beyond the dissipative
range. The small-scale range has a relative scaling exponent
of about 1 while the large-scale range has a slope of 1.42.
These exponents are as expected from the direct scaling
analysis of[7].

Finally, when we compare objects of different orderand
different parity as shown in Fig. 5, the dual scaling range
feature persists. Figure 5(a) shows S2,s=S2srd versusS3,a

=S3srd while Fig. 5(b) showsS2,a vs S3,s=Su3usrd. Again, we
recover two separate scaling ranges, one inertial and one
convective.

From these examples, we can now make the following
general statement. In a process with two distinct scaling

FIG. 3. ESS comparisons of structure functions of different order and same sign-symmetry. Insets show the(logarithmic) local slope in
these ESS coordinates. In this comparison, only one scaling exponent is seen past the dissipation range. The conditions for this and other
figures to follow are the same as for Fig. 1.

FIG. 4. ESS comparisons of structure functions of the same order and different sign-symmetry. Inset shows the(logarithmic) local slope
in these ESS coordinates. For this comparison, the two different scaling regimes are retreived. Vertical bars are inserted in order to show
regions of constant local slope.
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ranges, ESS cannot distinguish between them whenever a
comparison is made between two like-parity objects. How-
ever, if ESS compares objects ofany order, but of opposite
parity, a second scaling(if it exists) can be recovered. This is
our major qualitative conclusion. This kind of comparison
has been made possible by the introduction of the odd-
symmetry, even-order objectsSn,asrd (n even)—which, to our
knowledge, have not been considered before.

IV. PARITY OF THE NEW MOMENTS FROM THE
VIEWPOINT OF SO(3) DECOMPOSITION

We shall now discuss the above property of ESS from
another perspective that contains the correct description of
the parity property. We consider an analytical expression for
structure functions with two distinct scaling ranges, sepa-
rated by a crossover scalelc. Since we do not know the
proper analytical expression for the structure functions, we
use an empirical interpolation formula. Batchelor’s attempt
[11] in this direction has been extended variously, in particu-
lar in Refs.[12,13] for structure functions of all orders. Here,
we shall extend the specific form proposed in Ref.[14] to the
nth order as

Snsrd , S r

lc
DanFgS r

lc
DGan−bn

, s18d

with the function

gsxd =
1

s1 + xkd1/k , s19d

where the assumed scaling exponentsan hold for the passive
range, r ! lc, and bn for the convective range,r @ lc, and
an.bn; gsxd is a dimensionless function that is monotoni-
cally decreasing, and the exponentk.1 determines the
width of the crossover from one scaling range to the other.

We make use of thespatial parityof the signed structure
functions by noting that, in homogeneous turbulence,
Sn,ssr d=Sunusr d is even-parity with respect to reflection under
r →−r for all n; the odd-order normal structure functions

S2k+1,asr d=S2k+1sr d are odd-parity; the newly definedS2k,a,
even-order sign-antisymmetricstatistics are odd-parity as
well. So, in the homogeneous case the sign-symmetry with
respect to the increment is thesameas the sign-symmetry
with respect to the spatial orientation ofr (i.e., parity) and
this allows for the following decomposition of the objects
defined in Sec. II.

The recently developed SO(3) group decomposition[15]
applies conveniently to the symmetric and antisymmetric
structure functions. For the scalar case, the basis functions
are spherical harmonicsYl,msr̂ d [16]. The even or oddspatial
parity is carried by the angular dependence in the spherical
harmonics, in effect by the indexl, as

Yl,ms− r̂ d = s− 1dlYl,msr̂ d. s20d

Perfectly isotropic objects would contain anl =0 sector only,
i.e., no angular dependence would be present. Sign-
symmetric functions are composed of only even sectors
while sign-antisymmetric functions are composed only of
odd sectors. Thus,

Sn,ssr,u,fd = Sn,s
s0dsrd + Sn,s

s2dsr,u,fd + . . . , s21d

=o
k=0

`

o
m=−2k

2k

A2k,mrzn
s2kd

Y2k,msu,fd,

where the superscriptss0d, s2d, . . . denote the even-parity
contributions allowed, and

Sn,asr,u,fd = Sn,a
s1dsr,u,fd + Sn,a

s3dsr,u,fd + . . . , s22d

=o
k=0

`

o
m=−2k−1

2k+1

A2k+1,mrzn
s2k+1d

Y2k+1,msu,fd,

where the superscriptss1d, s3d, . . . denote the odd-parity con-
tributions allowed. We can substitute the algebraic scaling
form of Eq. (18) for each scaling term in Eqs.(22) and(23)
to obtain

FIG. 5. ESS comparisons of structure functions of different order and different sign-symmetry. The insets show the(logarithmic) local
slope in these ESS coordinates. Once again, two different scaling regimes are retrieved. Vertical bars are inserted in order to show regions
of constant local slope.
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Sn,ssr,u,fd = o
k,m

A2k,mS r

lc
Dan

s2kd

3 FgS r

lc
DGan

s2kd−bn
s2kd

3 Y2k,msu,fd, s23d

and

Sn,asr,u,fd = o
k,m

A2k+1,mS r

lc
Dan

s2k+1d

3 FgS r

lc
DGan

s2k+1d−bn
s2k+1d

3 Y2k+1,msu,fd. s24d

The finding that ESS yields the same relative exponents,
when comparisons are made of even-parity statistics, means
that for all sectors and for any pair of orderssp,qd we have

ap
s2kd

aq
s2kd =

bp
s2kd

bq
s2kd . s25d

Equivalently, forp,q, it follows that

ap
s2kd

ap
s2kdPi=p

q−1s1 + di
s2kdd

=
bp

s2kd

bp
s2kdPi=p

q−1s1 + di
s2kdd

, s26d

where the quantities

dp
s2kd =

ap+1
s2kd − ap

s2kd

ap
s2kd , s27d

are the relative increments between successive orders. The
constraint(25) means that the relative increments in both
functions,apspd as well asbpspd, are equal. This was already
shown in Ref.[6], where physically different turbulent states
such as the Kolmogorov turbulence in three dimensions,
thermal convection as well as magnetohydrodynamic turbu-
lence showed the same relative ESS exponents. We suppose,
therefore, that as long as the different regimes belong to the
same “universality class”—i.e., if they have the same relative
incrementsdn

s2kd for all ordersn—ESS will simply mask the
presence of distinct scaling regimes.

The argument for the odd-parity ESS comparisons is simi-
lar, now with the constraint

ap
s2k+1d

aq
s2k+1d =

bp
s2k+1d

bq
s2k+1d . s28d

One remains within a universality class when plottingSp,asrd
as functions ofSq,asrd, but it can be expected that the relative
exponents will be different from those for the even parity
case.

We now turn to the case whereSp,ssrd are compared to
Sq,asrd, which are objects with different symmetries. When
proceeding as in Eqs.(25)–(27) we obtain

ap
s2kd

ap
s2k+1dPi=p

q−1s1 + ei
s2k+1dd

=
bp

s2kd

bp
s2k+1dPi=p

q−1s1 + ei
s2k+1dd

. s29d

For insensitivity to different scaling regimes, the following
must hold true:

ap
s2kd

ap
s2k+1d =

bp
s2kd

bp
s2k+1d . s30d

Recall that the superscripts2kd corresponds to even parity
objects whiles2k+1d corresponds to odd parity. We expect
that several mechanisms, such as the breaking of reflection
symmetry by a mean gradient for scalesr , lc or by buoy-
ancy effects for scalesr . lc, will lead to different ratios on
the left- and right-hand side of the Eq.(30), respectively,
thus leading to a “discontinuity” in scaling. While this dis-
cussion cannot be a proof of our main observation, it shows
that the two scaling regimes belong to different universality
classes when different parities are involved. Further, it pro-
vides hints for what kind of quantities have to be investi-
gated in order to shed more light on the issue, in experiments
as well as in numerical simulations.

V. CONCLUSIONS

We have analyzed moments of temperature increments
with respect to their sign-symmetry properties, and defined
sign-symmetric and sign-antisymmetric components for both
even- and odd-order structure functions. ESS analysis of all
combinations of symmetry and order of structure functions
indicates that this technique masks the convective scaling
regime. Only if objects of opposite parity are compared can
one recover the distinct scalings.

We have presented a model for how such scaling regimes
behave in the ESS analysis using even and odd orders of a
spherical harmonic expansion. Unfortunately, this model
cannot be taken to its logical conclusion because the various
numerical coefficients cannot be obtained with any certainty
from the existing data. Furthermore, a dependence on the
strength of the mean temperature gradient might modify
some of our results as well—e.g., differences in the expo-
nents of even order moments in comparison to odd order
moments.

One purpose here has been to point out the possible pit-
falls in using ESS without proper consideration of the sym-
metry properties of the statistics being compared. This obser-
vation does not detract from the merits of the method.
Indeed, ESS has proved to be a very useful tool in extracting
exponents when the scaling range with respect tor is short.
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