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Abstract

We study the isotropic, helical component in homogeneous turbulence using statistical objects which have the correct
symmetry and parity properties. Using these objects we derive an analogue of the Kármán–Howarth equation, that arises
due to lack of mirror-reflection-symmetry in isotropic flows. The main equation we obtain is consistent with the results
of Chkhetiani [JETP 63 (1996) 768] and L’vov et al. [Exact result for the 3rd order correlations of velocity in turbulence
with helicity, 1997.http://xxx.lanl.gov/abs/chao-dyn/9705016] but is derived using only velocity correlations, with no direct
consideration of the vorticity or helicity. This alternative formulation offers an advantage to both experimental and numerical
measurements. We also postulate, under the assumption of self-similarity, the existence of a hierarchy of scaling exponents
for helical velocity correlation functions of arbitrary order, analogous to the Kolmogorov prediction for the scaling exponents
of velocity structure function.
Published by Elsevier Science B.V.
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1. Introduction

In their 1938 paper on the statistical properties of homogeneous, isotropic, reflection-symmetric turbulence, von
Kármán and Howarth derived the equation for the dynamics of the two-point velocity correlation function[1]. This
equation is of fundamental importance since it relates the mean rate of change of energy to the flux of energy across
a given correlation lengthr in the flow. A form of this equation was used by Kolmogorov in 1941[2] (K41) to derive
one of the few exact results known for isotropic, homogeneous, and reflection-symmetric turbulence, the “4/5ths
law” which relates the third-order longitudinal structure function toε, the mean rate of energy dissipation

〈(uL(x + r)− uL(x))3〉 = −4
5εr, (1)
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whereuL is the component of the velocity along the separation vectorr. If the flow is not reflection-symmetric how-
ever, a new equation may be derived to complement the Kármán–Howarth equation. Three recent works have derived
equations for third-order statistics in isotropic helical flows by considering velocity–vorticity correlations[3–5].
In this paper, we show that the Kármán–Howarth equation has a counterpart which arises due to parity-violation
in isotropic flows and which can be written solely in terms of two-point velocity correlations. We demonstrate the
equivalence of our result with those of[3,4].

We were motivated in this work by a series of investigations which proposed the use of the SO(3) decomposition
of tensor quantities, the structure functions, defined by

Sαβ(r) = 〈(uα(x + r)− uα(x))(uβ(x + r)− uβ(x))〉 (2)

in order to study the anisotropic contributions to their scaling. The decomposition of the structure function into
rotationally invariant, irreducible subgroups of the SO(3) symmetry groupS

j=0
αβ (r) + S

j=1
αβ (r) + · · · allowed the

separation of the isotropic (indexed byj = 0) from the anisotropic (indexed byj > 0) contributions to the
structure function. This procedure has allowed better quantification of the rate of decay of anisotropy of the small
scales in turbulence[6–8]. These analyses considered homogeneous, isotropic and reflection-symmetric flows. In
the isotropic (j = 0) sector, the reflection-symmetric structure function tensor has the form

Sαβ(r) = C1(r)δαβ + C2(r)
rαrβ

r2
. (3)

Homogeneity and incompressibility provide a constraint between the scalar functionsC1(r) andC2(r). If the
condition of reflection-symmetry is dropped, there arises a further tensor contribution to the isotropic sector given
by εαβγ (rγ /r). This contribution is interesting because it is isotropic (rotationally invariant), which implies that it
belongs in thej = 0 sector, but is antisymmetric in (α, β) and changes sign under mirror reflection ofr. Since
the second-order structure function is symmetric in its indices and does not change sign under inversion ofr, it
simply cannot to be used to observe this antisymmetric contribution. In fact, when the antisymmetric contribution is
included in our decomposition, we are effectively using the isotropic irreducible representation of the O(3) symmetry
group which includes operations that are not reflection invariant underr → −r. Said differently, the elementsΛ
of the orthogonal group O(3) satisfy det(Λ) = ±1. The elements with determinant+1 form the SO(3) symmetry
group of all (even-parity) rotations while those with determinant−1 are (odd-parity) reflections. The present work
demonstrates how to access this isotropic, antisymmetric, odd-parity contribution using the tensor object with
the appropriate parity and symmetry properties. The dynamics of such an object will provide the antisymmetric
counterpart to the Kármán–Howarth dynamical equation.

In Section 2, we present and discuss the second- and third-order velocity correlations and their symmetric and anti-
symmetric contributions. InSection 3, we derive the antisymmetric, odd-parity counterpart of the Kármán–Howarth
equation for the second-order correlation function and show its equivalence to previous results. We also postulate the
existence of generalized helical higher-order velocity correlations and their scaling behavior under the assumption
of self-similarity.Section 4provides a summary and discussion.

2. The symmetry and parity properties of the two-point velocity correlation functions

2.1. The second-order correlation tensor

The two-point correlation tensor function of velocity fluctuations is defined by

Rαβ(r) = 〈uα(x)uβ(x + r)〉, (4)
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wherer is the vector separation between two points, and subscriptsα, β are components in a chosen Cartesian
coordinate system. In homogeneous, isotropic, and not necessarily reflection-symmetric turbulence, the correlation
function may be written as a sum of the dyadics[10,11]

Rαβ(r) = A1(r)δαβ + A2(r)
rαrβ

r2
+H(r)εαβγ

rγ

r
. (5)

Such a tensor may be written as the sum of its symmetric (inα, β) and antisymmetric components as

Rαβ(r) = 1
2(Rαβ(r)+ Rβα(r))+ 1

2(Rαβ(r)− Rβα(r)) = RSαβ(r)+ RAαβ(r). (6)

The symmetric contributionRSαβ(r) consists of the first two terms on the right side ofEq. (5)while the antisymmetric

contributionRAαβ(r) is the last term inEq. (5).
If the flow is statistically homogeneous, then the incompressibility constraint implies

∂αRαβ(r) = ∂βRαβ(r) = 0, (7)

where∂α(·) denotes the partial derivative with respect torα. The incompressibility condition applies separately to
the symmetric and antisymmetric components as∂αR

S
αβ(r) = ∂βR

S
αβ(r) = 0 and∂αRAαβ(r) = ∂βR

A
αβ(r) = 0 since

the symmetric and antisymmetric components are of opposite parity. This is an interesting and useful property of
these correlation functions in the isotropic sector and for homogeneous flows—decomposition into symmetric and
antisymmetric components automatically separates the even- and odd-parity contributions.

The symmetric partRSαβ(r) with tensor basis as follows:

RSαβ(r) = A1(r)δαβ + A2(r)
rαrβ

r2
(8)

has been analyzed extensively (see, for example[9]) under the assumption of homogeneous, isotropic and mirror-
symmetric turbulence. These three conditions imply the translational, rotational and reflectional invariance, respec-
tively, of a given statistical quantity used to describe the flow. Note that the structure function (Eq. (2)) is twice the
symmetrized correlation functionRSαβ plus twice the mean-square velocity fluctuation. The latter addition makes
the structure function Galilean invariant and hence a suitable candidate for the study of universal statistics of the
small scales.

The form of the antisymmetric tensor in thej = 0 sector of the O(3) representation is

RAαβ(r) = 〈uα(x)uβ(x + r)〉 − 〈uβ(x)uα(x + r)〉 = H(r)εαβγ
rγ

r
. (9)

Let us apply the incompressibility constraint to the antisymmetric tensor form:

∂α

(
H(r)εαβγ

rγ

r

)
= εαβγ

rγ

r
∂αH(r)+ εαβγ

H(r)

r

(
δαγ − rαrγ

r2

)
= εαβγ

rαrγ

r2

∂H(r)

∂r
≡ 0. (10)

In going from the first to the second equality ofEq. (10), we have used the fact that contracting an antisymmetric
tensor with a symmetric one gives identically zero. We conclude that incompressibility does not provide any
constraint on the scalar coefficientH(r) of the antisymmetric tensor contribution.

We can give an argument that the antisymmetrized correlation function is Galilean invariant by definition. Suppose
we are in a frame moving with velocityU, then

RAαβ(r) = 〈(uα(x)+ U)(uβ(x + r)+ U)〉 − 〈(uβ(x)+ U)(uα(x + r)+ U)〉. (11)

It is seen that, because of homogeneity and the minus sign used to antisymmetrize, any dependence onU drops out.
Therefore, we can hope that, as in the case of the structure functions, the objectRAαβ(r) will display the (universal)
properties of the small scales.
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2.2. The third-order correlation tensor

Our goal is to derive the dynamical equation for the second-order antisymmetric correlationRAαβ(r)as a counterpart

to the Kármán–Howarth dynamical equation for the second-order symmetric correlationRSαβ(r) (denoted in their
paper of 1938[1] byRik(ξ)). Since such an expression will involve the two-point third-order correlation function,
we will first review its properties.

Sαγ,β(r) = 〈uα(x)uγ (x)uβ(x + r)〉 (12)

has the following properties in homogeneous turbulence. It is clearly symmetric in indicesα, γ , with mixed symmetry
in other combinationsα, β andγ, β and in general of mixed parity. By “mixed” we mean that the symmetry and
parity properties are indeterminate. In the isotropic tensor representation then, there are four terms[3,9]

Sαγ,β(r) = S1(r)δαγ
rβ

r
+ S2(r)

(
δαβ

rγ

r
+ δβγ

rα

r

)
+ S3(r)

rαrγ rβ

r3
+ S(r)

(
εαβν

rνrγ

r2
+ εγβν

rνrα

r2

)
. (13)

In anticipation of separating the terms of opposite symmetry as was done in the case of the second-order correlation
function, we write

Sαγ,β(r) = 1
2(Sαγ,β(r)+ Sβγ,α(r))+ 1

2(Sαγ,β(r)− Sβγ,α(r)) = SSαγ,β(r)+ SAαγ,β(r), (14)

whereSAαγ,β is antisymmetric inα, β and has tensor contributions as follows:

SAαγ,β(r)=
〈uα(x)uγ (x)uβ(x + r)〉 − 〈uβ(x)uγ (x)uα(x + r)〉

2

= S1(r)− S2(r)

2

(
δαγ

rβ

r
− δβγ

rα

r

)
+ S(r)

2

(
2εαβν

rνrγ

r2
+ εγβν

rνrα

r2
− εγαν

rνrβ

r2

)
. (15)

These are the terms which were excluded in the Kármán–Howarth equation for reflection-symmetric flows.

3. The antisymmetric component of the Kármán–Howarth equation

We now derive in a simple manner the dynamical equation forRAαβ(r). As in Hinze’s[9] equation 1.48, starting
from the Navier–Stokes equation for homogeneous turbulence we can write the equation forRαβ

∂

∂t
Rαβ − ∂γ Sαγ,β + ∂γ Sα,γβ = − 1

ρ
(−∂αKp,β + ∂βKα,p)+ 2ν∂γ γ Rαβ, (16)

whereKα,p = 〈uα(x)p(x + r)〉 andp is the pressure. We write a similar equation forRβα which we subtract from
Eq. (16)and divide throughout by 2.

∂

∂t

(
Rαβ − Rβα

2

)
− ∂γ

(
Sαγ,β − Sβγ,α

2

)
+ ∂γ

(
Sα,γβ − Sβ,γ α

2

)

= 1

2

(
− 1

ρ
(−∂αKp,β + ∂βKα,p)+ 1

ρ
(−∂βKp,α + ∂αKβ,p)

)
+ 2ν∂γ γ

(
Rαβ − Rβα

2

)
. (17)

The pressure terms may be shown to vanish identically using homogeneity and incompressibility and assuming
regularity asr → 0, as in the reflection-symmetric, isotropic case[12,13]. The homogeneity conditionSαγ,β(r) =
Sβ,γ α(−r) adds a further constraint, giving

∂

∂t
RAαβ − 2∂γ S

A
αγ,β = 2ν∂γ γ R

A
αβ. (18)
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This equation is the antisymmetric counterpart to the Kármán–Howarth equation for the second-order correlation
functions. All the quantities in this equation are relatively easily measured in experiments and numerical simulations
since no velocity derivatives are involved in the correlation functions, only the velocities themselves. Substituting in
Eq. (18)the tensor forms for the antisymmetric correlation functions (Eqs. (9) and (15)) we arrive at the dynamical
relation relating the scalarsH(r) andS(r)

∂

∂t
H(r)−

(
2
∂S(r)

∂r
+ 6

S(r)

r

)
= 2ν

(
∂2H(r)

∂r2
+ 2

r

∂H

∂r
− 2

r2
H(r)

)
. (19)

This equation was derived by Chkhetiani[3] using the dynamics of velocity–vorticity correlations. In the present
derivation, we have arrived at the conclusion without the need to directly consider vorticity or helicity. We only used
the O(3) tensor representation for the correlation function in homogeneous, isotropic flows in which symmetry and
parity properties are trivially separated.

3.1. Derivation of KH-helical scaling law

We apply the curl operator to the second-order antisymmetrized correlation functionequation (9), and obtain
the leading-order behavior ofH(r) = Hr/3 (seeEq. (A.3)and associated details inAppendix A) where the mean
helicityH = 〈u · ω〉/2. We now substitute this leading-order dependence ofH(r) back into the KH law,

∂

∂t

(
Hr

3
+ · · ·

)
−

(
2
∂

∂r
+ 6

r

)
S(r) = 2ν

(
∂2

∂r2
+ 2

r

∂

∂r
− 2

r2

)
H(r). (20)

Here, if we make the same assumption as in[3], that the main contribution to the time-derivative comes from the
linear term with the next order terms not changing in the inertial range, and neglect the right-hand side in the limit
asν → 0,

S(r) = 1
30hr2, (21)

whereh is the mean helicity dissipation rate. This agrees with the scaling law derived in[3]. (There is a difference
of a factor of 1/2 in the definition of mean helicity between[3] and the present work.) The assumption made in
deriving this law is that we have fully developed, freelydecaying turbulence. These are the same assumptions made
by Kolmogorov in deriving the 4/5ths law and the energy spectrum. It is with this assumption that the following
holds[14]

∂

∂t
H = ν〈(∂kvi)(∂kωi)〉 = h. (22)

If a driving force is introduced, additional terms arise in the helicity balanceequation (22)(for example〈f · ω〉)
which may not directly allow us to deriveEq. (21). It is, however, not unreasonable to expect thatEq. (21)will
hold for the steady-state, forced high-Reynolds number case. An argument similar to that which Frisch[13] used to
prove the 4/5ths law for the forced case, would have to be used. This aspect will not be covered in the present work.

In Appendix A, we show that an alternative form ofEq. (21)may be derived in the form of the following pair of
equations

uL · (uT × u′
T ) = 1

15hr2, uT · ((uL × u′
T )+ (uT × u′

L)) = − 1
30hr2, (23)

where the velocity vector has been separated into its longitudinal (along the separation vectorr) and transverse
components asu = uL + uT . The unprimed velocities denote their value atx and primed velocities denote their
value atx + r. The first equality ofEq. (23)is equivalent to the so-called “2/15ths law” derived by L’vov et al.[4]
(seeAppendix Afor more details).
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3.2. The scaling behavior of higher-order correlation functions

The antisymmetrized correlation functions may be thought of as newly defined structure functions appropriate for
helical flows. In the second- and third-order (RAαβ andSAαγ,β , respectively) we have shown that the antisymmetrized
correlation functions are Galilean invariant, so that sweeping effects are eliminated as in the case of the symmetric
structure functions, and we may hope for universal properties for smallr. For the third-order correlation, we have
seen that the scaling in the inertial range is∼ r2 (Eq. (21)). If we now make the K41 assumption of self-similarity
such thatSAαγ,β ∼ (RAαβ)

3/2, we obtain the inertial range behavior forRAαβ ∼ r4/3. This corresponds to an inertial

range scaling of the (helicity) cospectrum̃E12(k3) ∼ k−7/3. Thek3 denotes the wavenumber component in the
direction mutually orthogonal toα = 1, andβ = 2. This estimate for the scaling of the cospectrum coincides with
the Lumley estimate[16] for the (anisotropic sectorj = 2) shear-stress (Reynolds) cospectrumẼ12(k1). However,
the present dimensional estimate for the cospectrumẼ12(k3) is due to the reflection-symmetry breaking, not due to
the rotational symmetry breaking.

If we constructnth-order antisymmetrized correlation functions with scaling exponentsξn in the inertial range, the
self-similarity argument dictates thatξn = 2n/3. This would be the helical counterpart to the K41 scaling prediction
for the structure functions which says that thenth-order structure functions have scaling exponentsζn = n/3. It is
not at all clear that self-similarity is a reasonable assumption to make even in the case of low-order helical statistics
[17]. This conjecture may only hold in the case of the maximal helical cascade in which there is no joint cascade of
energy[18].

4. Conclusion

The understanding of helicity dynamics in three-dimensional flows is still evolving. It has been known for some
time that helicity is conserved in the fluid equations in the inviscid limit[19]. The simultaneous existence of both
helicity and energy cascades to the high-wavenumbers was first considered by Brissaud et al.[20]. In that work,
the scenario for a pure helicity or maximally helical cascade was also proposed, in which energy cascade to the
small scales is blocked, giving rise to an energy spectrumE(k) ∼ k−7/3. Kraichnan[21] showed, based on physical
considerations, that the scenario of joint energy and helicity cascades to the high-wavenumbers, with recovery of
the Kolmogorov energy spectrumE(k) ∼ k−5/3 is more likely. This joint-cascade picture has subsequently been
strengthened by observations in numerical simulations[22] from which it seems likely that the helicity injected at the
large scales cascades downscale, more or less passively transported by the energy cascade. More recently, Ditlevsen
and Giuliani[23] show, both theoretically and using shell-model calculations[24], that at high-Reynolds numbers
a joint-cascade of energy and helicity must exist in some range of wavenumbers. They argue that for wavenumbers
larger than this range the reflection-symmetry is restored by the dominant helicity dissipation term. Chen et al.[25]
have shown by means of helical-wave decomposition of the velocity field, that the detailed transfer of energy (and
helicity) between helical-wave modes of opposite parity is consistent with the existence of a joint-cascade, with
−5/3 scaling for both energy and helicity spectra. They also confirm their theoretical predictions using numerical
simulations. Their analysis disagrees with[23,24] over the precise range wavenumber over which these cascades
exist, but nonetheless, both works agree that for high-Reynolds numbers, a joint-cascade of energy and helicity
will coexist for some range of wavenumbers, with parity restoration at sufficiently large wavenumbers. The present
analysis is also consistent with the joint-cascade at high-Reynolds numbers. The original Kármán–Howarth result
and the helical version derived here are not mutually exclusive. The former picks out the reflection-symmetric part
of the flow, while the latter picks out the reflection-antisymmetric part. The two contributions are measured by
different quantities which allow for theseparation of the parity and symmetry properties of the flow. It is not clear,
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at least to this author, whether the present formulation predicts that energy and helicity cascades will coexist for
all scales (consistent with[25]) or for only a certain range of scales (consistent with[23]) at Reynolds numbers
high enough. This might have to be left to empirical tests using experimental and direct numerical simulations data.
Thus far, only the shell-model simulations of Ditlevsen and Giuliani[24] and Biferale et al.[26] exist to guide our
intuition as to the scaling ranges of the cascades.

From the analysis of[25] it appears that if one of the helical modes is blocked, which can easily be done in
simulations and shell-model calculations, but may not be possible in real flows, a pure helicity cascade will develop
in the remaining mode which blocks the energy cascade down to small scales, and yields an energy spectrum
E(k) ∼ k−7/3. In this sense, the dimensional (self-similarity) argument ofSection 3for the scaling exponent of
the cospectrumẼ12(k3) ∼ k

−7/3
3 is consistent with the scenario of a pure helicity cascade. Without speculating

on the feasibility of physically achieving such a purely helical cascade, we remark that thecospectrum Ẽ12(k3),
of the two orthogonal components along the third orthogonal direction, is a fundamentally different object than
the energy spectrum and may well display entirely different functional behavior. The helicity cospectrum, which
should be identically zero for homogeneous, isotropic, reflection-symmetric turbulence is a sensitive measure of
reflection-symmetry breaking[27] and the presence of helicity. The present work has shown that it arises from pre-
cisely that contribution to the second-order correlation which was excluded in the original isotropic, homogeneous,
reflection-symmetric Kármán–Howarth equation.

A further new possibility suggested by this work is the construction of antisymmetric higher-order (greater than 3)
correlation functions. Assuming each pair of indices of annth-order, two-point velocity correlation function can be
appropriately antisymmetrized as has been done here for the second- and third-order cases, we may have a new series
of objects, which we will call helical structure functions. These, along with the usual structure functions familiar
from studies of isotropic, reflection-symmetric flows, would form a complete set of statistical objects with which to
investigate statistical turbulence theories which are not necessarily confined to reflection-symmetric configurations.
All the usual issues such as scaling exponent values, intermittency and anomaly could be studied for the helical
structure functions. This work provides a dimensional argument for what their scaling exponents could be. It is
of interest to see how these behave relative to our predictions and to the anomalous scaling known for the usual
structure functions.

In conclusion, the present approach taken to derive the antisymmetric, or helical Kármán–Howarth equation is
not inconsistent with other recent work[3–5]. However, our derivation directly studies the dynamics of precisely
those components of the second-order correlation functions that were omitted in the Kármán–Howarth equation
because of assumed non-helicity of the flow. The information about helicity of the flow is then obtained from
velocity correlations instead of velocity–vorticity correlations or other correlations involving velocity derivatives.
In a high-Reynolds number experimental flow, measuring the second-order antisymmetric velocity correlation
functionRA12(r) in a coordinate system chosen such thatr = rk̂, would give information about the mean helicity
in the flow, while measurement ofSA132(r) would give information about the helicity flux. Such objects are ideal
candidates for detecting parity violation in flows without having to resort to direct measurement of helicity. We
intend to present the related analysis of numerical and experimental data in a future work.
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Appendix A

The antisymmetric tensorsRAαβ andSAαγ,β are directly related to helicity dissipation and fluxes as we will now
demonstrate. Let us consider a particular geometry in which the separation vectorr is along thez(3)-axis. Then
the only non-zero components areRA12 = −RA21 = 〈u1(x)u2(x + r) − u2(x)u1(x + r)〉. This particular object
is the correlation of the two components of the velocity orthogonal to the vectorr. In the usual convention, it
is the correlation of thev andw components relative to the separation vector. The only non-zero contribution
to the isotropic, antisymmetric velocity correlation tensor comes from the velocity components orthogonal to the
separation vector.

We contract the tensorRAαβ with the antisymmetric tensorεαβγ [15].

εαβγ R
A
αβ(r)= εαβγH(r)εαβν

rν

r

εαβγ 〈uα(x)uβ(x + r)〉 + εβαγ 〈uβ(x)uα(x + r)〉
2

= 2H(r)δγ ν
rν

r
〈u(x)× u(x + r)〉γ = 2H(r)

rγ

r
. (A.1)

The (pseudo)scalar functionH(r) is the mean cross-product of the velocities at two points separated by the vector
length scaler. To choose a particular coordinate system, if the separation vectorr lies along thez-axis, thenH(r)
is thez-component of the cross-product. It vanishes as|r| → 0. The physical picture is depicted in the cartoon of
Fig. 1. This result is to be compared with the corresponding result for the symmetric contributionRSαβ contracted
with δαβ . In that case, what is obtained is∼ 〈uα(x)uα(x + r)〉 = 〈u(x) · u(x + r)〉, the mean scalar (dot) product
of the velocities at two points separated by the scaler; asr → 0, we recover the non-zero mean energy∼ 〈u2〉.

The functionRA12(r3)may be thought of as a measure of momentum transfer between two orthogonal components
of velocity along the direction perpendicular to both of them. If we take the curl ofRAαβ , we have

εαβν∂νR
A
αβ(r) = εαβν∂ν

(
H(r)εαβγ

rγ

r

)
, 〈u(x) · ω(x + r)〉 = 2

∂H(r)

∂r
+ 4

H(r)

r
. (A.2)

Taking the limit asr → 0, the left-hand side reduces to〈u · ω〉 = 2H, whereH is the mean helicity of the flow,
and we can solve for what must be the leading-order behavior ofH(r):

H(r) = 1
3Hr + · · · . (A.3)

Fig. 1. Caricature of the type of correlation functionsRAαβ which are non-zero in flows that are not reflection-symmetric. The curved arrow
indicates the “handedness” of the function.
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The scalar coefficientH(r) of the antisymmetric tensorRAαβ(r) is, in the leading-order, a direct measure of the

mean helicity in the flow. If we consider the particular coordinate system ofFig. 1 we see thatRA12(r) = H(r)

which is a leading-order measure of the mean helicity of the flow. We note again the advantage of this formulation
which allows one to measure mean helicity using only velocity correlations, without having to measure any local
gradients.

We perform a similar analysis for the third-order object with the contraction

εαβµS
A
αγβ = εαβµ

S(r)

2

(
2εαβν

rνrγ

r2
+ εγβν

rνrα

r2
− εγαν

rνrβ

r2

)
,

〈uγ (x)(u(x)× u(x + r))µ〉 = S(r)
(
3
rγ rµ

r2
− δγµ

)
. (A.4)

If we now proceed to write, as in[4], the velocity vector as the sum of its longitudinal (alongr) and transverse
components such thatu(x) = uL(x)+ uT (x), we have

〈(uL + uT )γ ((uL + uT )× (u′
L + u′

T ))µ〉 = S(r)
(
3
rγ rµ

r2
− δγµ

)
, (A.5)

where the unprimed velocities denote measurement atx and the primed velocities denote measurement atx + r. It
is clear that both the left- and right-side vanish forγ = µ. But we would like to examine the detailed balance in
terms of the longitudinal and transverse components on the left-hand side:

Mγµ = 〈(uL + uT )γ ((uL × u′
L)µ + (uL × u′

T )µ + (uT × u′
L)µ + (uT × u′

T )µ)〉 = S(r)
(
3
rγ rµ

r2
− δγµ

)
.

(A.6)

Since this must be true for any choicer, we can, without loss of generality, chooser = r î so that it lies along the
x-axis. The matrix ofEq. (A.6)is then diagonal and traceless, and we see, usingEq. (21), that

M11 = uL · (uT × u′
T ) = 2S(r) = 1

15hr2,

M22 =M33 = uT · ((uL + uT )× (u′
L + u′

T )) = −S(r) = − 1
30hr2. (A.7)

Eq. (A.7)is a form of the so-called “2/15ths law” derived by L’vov et al.[4]. The exact result of that work is obtained
by computing(uL − u′

L) · (uT × u′
T )) which is equal, by homogeneity to 2uL · (uT × u′

T ) = 4S(r) = (2/15)hr2.
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