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Abstract We compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard
et al. in Theor Comp Fluid Dyn 8:1–35, 1996) with direct numerical simulation (DNS) data of a shear-free
mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in
which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested
in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able
to capture certain features of the SFML quite well for intermediate to long times, including the evolution of
the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as
the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for
the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori
spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to
wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in
the model.

Keywords Turbulence modeling · Inhomogeneous turbulence · Two-point modeling · Turbulent mixing ·
Non-stationary turbulence

1 Introduction

Developing theoretical models that can predict the statistical features of inhomogeneous, turbulent flows
presents a major challenge, and there are several possible approaches and perspectives to consider. One impor-
tant choice is to determine the space in which one wishes to describe the turbulence statistics, e.g. a ‘one-point’
space (describing the turbulent statistics at one point in space x) or a ‘multi-point’ space (describing the turbu-
lent statistics at multiple, distinct points in space x1, x2...xn). This choice is largely determined by the desired
balance between the solvability of the model and the level of faithfulness one wishes to retain to the true
turbulent dynamics. The majority of modeling efforts have tended to focus on one-point models, often in the
context of the so-called ‘Two Equation Models’ (see Pope [1]). However, from a fundamental perspective, the
models should at least describe the turbulence at the two-point level. This is both because the incompressible
Navier–Stokes equation (NSE) is itself essentially a two-point system, since the pressure field is non-local in
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physical space, and also because processes such as the energy transfer among the scales of motion in turbulence
cannot, by definition, be describedwith less than two-points since a single point carries no information on scale.

Themotivation for two-point models arises not only from fundamental, but also practical considerations. In
particular, one-point models utilize a single scale, associated with the most energetic scales of the turbulence,
to construct closure expressions for transport equations. The use of a single-scale closure implicitly assumes
that the distribution of energy among the scales of motion is in a state of statistical equilibrium (see [2–5]),
and as such, one-point models are intrinsically unsuitable for describing flows undergoing strong transients.
This is not to say that one-point models could not be “tuned” to match the results of such flows, but it is to say
that the resulting agreement would arise for the wrong reasons.

In light of such considerations, Besnard et al. [6] (referred to hereafter as BHRZ) developed a two-point
model for describing turbulent flows that are strongly out of statistical equilibrium. Their aim was to develop
a model that captured the physical process necessary for predicting such flows, but that was also as simple
as possible so as to be useful for practical calculations. Therefore, instead of using more formal approaches
such as renormalized perturbation theory (e.g. [7–10]), they used a phenomenological approach in which the
non-linear and non-local processes of the turbulence are represented by simple terms in the equations that
reproduce the correct, known qualitative behavior. The modeling philosophy behind the BHRZ model is sim-
ilar in spirit to some of the earlier models such as that of Daly and Harlow [11] and that of Launder et al. [12],
but extrapolates the modeling ideas in these works to the two-point space. The BHRZ model can be reduced
to a one-point model, i.e., a Reynolds stress–Epsilon model, via constructing the spectral-space moments of
the equations [5]. However, the resultant one-point model suffers from the limitations inherent in such models,
i.e., the inability to accurately model flows undergoing strong transients.

A drawback with two-point models is, of course, the additional computational effort required to solve their
equations compared with one-point models. However, with modern computing power, solving two-point mod-
els is more than feasible, to the extent that it is no longer necessary to invoke all of the additional assumptions
so as to construct simpler one-point models.

Previous comparisons of the BHRZmodel with homogeneous sheared and strained turbulence in Clark and
Zemach [13] showed good agreement, and that the model was able to capture certain non-trivial aspects of the
flow. Detailed investigations of the validity of the BHRZ model for predicting non-stationary, inhomogeneous
turbulent flows have not, however, been undertaken, and this is precisely the purpose of the present paper.
It is the way that the BHRZ models the physical-space transport of the turbulent velocity fluctuations that is
of primary concern, since the model made several approximations in describing this processes. The closure
model employed in BHRZ for the physical-space transport also contains an unknown constant; one of the aims
of the present work is to obtain an estimate for this constant.

We compare the BHRZ model with DNS data from a Shear-Free Mixing Layer (SFML). In the SFML
the turbulent kinetic energy propagates from a region of strong turbulence into a region of weak turbulence
through a mixing process driven solely by the inhomogeneity (the SFML is explained in detail in Sect. 2).
Such flows have also been studied in the laboratory [14,15] and provide useful paradigms for understanding
turbulent mixing processes in isolation from more complex mean-flow coupled processes. Indeed, the main
reason for this choice of test case for our study is that it allows us to test the BHRZ closure model used for
the physical-space transport of the turbulent velocity fluctuations independently of mean-flow coupled terms
which would add additional modeling complications.

The outline of the paper is as follows: In Sect. 2 we explain the SFML, the physical mechanisms that
govern its evolution, and the particular statistical features of the flow. Next, in Sect. 3 we introduce the BHRZ
model and discuss in detail the various approximations made in its derivation. We also discuss the initial and
boundary conditions used in the model for the SFML. In Sect. 4 we compare the predictions from the BHRZ
model with direct numerical simulation (DNS) data of a SFML. Finally, in Sect. 5 we draw conclusions to the
work and identify features of the BHRZ model that need to be improved in future work in order for it to more
accurately predict strongly non-stationary, inhomogeneous and anisotropic turbulent flows.

2 Shear-free mixing layer

In this section we first describe the SFML simulated in Tordella et al. [16], against which we shall compare
the BHRZ model predictions in Sect. 4, and then consider the physical mechanisms governing its evolution
and the statistical characteristics of the flow.



Model of non-stationary, inhomogeneous turbulence

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

(y − yc)/L

K/
m
ax

[K
]

Fig. 1 Illustration of the turbulent kinetic energy,K(y, t), in a SFML, where y ∈ [0, L], L is the periodic lengthscale ofK(y, t)
and yc ≡ L/2

Figure 1 illustrates the turbulent kinetic energy (TKE), K(y, t), in the SFML. The function satisfies
K(y, t) = K(y + L , t) where y ∈ [0, L] and L is the periodic lengthscale. At t = 0 the ratio of the max-
imum to the minimum TKE in the SFML is given by γ ≡ max[K(y, 0)]/min[K(y, 0)], and by varying γ ,
the strength of the initial inhomogeneity in the SFML can be controlled, and its effect upon the resulting flow
can be examined. Note that in Tordella et al. [16], only the TKE is inhomogeneous in the initial flow field; the
integral lengthscale is homogeneous.

In Tordella et al. [16], the initial velocity field for the SFML is constructed as follows: Let u[1](x, t)
be an incompressible Navier–Stokes turbulent velocity field that is statistically stationary, homogeneous and
isotropic. Now define a second velocity field u[2](x, t) ≡ λu[1](x, t), where λ is a constant ≤1. The initial
velocity field for the SFML is then constructed as

u(x, 0) ≡ P(y)u[1](x, 0) +
(
1 − P(y)

)
u[2](x, 0), (1)

where y ≡ x2 is the inhomogeneous, mixing direction. The function P(y) ∈ [0, 1], such that in the ‘low energy
region’, u[2](x, 0) describes the initial velocity field, and in the ‘high energy region’, u[1](x, 0) describes the
initial velocity field, and satisfies P(y) = P(y+ L). The particular form of P(y) used in Tordella et al. [16] is

P(y) = 1

2

(
1 + tanh

[
ay/L

]
tanh

[
a(y − L/2)/L

]
tanh

[
a(y − L)/L

])
, (2)

with a = 20π and L = 4π .
Due to the presence of P(y), (1) generates ∇·u(x, 0) �= 0. In order to generate an initial field that is

incompressible, (1) is projected onto a divergence-free field, and then λ is rescaled so that the resulting incom-
pressible velocity field possesses the desired value of γ . By repeating this procedure iteratively, one obtains
an initial velocity field that is incompressible with γ arbitrarily close to the desired value.

〈
u(x, 0)u(x, 0)

〉
≡ P2

〈
u[1](x, 0)u[1](x, 0)

〉
+ P

(
1 − P

)〈
u[1](x, 0)u[2](x, 0)

〉

+ P
(
1 − P

)〈
u[2](x, 0)u[1](x, 0)

〉
+

(
1 − P

)2〈
u[2](x, 0)u[2](x, 0)

〉
, (3)

〈
u(y, 0)u(y, 0)

〉
= (2/3)K[1](P2 + γ [1 − P]

(
2P + γ [1 − P]

))
I, (4)

K(y, 0) = K[1](P2 + γ [1 − P]
(
2P + γ [1 − P]

))
, (5)

The resulting initial velocity field u(x, 0) constructed in thismanner then has the properties 〈u(y, 0)u(y, 0)〉
= 〈u(y + L , 0)u(y + L , 0)〉 and 〈u(y, 0)u(y, 0)〉 ∝ I, where I is the identity tensor. The parameter γ will be
used as a control parameter in Sect. 4 to vary the strength of the initial inhomogeneity of the SFML.

Having defined the construction of u(x, 0), and henceK(y, 0), we now consider howK(y, t) evolves as the
flow mixes. The initial flow is inhomogeneous in the y direction, and consequently the transport mechanisms
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in the flow proceed to mix the TKE. The flow remains homogeneous in the (x1, x2) directions, such that the
flow exhibits cylindrical symmetry about the y ≡ x2 axis. In Tordella et al. [16] this fact is exploited for the
construction of the statistics of the flow field which are constructed as averages over the (x1, x2)-plane, for a
given y, t . The transport equation governing K(y, t) in the SFML is given by

∂tK(y, t) = − (1/2)∂y tr[〈uuu2〉]︸ ︷︷ ︸
Self-transport

− (1/2)∂y〈u2 p〉︸ ︷︷ ︸
Pressure-transport

+ (ν/2)∂2yK︸ ︷︷ ︸
Molecular transport

− ν〈∂xu : ∂xu〉,︸ ︷︷ ︸
Dissipation

(6)

where K(y, t) ≡ (1/2)tr[〈u(y, t)u(y, t)〉], u(x, t) is the fluid velocity field, p(x, t) is the pressure field, and
ν is the kinematic viscosity of the fluid. Note that in the SFML that we are considering, 〈u(x, t)〉 = 0 ∀t and
therefore u(x, t) represents the fluctuating velocity field.

When u(x, t) is turbulent, the contribution from the self-transport and pressure-transport terms will typi-
cally dominate the overall transport of K in physical space, with molecular diffusion transport playing a small
role. For the SFML that we are considering, the initial velocity field satisfies 〈u(y, 0)u(y, 0)〉 ∝ I. With this
initial condition, it is straightforward to show that the self-transport and pressure-transport terms in the equation
governing the evolution of 〈u(y, t)u(y, t)〉 are the only terms that are able to generate pointwise anisotropy in
the flow field. It is this, combined with the dominance of the self-transport and pressure-transport terms in the
mixing process, thatmakes the SFMLagood test case for theBHRZmodel since it provides a flowconfiguration
for which the BHRZ closure modeling for the physical-space transport of u(x, t) can be scrutinized.

One of the significant complexities of inhomogeneous turbulent flows is that the physical-space transport
is non-local because of the contribution from the pressure field. Although the pressure field is dynamically
non-local in any turbulent flow, it only makes an explicit, finite statistical contribution to the evolution of
K(y, t) when the flow is inhomogeneous. This may be seen by noting that for an incompressible turbulent
flow, (∂x · ∂x)p(x, t) = − ∂x∂x : [u(x, t)u(x, t)], and by expressing the solution to this Poisson equation
using a Green function, G, we may write

∂x〈u(x, t)p(x, t)〉 = −∂x

∫

R3

G(x, x′) ∂x′∂x′ :
〈
u(x, t)u(x′, t)u(x′, t)

〉
dx′. (7)

The complexity that this non-locality introduces is problematic both computationally, since it renders the evo-
lution equation for K(y, t) of integro-differential form, and also theoretically, because it requires knowledge
of the two-point statistic 〈u2(y, t)u2(y′, t)u2(y′, t)〉. In contrast to turbulent flows with a mean velocity field,
in Tordella et al. [16] it was observed that for the SFML, the self-transport does not dominate the pressure-
transport. Consequently, in constructing models for the SFML, errors incurred by making approximations to
the pressure-transport (such as a local approximation) could have a significant effect on the overall predictions
of the model for the SFML. We will return to this topic throughout the paper, in considering how the BHRZ
model closes the pressure-transport contribution and also in considering the effects of the closure model on
the ability of BHRZ to accurately describe inhomogeneous flows.

Wenow turn to consider someof the statistical features of the SFMLduring its evolution. The initial inhomo-
geneity ofK leads to a mixing of the TKE of the flow through the action of the transport mechanisms described
by (6), and these transport mechanisms drive the velocity field toward the asymptotically homogeneous state
limt→∞(max[K(y, t)]/min[K(y, t)]) → 1. The results in Tordella et al. [16] showed that after a time period
of t/τ ≈ 3, where τ is the integral timescale of the initial field u[1](x, t), the SFML enters a self-similar regime,
during which the statistics of u(x, t) become approximately constant when normalized in appropriate ways.
The self-similar regime corresponds to the regime where the competition between the physical mechanisms
governing the evolution have come to a sort of ‘equilibrium’. For example, in the self-similar regime, the flow
field anisotropy is approximately constant, indicating that the transport mechanisms generating the anisotropy
have reached an equilibrium state where they balance out the return to isotropy processes acting in the field.
It is in fact only the transport mechanisms that can break the pointwise isotropic symmetry of the initial field
u(x, 0) as the mixing occurs, since there is nomean-shear in the SFML. The transport terms break the isotropic
symmetry of the velocity field because different components of the velocity field are transported at different
rates. For example, the self-transport is−∂y〈u(y, t)u(y, t)u2(y, t)〉 and its contribution to ∂t 〈u1(y, t)u1(y, t)〉
and ∂t 〈u2(y, t)u2(y, t)〉 will differ since 〈u1(y, t)u1(y, t)u2(y, t)〉 �= 〈u2(y, t)u2(y, t)u2(y, t)〉 (since u2 is
more correlated with itself than with u1).

In an early experimental study on the SFML, Gilbert [17] found that the Probability Density Function
(PDF) of u(x, t) remained essentially Gaussian throughout the evolution of the mixing process. In subsequent
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experiments on the SFML performed by Veeravalli and Warhaft [14], a very different behavior was observed,
with u(x, t) exhibiting strong departures from Gaussianity. Veeravalli and Warhaft attributed this to the fact
that in Gilbert’s experiments, max[K(y, 0)]/min[K(y, 0)] was too low (≈1.48) for the transport mechanisms
to substantially drive the PDF of u(x, t) away from its initial Gaussian form. In both Gilbert’s and Veeravalli
and Warhaft’s experiments on the SFML, there was an inhomogeneity in both the initial TKE and the initial
integral lengthscale across the mixing layer.

The purpose of the study in Tordella et al. [16] was to demonstrate that an inhomogeneity in the initial
TKE alone is a sufficient condition for the PDF of u(x, t) to deviate from its Gaussian form at t = 0. They
observed strong departures from Gaussianity, and that the field became more non-Gaussian with increas-
ing max[K(y, 0)]/min[K(y, 0)], until the field reached a saturation point at max[K(y, 0)]/min[K(y, 0)] =
O(100) above which the non-Gaussianity did not continue to grow. The maximum skewness of u(x, t) in the
mixing layer reached an approximately constant value of 1 at long times formax[K(y, 0)]/min[K(y, 0)] = 12,
and reached an approximately constant value of 2.25 at long times for max[K(y, 0)]/min[K(y, 0)] = 300.
The maximum kurtosis of u(x, t) in the mixing layer reached an approximately constant value of 4 at long
times for max[K(y, 0)]/min[K(y, 0)] = 12, and reached an approximately constant value of 11 at long times
for max[K(y, 0)]/min[K(y, 0)] = 300. Besides the importance of these results for fundamental reasons, these
results also have important implications for the construction of models for the SFML. In particular, the strong
non-Gaussianity of the velocity field in the SFMLmay be problematic since the vastmajority ofmodels (includ-
ing the BHRZmodel, as discussed in Sect. 3) for inhomogeneous turbulent flowsmake closure approximations
that are only strictly justifiable in the limit where the PDF of u(x, t) is only weakly perturbed from a Gaussian.

3 BHRZ model for the SFML

We shall now introduce the BHRZmodel and consider in detail the various assumptions that have beenmade in
its construction. Such a detailed presentation of the model will prove to be useful when we come to compare its
predictions with the DNS data for the SFML in Sect. 4. We then consider the specification of certain constants
appearing in the model and then present the initial and boundary conditions used in the BHRZ model for the
SFML. It is important to note that what we are here calling BHRZ actually differs in some respects to the
original BHRZ model presented in Besnard et al. [6], in particular, the specification of the timescale of the
turbulent scales of motion and the symmetrization of the physical-space transport term (both of these differ-
ences are discussed below). Nevertheless, we retain the name BHRZ since that is the origin of the essential
modeling framework that we are considering here.

3.1 Formulation of the model

The BHRZ model begins by considering R2(x1, x2, t) ≡ 〈u(x1, t)u(x2, t)〉, the two-point, one-time cor-
relation tensor of the fluid velocity field u(x, t), for which an evolution equation can be obtained from the
incompressible NSE. Applying the transformation [x1, x2] → [x + r/2, x − r/2] to the evolution equation
for R2(x1, x2, t), and then applying a Fourier transform conjugate to r , we obtain (for ∂x〈u(x, t)〉 = 0)

∂tR2(x, k, t) = VR2 + N + N †, (8)

where ‘†’ denotes the Hermitian,

V(x, k) ≡ −2νk2 + (ν/2)∂2x , (9)

Ni j (x, k, t) ≡ −∇nR3,in j (x, k, t) − ∇i

∫

R3

G(x, x′, k)∇′
m∇′

nR3,mnj (x′, k, t) dx′,

R2,i j (x, k, t) ≡
∫

R3

e−ik·r 〈ui (x + r/2, t)u j (x − r/2, t)
〉
d r,

R3,in j (x, k, t) ≡
∫

R3

e−ik·r 〈ui (x + r/2, t)un(x + r/2, t)u j (x − r/2, t)
〉
d r,

∇m ≡ 1

2

∂

∂xm
+ ikm,

(10)
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and the Green function, G(x, x′, k), solves

−∇2G(x, x′, k) = δ(x − x′), for x ∈ R
3. (11)

The term VR2 in (8) describes the contribution to the evolution of R2 from molecular dissipation and diffu-
sion, and is in closed form. The termN is unclosed and contains contributions arising from two distinct terms
in the NSE; the first coming from the nonlinear advection term, and the second from the pressure gradient
term. The second contribution is non-local in physical space (x-space) and makes the evolution equation for
R2 an integro-differential equation. The two contributions inN collectively describe three physically distinct
processes affecting the evolution ofR2; a redistribution effect, energy transport in k-space and energy transport
in x-space. The BHRZ model closes N phenomenologically, utilizing closures that qualitatively reproduce
each of these physical processes.

The first step made in BHRZ is to integrate the evolution equation forR2(x, k, t) over spherical shells of
constant k ≡ ‖k‖, defining

E(x, k, t) ≡
∫

R2(x, k, t)
k2

(2π)3
d	k, (12)

such that

K(x, t) ≡
∫ ∞

0
tr[E(x, k, t)] dk, (13)

is the TKE per unit mass at (x, t) and

R2(x, t) ≡
〈
u(x, t)u(x, t)

〉
= 2

∫ ∞

0
E(x, k, t) dk, (14)

is the one-point Reynolds stress tensor. Note that here and throughout, RN , is used to denote the Nth order
velocity correlation tensors in (x, k, t)-space, whereas RN is used to denote them in (x, t)-space. Further-
more, when expressed using index notation, the components of these tensors are denoted by RN ,α1,...,αN and
RN ,α1,...,αN , where α1, ..., αN denote the N indices of the tensor.

As discussed in Besnard et al. [6], the integration over spherical shells (“angle averaging”) is introduced
merely to reduce the dimensionality of the solution space of the model. Such a procedure is without justi-
fication in the general case of anisotropic velocity fields and impacts the ability of the model to represent
anisotropic dynamics in k-space. The precise way in which this angle averaging affects the ability of the model
to accurately predict the evolution of R2 is not entirely understood. However, recent work has made a step
toward understanding these effects by constructing tensor spherical harmonic expansions for objects such as
R2 (in homogeneous flows) that can be used to consider the evolution and contribution of the terms neglected
through the spherical average to the evolution ofR2 (see Rubinstein et al. [18]). It should be noted, however,
that this spherical averaging only directly suppresses the anisotropy description in k-space, that is, in scale,
and not x-space, that is, in position. This is important because the transport of R2 that dominates the mixing
in the SFML and generates the flow field anisotropy is dominated by the motion of the largest scales of the
flow, and this transport occurs in x-space. Thus, much of the anisotropy of the flow that is important for the
mixing process is still captured through the models description of anisotropy in x-space.

With the spherical averaging operation applied to the evolution equation for R2, we then have

∂t E(x, k, t) ≡ VE +
∫ [

N (x, k, t) + N †(x, k, t)
] k2

(2π)3
d	k

︸ ︷︷ ︸
N(x,k,t)

, (15)

and BHRZ introduce phenomenological closures to capture the distinct physical processes described by N . In
particular, they introduce N ≈ A+ T k + T y , where the three terms describe the processes of redistribution,
transport in k-space and transport in y-space. In the following, for simplicity, we only discuss the form of the
BHRZ closures that are applicable to the SFML, for which the terms in the evolution equation for R2 are
described by the reduced variables (y, k, t) ≡ (x2, k, t).

The redistribution effect in N does not contribute to the evolution ofK, but instead redistributes the energy
among the different components of the velocity field. For example, in a one-point equation for R2, the redis-
tribution effect in a homogeneous turbulent velocity field is described by 〈p(x, t)∇u(x, t)〉, which does not
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contribute to K(x, t) in an incompressible velocity field since tr[〈p(x, t)∇u(x, t)〉] = 0. It is common to
assume, especially when constructing models, that the nature of the redistribution effect is to drive u(x, t)
toward an isotropic state (though this need not be the case), and following this line of thought, BHRZ models
the redistribution effect with a linear return-to-isotropy term

A(y, k, t) ≡ cM�
(
(E/3)I − E

)
, (16)

where cM is a dimensionless constant (themodel constants introduced in this section are discussed in Sect. 3.2),
and E(y, k, t) ≡ tr[E(y, k, t)]. The frequency�(y, k, t) (inverse eddy turnover timescale at scale k, and loca-
tion y) is defined in [6] as �(y, k, t) ≡ √

k3E(y, k, t). We instead choose the form for �(y, k, t) suggested in
Rubinstein and Clark [19] that captures the viscous effects on the frequency (which we found to be important
for describing the low Reynolds number SFML considered in Tordella et al. [16]), namely

�(y, k, t) = (1/2)
[(

ν2k4 + 4H
)1/2 − νk2

]
, (17)

H(y, k, t) ≡ cH

k∫

0

q2E(y, q, t) dq, (18)

where cH = 2/9 (see Rubinstein and Clark [19]).
The closure in (16) represents the simplest model for the return-to-isotropy tensor and ignores contributions

involving nonlinear combinations of the anisotropymeasure (E/3)I−E. In the context of one-point turbulence
models where the return-to-isotropy term is proportional to (tr[R2]/3)I − R2, such linear return-to-isotropy
models are known to be qualitatively incorrect [20]. However, its use in BHRZ allows for a more faithful rep-
resentation of the return-to-isotropy process since in this case the model is able to capture the fact that different
scales of motion in the turbulence return-to-isotropy at different rates, according to the correlation timescale
of their motion. Indeed, in Clark and Zemach [13], it was found that the BHRZ model was able to capture the
evolution of the flow anisotropy quite well, for the case of a homogeneous sheared and strained turbulent flow.

The transport in k-space is modeled using an advection-diffusion equation of the form proposed by Leith
[21]

T k(y, k, t) ≡ −c1∂k
(
k�E

)
+ c2∂k

(
k2�∂kE

)
, (19)

where c1 and c2 are dimensionless constants. The use of such a model approximates the k-space transport as
being local in k-space, and indeed in Clark et al. [22] it was shown that the structure of the Leith diffusion
model can be understood to arise from restricting the triad interactions in renormalized perturbation theories of
turbulence to local interactions. Such a local truncation is in principle inconsistent with the NSE that describes
non-local interactions among the scales of the turbulent velocity field. However, there are rigorous theoretical
and numerical results that support the idea that the energy transport among scales in the inertial range of
homogeneous, isotropic turbulence is dominated by local scale interactions [23]. This at least suggests that in
the limit of weak inhomogeneity, the BHRZmodel for the k-space energy transport is reasonable. Comparisons
of results from the BHRZ model to results from the non-local EDQNM model in Besnard et al. [6] showed
close agreement, also suggesting that the non-local interactions play a small role.

The transport in x-space is modeled in BHRZ in essentially two steps: First, a local approximation is made
to the non-local (in x-space) pressure-transport in N . This amounts to ignoring the ∂ ′

x contribution to ∇′ in
the integrand defining the pressure-velocity transport [see (10)], giving

Ni j (x, k, t) = −∇nR3,in j (x, k, t) − ∇i

∫

R3

G(x, x′, k)∇′
m∇′

nR3,mnj (x′, k, t) dx′

≈ −∇nR3,in j (x, k, t) − ∇i

∫

R3

δ(x − x′)k−2kmknR3,mnj (x′, k, t) dx′

= −∇nR3,in j (x, k, t) − k−2kmkn∇iR3,mnj (x, k, t).

(20)

This local approximation is introduced only for the purposes of simplification, to reduce the equation for
∂tR2 from an integro-differential equation to a PDE. However, the step is only (approximately) justified if
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‖kR3‖ � ‖∂xR3‖. This is satisfied either for a flow that is weakly inhomogeneous, or else if one is only
interested in the high-wavenumbers of the velocity field. In the SFML, there is a strong inhomogeneity with tur-
bulent mixing driven by the low wavenumbers of the velocity field. As such, the local pressure approximation
may be problematic for the SFML and inhomogeneous turbulent flows in general.

The resulting x-space transport terms described by N ≡ ∫ [N +N †] k2

(2π)3
d	k contain (spherical integrals

involving) R3, and this is closed by using a gradient-diffusion approximation, wherein R3 is related to the
gradients of R2, giving the spherically averaged result (in component form)

T y
i j (y, k, t) ≡ cD∂y

(
D22∂y Ei j + D j2∂y E2i + Di2∂y E j2

)
, (21)

where cD is a dimensionless constant andDDD(y, t) is a diffusion tensor, defined as

DDD(y, t) ≡
∞∫

0

�−1(y, q, t)E(y, q, t) dq. (22)

The form of the closure in (21) differs from that proposed in the original BHRZ model: In Besnard et al.
[6] they discuss a closure of the form given in (21) but subsequently choose to adopt a simpler closure
T y = cD∂y(νT ∂yE). However, this simplified form does not correctly preserve the component coupling of
u(x, t), and for the SFML with initially isotropic E, the use of the simplified model for T y in BHRZ would
lead to the incorrect prediction that E(y, k, t) ∝ I ∀t .

For strongly inhomogeneous turbulent flows, the local approximation to the pressure-transport in x-space
is likely in significant error, since in such a flow,R3 will vary considerably over the range of the support of the
integrand describing the pressure-transport. According to the analysis in Aluie and Eyink [24], the locality of
the k-space energy transport essentially follows from the particular scaling properties of the Fourier transform
of the velocity field, i.e. u(k, t), for k in the inertial range, and these scalings are to some degree universal. In
contrast, the x-space energy transport depends mainly upon the motion of the largest scales of the turbulence,
whose scaling is fundamentally different to that of the velocity differences in the inertial range, and further-
more, their behavior is entirely problem dependent (i.e. definitely not universal). Therefore, whereas locality
of the transport in k-space may hold (even approximately) for k in the inertial range of an inhomogeneous
turbulent flow in the limit Reλ → ∞, there is no corresponding reason why there should be locality of the
pressure-transport in x-space for an incompressible flow.

Concerning the gradient-diffusion closure employed for R3, this is only strictly applicable in the limit of
weak inhomogeneity, where the PDF of u(x, t) is only weakly perturbed from a Gaussian (noting that the PDF
of u(x, t) is essentially Gaussian in homogeneous turbulence).

With these phenomenological closures, the BHRZ model for E(y, k, t) in the SFML is

∂t E(y, k, t) = VE + N ≈ VE + A + T y + T k . (23)

3.2 Model constants

The closure model forN +N † in (23), expressed through the termsA, T y and T k , contains the unspecified,
dimensionless constants cD , c1, c2 and cM . All but cD , the turbulent diffusion coefficient, can be specified by
considering theoretical, asymptotic constraints on the model for E(y, k, t). In particular, the expected scaling
of E(y, k, t) for k in the inertial range when Reλ → ∞, and the constraint that in the absence of transport in k-
space, the k-space behaviormust satisfy the equipartition spectrum E(y, k, t) ∝ k2 (see Clark and Zemach [13]
for more details on the use of these asymptotic constraints to determine c1, c2 and cM ). The turbulent diffusion
coefficient cD cannot be specified using such asymptotic constraints because it is related to the physical-space
transport, and this is dominated by the large scales of the flow which are entirely problem dependent. The only
way to specify cD is to match it to known data, and the SFML is a particularly good test case for doing this
since in the SFML the transport of energy in physical space is entirely generated by the turbulence itself.

It is worth mentioning that obtaining cD in this way does not in any way guarantee that the BHRZ model
will accurately predict how the physical-space energy transport will vary across the mixing layer. This follows
since cD does not control the functional behavior of T y , it simply changes its magnitude.

For the SFML, there are several ways that we could obtain an estimate for cD; however, we choose to obtain
the value of cD by determining the value that gives the best predictions from the BHRZmodel when compared



Model of non-stationary, inhomogeneous turbulence

to the DNS data for the evolution of the mixing layer width �(t) ≡ Y[1/4] − Y[3/4], where E (Y[1/4], t) = 1/4,
E (Y[3/4], t) = 3/4 and

E (y, t) ≡ min[K(y, t)] − K(y, t)

min[K(y, t)] − max[K(y, t)] , (24)

is a normalized energy function E (y, t) ∈ [0, 1].
There are at least two reasons for choosing this approach to determine cD: First, �(t) is a function of only

one dimension (time), making it a much simpler candidate for determining cD than say K, which depends on
both y and t . Second, inTordella and Iovieno [25] they found that�(t) has quite aweak dependence on both Reλ

andmax[K(y, 0)]/min[K(y, 0)]. Therefore, determining cD using�(t)will give a value which should depend
weakly upon the initial conditions of the mixing layer. We choose to determine cD , as described above, for the
case with the smallest max[K(y, 0)]/min[K(y, 0)]. The reasoning behind this is that the turbulent transport
closure employed in the BHRZmodel is only strictly applicable for the case where the PDF of u(x, t) is weakly
perturbed from a Gaussian. Such a situation would be realized in the limit max[K(y, 0)]/min[K(y, 0)] → 1,
and it is therefore in this limit that the BHRZ closure model should be most appropriate. In Sect. 4 we will
discuss the choice of cD further and the value we obtain for the SFML.

3.3 Initial and boundary conditions

With 〈u(y, 0)u(y, 0)〉 specified in (4), we construct the initial condition E(x, k, 0) (required in the BHRZ
model) as

E(y, k, 0) = E(k, 0)

2K[1]
〈
u(y, 0)u(y, 0)

〉
, (25)

E(k, 0) being the energy spectrum corresponding to the homogeneous field u[1](x, 0). We use the same data
for the initial energy spectrum E(k, 0) as was used in for the initial condition for the DNS in Tordella et al. [16].
One difference is that in the DNS, E(k, 0) is only prescribed for k ∈ [1, kmax ] whereas in the BHRZ model
we want to solve for E(y, k, t) on the interval k ∈ [kmin, kmax ], where kmin � 1 (to ensure the validity of
the boundary condition at kmin , discussed below) and kmax is the maximum wavenumber. In order to specify
E(k, 0) for k < 1 for the BHRZ model initial condition, we extrapolate the DNS data for E(k, 0), ensuring
that the infrared power-law scaling of the extrapolated data for E(k, 0) for k < 1 is consistent with the scaling
of the original DNS data for E(k, 0) at k = O(1).

Wematch the initial Reλ of the flow specified in themodel (through the value specified for ν) with that of the
DNS. From the data for E(k, 0) we can compute u′

0, the r.m.s. velocity of u[1](x, 0) and then λ f (longitudinal
Taylor microscale) through the relation

λ f =
√
2u′

0u
′
0/

〈
[∇1u

[1]
1 (y, t)]2

〉
.

We then calculate the appropriate value of ν to use in the BHRZmodel through ν = u′
0λ f /Reλ, and in Tordella

et al. [16] the Taylor Reynolds number of u[1](x, 0) is Reλ = 45. Using the energy spectrum data fromTordella
et al. [16], we have max[K(y, 0)] = 0.922, u′

0 = √
(2/3)max[K(y, 0)] = 0.784 which gives ν ≈ 0.0017,

and we use this value when solving the BHRZ model.
In Tordella et al. [16], periodic boundary conditions were used for u(x, t), with period L in the

y direction. Corresponding to this, we specify periodic boundary conditions in the y domain, namely
E(y, k, t) = E(y + L , k, t). The boundary conditions in k-space are specified as follows: We intro-
duce the variable z ≡ log[k] and enforce that the numerical grid be uniform in z-space. For small k,
E(y, k, t) = Jkn �⇒ E(y, z, t) = Jezn , where J is some tensor function of y and t . Using a Taylor
series, we obtain the boundary condition for dummy node zmin − δz (where zmin ≡ log[kmin])

E(y, zmin − δz, t) = E(y, zmin, t) − δz∂zE(y, zmin, t) + O(δz2)

= Jezminn − nδz Jezminn + O(δz2)

= e−nδzE(y, zmin, t) + O(δz2), (26)

and we take n = 2, consistent with the behavior of the DNS data for E(k, 0) at k = O(1).
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The boundary condition for kmax is specified as follows: Assuming that at high-k, E(y, k, t) = kξ Ẽmin ,
where Ẽmin ≡ k−1

minE(y, kmin, t), then in z-space we have E(y, z, t) = Ẽminezξ . From this we construct the
boundary condition for dummy node zmax + δz (zmax ≡ log[kmax ]), which in component form is

Ei j (y, zmax + δz, t) = E2
i j (y, zmax , t)

/
Ei j (y, zmax − δz, t). (27)

4 Results and discussion

We begin by considering the results for the mixing-layer width �(t), introduced in Sect. 3.2. In Sect. 3.2 we
discussed that the BHRZ value for cD would be chosen as that value which gives the best fit for the BHRZ solu-
tion for�(t) compared with the DNS data. In Fig. 2a we first compare the DNS data with the BHRZ prediction
obtained with cD = 0, in order to determine how much of a contribution the turbulent transport gives to �(t)
compared with the molecular diffusion contribution. The results indicate that the turbulence transport is by far
themost dominant contribution to the evolution of�(t), even at the relatively low Reλ of theflow (≈45 at t = 0).

For the case with γ = 1 (weakest initial inhomogeneity for which we have DNS data), we determined the
value cD = 0.0145. From Fig. 2b it can be seen that this choice of cD gives good agreement between BHRZ the
DNS data at long times, both qualitatively and quantitatively. Although another value could have been chosen
to give a good match at small times, this would have led to significant errors at large times. Furthermore, on
physical grounds, it makes more sense to match the solutions at longer times since the turbulence inhomo-
geneity weakens with increasing time, and it is in the regime of weak inhomogeneity that the approximations
invoked in the BHRZ are most justified.

The value of cD that we obtain is quite different to the value obtained for one-point models, e.g. in Hanjalic
and Launder [26] the turbulent transport coefficient has a value 0.11. However, there is no reason to expect
cD to coincide with that in one-point models since the diffusion tensor in one-point models, D(y, t), is often
defined as D(y, t) ≡ (K/〈ε〉)R2 and this is not equal to the diffusion tensorDDD(y, t) in the BHRZ model.

The results in Fig. 2a reveal that for t/τ < 2 the BHRZ predictions are in error, overpredicting �(t)
compared with the DNS. There are at least three possible reasons why T y could lead to these errors: First, the
local approximation to the intrinsically non-local pressure-transport, second, the gradient-diffusion approxi-
mation forR3 and third, the neglect of certain transient effects present in the DNS but not present in the model
described by T y . Considering the first two, although these are surely sources of error in the model applied
to SFML where the inhomogeneity is strong, it is difficult to say what the nature of the errors introduced
by these approximations would be, i.e. whether they would lead to over or under predictions of the energy
transport in y-space. However, of these two, the local approximation to the pressure-transport is likely the
main source of error. The reason for this is that in the initial stage of the evolution of the SFML, the PDF
of u(x, t) is only slightly perturbed from its initial Gaussian form, and in that case the gradient-diffusion
approximation forR3 should be quite accurate. In contrast, the local approximation to the pressure-transport
will be in greatest error during the initial stage of the evolution of the SFML since the inhomogeneity of the
flow weakens with increasing t . Regarding the third reason, since the initial field in the DNS is constructed
from weighted contributions of the homogeneous, isotropic velocity fields u[1](x, 0) and u[2](x, 0), the initial
velocity field in the SFML satisfies 〈u(y, 0)u(y, 0)u(y, 0)〉 = 0. Consequently, in the DNS, at t = 0 there is
no transport of energy in physical space. However, in the BHRZ model, T y(y, k, 0) �= 0, which would lead to
an overprediction of the initial growth of �(t). To examine whether or not this is the cause of the discrepancy
observed in Fig. 2a, we performed the following test case. We used the DNS data at t/τ = 1 as the ‘initial
condition’ for the BHRZ model and then ran the model. In this case, at the ‘initial time’ t/τ = 1, both the
DNS and BHRZ model have a velocity field with finite energy transport in physical space. The results showed
little difference,1 suggesting that the overpredictions in Fig. 2a for t/τ < 2 are in fact caused by either the
local approximation to the pressure-transport or by the gradient-diffusion model for R3.

We now consider the BHRZ predictions and DNS data for E (y, t), the normalized energy function (defined
in (24)), which, unlike�(t), not only gives a measure of the mixing with time, but also how the energy behaves

1 This test case also rules out another possible cause of the discrepancies: In the DNS, the initial velocity field is somewhat
‘artificial’ and it will take some time before the velocity field generated in the SFML becomes a true Navier–Stokes solution, with
the correct coupling between the scales of motion etc. We would expect that this transition to the true Navier–Stokes dynamics
takes O(τ ) to occur. Since the test case used t/τ = 1, as the ‘initial condition’, the fact that the results showed little difference
with those obtained using the true initial condition, t/τ = 0, suggest that the effect of the artificiality of the initial condition in
the DNS is only playing a minor role for the physical mechanisms governing the mixing in the velocity field.
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as a function of position. The results in Fig. 3 show that the BHRZ model is able to predict E (y, t) quite well,
capturing dependence on y.2 That the BHRZ model predicts the dependence of E (y, t) on y as well as it
does is somewhat surprising given that the transport model described by T y is only strictly appropriate in the
limit where the PDF of u(x, t) is weakly perturbed from a Gaussian; the results in Tordella et al. [16] show
that even for γ = 40, the PDF of u(x, t) is quite far from being Gaussian. This suggests one of two things:
First, it could simply suggest that the contributions from higher-order cumulants of the field u(x, t) to the
physical-space transport are small. Second, it could imply that the contributions from higher-order cumulants
of the field u(x, t) to the physical-space transport generate a similar dependance on y across the mixing layer
(such that their effect is subsumed in the value determined for cD).

Next, we compare the BHRZ predictions and the DNS data for the evolution of the turbulent kinetic
energy K(y, t)/K(y, 0). In an inhomogeneous turbulent velocity field, there are essentially two ways that
K(y, t)/K(y, 0) can change; through transport of energy to/away from y, and through viscous dissipation. For
y − yc > 0, K(y, t)/K(y, 0) may behave non-monotonically since these regions are receiving energy from
the high energy side of the mixing layer, which could cause K(y, t)/K(y, 0) to increase, whereas viscous dis-
sipation effects cause K(y, t)/K(y, 0) to decrease. The results in Fig. 4 confirm this non-monotonic behavior
for y − yc > 0, both in the DNS and the BHRZ model. The BHRZ results are in reasonable agreement with
the DNS, though with a consistent underprediction in the long time regime. It is difficult to isolate a particular
cause of these underpredictions since there are so many different effects in the system. One possibility is
related to �, which is based upon a dimensional estimate for the turbulence time scales and may be therefore

2 See Appendix for an explanation for the discrepancies at y − yc � −0.4 for t/τ = 6.435.
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in error (relative to the ‘true’ timescale) by some O(1) factor. In particular, whereas the mixing is dominated
by the largest flow scales, the dissipation is dominated by the smallest scales, but in the BHRZ model, the
rate at which the energy is transferred from the large to the small scales is dependent upon �. Figure 4 also
shows that the BHRZ model gives a reasonably good match with the DNS data for the decay exponent of the
turbulent kinetic energy at long times.

Having considered the BHRZ results for the behavior of the turbulent kinetic energy during the mixing
process, we now consider the behavior of the particular components of R2(y, t). Comparing the components
of this tensor reveal the evolution of the velocity field anisotropy during the mixing process. In Tordella et al.
[16] it was observed that the velocity field evolved from its initially isotropic state to a self-similar anisotropic
state for t/τ � 2, during which the anisotropy measure R2,22/tr[R2] remained approximately constant.

Figure 5 shows a comparison of the BHRZ predictions and DNS data for the anisotropy measure
R2,22/tr[R2]. The results reveal that the BHRZ model is in significant error in describing the evolution of
the flow field anisotropy, and in particular, it significantly under-predicts the anisotropy when the SFML is in
its self-similar regime. Within the BHRZmodeling framework, the anisotropy is generated exclusively by T y ,
and the term A drives the system back toward isotropy. The underpredictions could therefore be because T y

is too small or else because A is too large. To consider this, in Fig. 6 we show results where we compare the
BHRZ predictions using the original value of cM and also using cM = 0 (corresponding to A = 0).

The results reveal that for the BHRZmodel,A is playing a small role and that the behavior of R2,22/tr[R2]
predicted by BHRZ is almost entirely controlled by T y . As discussed earlier, these errors are either associated
with the angle averaging operation applied to the transport equation, the local approximation to the pressure-
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transport or else the gradient-diffusion closure forR3. Although it is difficult to estimate the effect of the first
two approximations, we can obtain an estimate of the accuracy of the latter approximation.

The physical-space transport of R2 arising from the nonlinear advection and pressure gradient terms in the
NSE is given by F (x, t) ≡ − ∂x· 〈uuu〉 − ∂x〈pu〉. Applying to this the local approximation to the pressure
field p(x, t) that was used in the construction of the BHRZ model we have

Fi j (y, t) ≈ α∂y〈uiu j u2〉 ≡ α∂y R3,i j2, (28)

where α is a coefficient that determines the contributions of the self-transport and (localized) pressure-transport
to the overall transport F . The BHRZ model for (28) is given by

α∂y R3,i j2 ≈
∞∫

0

T y
i j (y, k, t) dk = cD

2
∂y

(
D22∂y R2,i j + D j2∂y R2,2i + Di2∂y R2, j2

)
. (29)

For the SFML with R2(y, 0) ∝ I, T y(y, k, t) is diagonal ∀t , and using (29) with the definition of T y(y, k, t),
this leads to the result

R3,i j2 ≈ cD
2α

(
2δ2iδ2 j + 1

)
D22∂y R2,i j , (30)

(index summation is not implied) where we have used the condition that in the homogeneous regions of the
SFML, R3 = 0 and ∂yR2 = 0. In Fig. 7 we compare results from the DNS data for R3,222/(R3,112 + R3,222 +
R3,332) with the corresponding predictions following from (30), that is

R3,222

R3,112 + R3,222 + R3,332
≈ 3∂y R2,22

∂y R2,11 + 3∂y R2,22 + ∂y R2,33
, (31)

where we evaluate ∂yR2(y, t) using the DNS data. Although the data are quite noisy, the results in Fig. 7 seem
to show that the gradient-diffusion closure gives quite a good approximation for the anisotropy of R3(y, t).
Certainly, the relative differences between the predictions of (31) and the DNS data are insufficient to explain
the much larger relative differences between the BHRZ predictions and the DNS data for the anisotropy of
R2(y, t) observed in Fig. 5. This then indicates that the main source of error in the BHRZ prediction for
R2,22/tr[R2] arises from either the angle averaging operation applied to the evolution equation or else the local
approximation for the pressure-transport.3

3 There is in fact another possible cause for the discrepancies in the anisotropy results: Recall that in the DNS, the statistics
are constructed by averaging over the homogeneous directions, for a given y, t . This leaves open the possibility that certain
‘phase’ information remains in the statistics, that would otherwise be averaged out, or at least suppressed, under a true ensemble
average (average over infinitely many flow fields for a given y, t), and this could affect the anisotropy results. However, we do not
know how significant these phase effects are, whereas it is possible to show from the transport equations that the angle averaging
operation and the local approximation for the pressure-transport will certainly affect the anisotropy predicted by BHRZ.
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Fig. 7 Plot of predictions from (31) and DNS data for R3,222/(R3,112 + R3,222 + R3,332) at various y − yc for a γ = 40 and b
γ = 300.Black symbols/line correspond to y− yc = −0.2, blue symbols/line to y− yc = 0 and red symbols/line to y− yc = +0.2
(color figure online)

The way in which the local approximation can affect the anisotropy predicted by BHRZ can be under-
stood as follows. In the BHRZ framework, the difference between the true and the localized form of the
pressure-transport contribution to N , �P , is given by

�Pi j ≡ −∇i

∫

R3

(
G(x, x′, k)∇′

m∇′
n − δ(x − x′)k−2kmkn

)
R3,mnj (x′, k, t) dx′, (32)

which represents the error introduced into the BHRZmodel of the pressure-transport description because of the
local approximation. Since in an anisotropic flowwewould in general expect thatR3,mn1 �= R3,mn2 �= R3,mn3
(and also for their gradients), then (32) shows that the error introduced to R2 (and hence R2) by the local
approximation will differ for different components ofR2. It is in this way that the local approximation to the
pressure-transport will affect the ability of the model to predict the anisotropy of the fluid velocity field.

Exactly how the angle averaging and local pressure-transport approximations affect the BHRZ prediction
for the generation of the flow anisotropy are, however, difficult to determine (for example we do not know the
behavior of R3 in the SFML), and a detailed investigation of these effects will be addressed in future work.

5 Conclusion

In this paper we have presented a comparison of the BHRZ spectral model for inhomogeneous turbulence with
DNS data of a Shear-Free Mixing Layer (SFML). One of the reasons for choosing this flow is that it provides
us with the opportunity to scrutinize the BHRZmodel for the physical-space transport of the turbulent velocity
field. We found that the model is able to capture certain features of the SFML quite well for intermediate to
long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and
for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate.
We have presented arguments that the main causes of the discrepancies are the angle averaging operations
applied to the transport equations and the local approximation to the intrinsically non-local pressure-transport
in physical space that was made in the BHRZ model. Recent work [18] provides a way to assess the effects of
the angle averaging operation on the model prediction of the flow field anisotropy, and this is work underway.
An important next step is to incorporate non-local transport into the BHRZmodel to overcome the deficiencies
arising from the local approximation.
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Appendix

In this appendix we discuss the discrepancies noted in Fig. 3 between the BHRZ predictions and the DNS data
for y − yc � −0.4.

In plotting the DNS data for the function E (y, t)wemust determinemax[K(y, t)]. However, as can be seen
from Fig. 8, the data are noisy for y − yc � −0.4 making it difficult to determine max[K(y, t)]. We therefore
decided to choose max[K(y, t)] as the value about which the data approximately oscillates at y − yc ≤ −3.
This leads to an apparent underprediction of the BHRZ model for E (y, t) in the regime −1 � y − yc � −0.4,
as seen in Fig. 8. It seems clear that this is actually a consequence of the noise in the data in this regime, rather
than a genuine underprediction of the BHRZmodel since the DNS results in Ireland and Collins [27], which are
also for a SFML, do not exhibit such noise and show data for K(y, t) (and hence E (y, t)) that monotonically
decreases with increasing y for t ≥ 0.
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