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Abstract

We study the isotropic, helical component in homogeneous turbulence using statistical objects which have the correct
symmetry and parity properties. Using these objects we derive an analogue of the KArman—Howarth equation, that arises
due to lack of mirror-reflection-symmetry in isotropic flows. The main equation we obtain is consistent with the results
of Chkhetiani [JETP 63 (1996) 768] and L'vov et al. [Exact result for the 3rd order correlations of velocity in turbulence
with helicity, 1997 http://xxx.lanl.gov/abs/chao-dyn/9705QHaut is derived using only velocity correlations, with no direct
consideration of the vorticity or helicity. This alternative formulation offers an advantage to both experimental and numerical
measurements. We also postulate, under the assumption of self-similarity, the existence of a hierarchy of scaling exponents
for helical velocity correlation functions of arbitrary order, analogous to the Kolmaogorov prediction for the scaling exponents
of velocity structure function.
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1. Introduction

In their 1938 paper on the statistical properties of homogeneous, isotropic, reflection-symmetric turbulence, von
Karméan and Howarth derived the equation for the dynamics of the two-point velocity correlation fyig¢tidhis
equation is of fundamental importance since it relates the mean rate of change of energy to the flux of energy across
a given correlation lengthin the flow. A form of this equation was used by Kolmogorov in 1§2J1(K41) to derive
one of the few exact results known for isotropic, homogeneous, and reflection-symmetric turbulence, the “4/5ths
law” which relates the third-order longitudinal structure functiom tthe mean rate of energy dissipation

(UL X+ 1) —uL(x)3) = —ger, (1)
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whereuy is the component of the velocity along the separation vectibthe flow is not reflection-symmetric how-
ever, anew equation may be derived to complement the Karman—Howarth equation. Three recent works have derives
equations for third-order statistics in isotropic helical flows by considering velocity—vorticity correldBieBl
In this paper, we show that the Karman—Howarth equation has a counterpart which arises due to parity-violation
in isotropic flows and which can be written solely in terms of two-point velocity correlations. We demonstrate the
equivalence of our result with those [&4].

We were motivated in this work by a series of investigations which proposed the use of the SO(3) decomposition
of tensor quantities, the structure functions, defined by

Sap(r) = (g (X +1) — ug (X)) (up(X +1) — ug(x))) 2

in order to study the anisotropic contributions to their scaling. The decomposition of the structure function into
rotationally invariant, irreducible subgroups of the SO(3) symmetry gﬁ;ﬁgg(r) + Séﬁfl(r) + --- allowed the
separation of the isotropic (indexed hy= 0) from the anisotropic (indexed by > 0) contributions to the
structure function. This procedure has allowed better quantification of the rate of decay of anisotropy of the small
scales in turbulencgs—8]. These analyses considered homogeneous, isotropic and reflection-symmetric flows. In
the isotropic { = 0) sector, the reflection-symmetric structure function tensor has the form

Sap (1) = C1(r)bap + Calr) =5 (3)

Homogeneity and incompressibility provide a constraint between the scalar functiégrisand Ca(r). If the
condition of reflection-symmetry is dropped, there arises a further tensor contribution to the isotropic sector given
by gy (/7). This contribution is interesting because it is isotropic (rotationally invariant), which implies that it
belongs in thej = 0 sector, but is antisymmetric i) and changes sign under mirror reflectionrofSince

the second-order structure function is symmetric in its indices and does not change sign under inversion of
simply cannot to be used to observe this antisymmetric contribution. In fact, when the antisymmetric contribution is
included in our decomposition, we are effectively using the isotropicirreducible representation of the O(3) symmetry
group which includes operations that are not reflection invariant under—r. Said differently, the elements

of the orthogonal group O(3) satisfy ddf) = 4+1. The elements with determina#tl form the SO(3) symmetry

group of all (even-parity) rotations while those with determinafitare (odd-parity) reflections. The present work
demonstrates how to access this isotropic, antisymmetric, odd-parity contribution using the tensor object with
the appropriate parity and symmetry properties. The dynamics of such an object will provide the antisymmetric
counterpart to the Karman—Howarth dynamical equation.

In Section 2we present and discuss the second- and third-order velocity correlations and their symmetric and anti-
symmetric contributions. IBection 3we derive the antisymmetric, odd-parity counterpart of the Karman—Howarth
equation for the second-order correlation function and show its equivalence to previous results. We also postulate the
existence of generalized helical higher-order velocity correlations and their scaling behavior under the assumption
of self-similarity. Section 4provides a summary and discussion.

2. Thesymmetry and parity properties of the two-point velocity correlation functions
2.1. The second-order correlation tensor

The two-point correlation tensor function of velocity fluctuations is defined by

Rop(r) = (ua Xupg(X +1)), 4)
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wherer is the vector separation between two points, and subseriggsare components in a chosen Cartesian
coordinate system. In homogeneous, isotropic, and not necessarily reflection-symmetric turbulence, the correlation
function may be written as a sum of the dyadit8,11]

_ rarp ry
Rap(r) = A1(r)dap + A2(r) —5~ + H(r)eapy —~ (5)

Such a tensor may be written as the sum of its symmetrie,(#) and antisymmetric components as
Rap(r) = 3(Rap(r) + Rpa (1) + 3(Rup (1) — Rpa (1)) = R34(r) + RYg(1). (6)

The symmetric contributioR(;f/6 (r) consists of the first two terms on the right sidégf (5)while the antisymmetric

contributionR, (r) is the last term irEq. (5)
If the flow is statistically homogeneous, then the incompressibility constraint implies

O Raﬁ (r)y= 8ﬁ Rotﬂ (ry=0, (7)

whered, (-) denotes the partial derivative with respectto The incompressibility condition applies separately to
the symmetric and antisymmetric componentﬁadggﬂ(r) =3 R(fﬂ(r) = 0 andd, Rg‘ﬂ(r) = dp Rg‘ﬁ(r) = 0 since
the symmetric and antisymmetric components are of opposite parity. This is an interesting and useful property of
these correlation functions in the isotropic sector and for homogeneous flows—decomposition into symmetric and
antisymmetric components automatically separates the even- and odd-parity contributions.

The symmetric parRofﬂ(r) with tensor basis as follows:

RS (1) = AL()Sup + A2(r) "5 (®)

has been analyzed extensively (see, for exaigj)eunder the assumption of homogeneous, isotropic and mirror-
symmetric turbulence. These three conditions imply the translational, rotational and reflectional invariance, respec-
tively, of a given statistical quantity used to describe the flow. Note that the structure furietjof2}) is twice the
symmetrized correlation functioﬁgﬂ plus twice the mean-square velocity fluctuation. The latter addition makes
the structure function Galilean invariant and hence a suitable candidate for the study of universal statistics of the
small scales.

The form of the antisymmetric tensor in thie= 0 sector of the O(3) representation is

Rip (1) = (tq 00up (< +1)) = (5 00 (X + 1)) = H(Péapy . )

Let us apply the incompressibility constraint to the antisymmetric tensor form:

H(r Tal raly 0H(r
(r) (80”/— (:.ZV)_ aﬂy%%zo' (10)
In going from the first to the second equalityd. (10) we have used the fact that contracting an antisymmetric
tensor with a symmetric one gives identically zero. We conclude that incompressibility does not provide any
constraint on the scalar coefficieHt(r) of the antisymmetric tensor contribution.
We can give an argument that the antisymmetrized correlation function is Galilean invariant by definition. Suppose
we are in a frame moving with velocity, then

Ri5 (1) = ((ua () + U)(up (X +1) + U)) — ((p(X) + U) (ug (X + 1) + U)). (11)

v T
9 (H(r)eaﬁy%) - eaﬂy%aaH(r) + €apy

Itis seen that, because of homogeneity and the minus sign used to antisymmetrize, any dependeinopsoout.
Therefore, we can hope that, as in the case of the structure functions, thelb,;yerotwill display the (universal)
properties of the small scales.
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2.2. Thethird-order correlation tensor

Our goalisto derive the dynamical equation for the second-order antisymmetric corrﬁl@t'(mmas acounterpart

to the Karman—Howarth dynamical equation for the second-order symmetric corre‘kgg(lr) (denoted in their
paper of 19381] by Rik(§)). Since such an expression will involve the two-point third-order correlation function,
we will first review its properties.

Say,p(1) = (e (X)uy Xug(X+1)) 12)

has the following properties in homogeneous turbulence. Itis clearly symmetric in indigesith mixed symmetry
in other combinationg, g andy, 8 and in general of mixed parity. By “mixed” we mean that the symmetry and
parity properties are indeterminate. In the isotropic tensor representation then, there are fo[8,8rms

r ryr,
Sur (1) = $10)8ay L+ 520) (8ap L + 85, ) + S50 5L + 50 (eap 5 + eprgt) - (13)

In anticipation of separating the terms of opposite symmetry as was done in the case of the second-order correlatior
function, we write

Say. () = 3Say.p (1) + Spy.a(1) + 3 Say.p (1) = Spy.a (1)) = S5, 4(1) + S5, 4 (1), (14)
WhereSA s Is antisymmetric inx, 8 and has tensor contributions as follows:
A (g (X)uy Xug (X + 1)) — (ug(X)uy Xua (X +1))
Say’ﬂ(r) = 2

_51(r) — S2(r) (
o 2

These are the terms which were excluded in the Karman—Howarth equation for reflection-symmetric flows.

S(r) rur), ola rvrﬁ) (15)

s
3ay7 — 8py 7) + > <2 €apy—5— +€V/3v—r2 €yav 2

3. Theantisymmetric component of the Karman—-Howarth equation

We now derive in a simple manner the dynamical equatiorﬂ@r(r). As in Hinze’s[9] equation 1.48, starting
from the Navier—Stokes equation for homogeneous turbulence we can write the equaftgp for

9 1
ER“’S — 0y Say, g+ 0y Sa,y8 = —;(—aaKp,,g + 08Ky, p) + 200,y Rug, (16)
whereK, , = (ua(X)p(x +r)) andp is the pressure. We write a similar equation f, which we subtract from

Eq. (16)and divide throughout by 2.

O (Rap = Rpa\ _ o (Savp = Spra) o (Sers = Spye
ot 2 v 2 4 2

1 1 1 Reg — R

=5 <_;(_80[Kp,ﬂ + 0Ky p) + ;(_3;‘3[(17,0: + 801Kﬁ,17)) + 2vd,, < o 2 ﬂa) : an

The pressure terms may be shown to vanish identically using homogeneity and incompressibility and assuming
regularity as- — 0, as in the reflection-symmetric, isotropic c§s2,13] The homogeneity conditio$y,, g(r) =
Ss,ya(—r) adds a further constraint, giving

d
o, Rils = 20,52, 5 = 208, Ry, (18)



S Kurien/Physica D 175 (2003) 167-176 171

This equation is the antisymmetric counterpart to the Khrman—Howarth equation for the second-order correlation
functions. All the quantities in this equation are relatively easily measured in experiments and numerical simulations
since no velocity derivatives are involved in the correlation functions, only the velocities themselves. Substituting in
Eq. (18)the tensor forms for the antisymmetric correlation functidigs( (9) and (15)we arrive at the dynamical
relation relating the scala#g (r) andS(r)

2
9 iy — (zas(r) +6S(r)) =2 <_a Hr) , 20H %H(r)) . (19)
r

ot or r ar2 ;8_}’

This equation was derived by Chkhetid8] using the dynamics of velocity—vorticity correlations. In the present
derivation, we have arrived at the conclusion without the need to directly consider vorticity or helicity. We only used
the O(3) tensor representation for the correlation function in homogeneous, isotropic flows in which symmetry and
parity properties are trivially separated.

3.1. Derivation of KH-helical scaling law

We apply the curl operator to the second-order antisymmetrized correlation fueciation (9) and obtain
the leading-order behavior &f (r) = Hr/3 (seekEqg. (A.3)and associated details Appendix A where the mean
helicity H = (u - w)/2. We now substitute this leading-order dependencd @ back into the KH law,

3 (Hr 3 6 ¥ 29 2

— =+ ) (2—+-)S)=22v|—S+-——— =< |H"). 20

8t<3 + ) < 8r+r) ") v<8r2+r8r r2) ") (20)
Here, if we make the same assumption a3inthat the main contribution to the time-derivative comes from the

linear term with the next order terms not changing in the inertial range, and neglect the right-hand side in the limit
asv — 0,

S(r) = %hr?, (21)

wherer is the mean helicity dissipation rate. This agrees with the scaling law deriy8d {{There is a difference

of a factor of 1/2 in the definition of mean helicity betwel@h and the present work.) The assumption made in
deriving this law is that we have fully developed, fredégaying turbulence. These are the same assumptions made
by Kolmogorov in deriving the 4/5ths law and the energy spectrum. It is with this assumption that the following
holds[14]

0
EH = v((0vi) (Orwi)) = h. (22)

If a driving force is introduced, additional terms arise in the helicity balatpeation (22)for example(f - w))

which may not directly allow us to deriveq. (21) It is, however, not unreasonable to expect tGat (21)will

hold for the steady-state, forced high-Reynolds number case. An argument similar to that whicfilBlisskd to

prove the 4/5ths law for the forced case, would have to be used. This aspect will not be covered in the present work.
In Appendix A we show that an alternative form Bfy. (21)may be derived in the form of the following pair of

equations

up - (ur x up) = &hr?, Ur - ((Ug x Up) + (Ur x U})) = —hr?, (23)

where the velocity vector has been separated into its longitudinal (along the separatiorr yaciitransverse
components ag = uy + ur. The unprimed velocities denote their valuexaind primed velocities denote their
value atx + r. The first equality ofq. (23)is equivalent to the so-called “2/15ths law” derived by L'vov ef4].
(seeAppendix Afor more details).
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3.2. The scaling behavior of higher-order correlation functions

The antisymmetrized correlation functions may be thought of as newly defined structure functions appropriate for
helical flows. In the second- and third-ord@rg‘g3 andSof‘%ﬂ, respectively) we have shown that the antisymmetrized
correlation functions are Galilean invariant, so that sweeping effects are eliminated as in the case of the symmetric
structure functions, and we may hope for universal properties for smiadir the third-order correlation, we have
seen that the scaling in the inertial range-is? (Eq. (21). If we now make the K41 assumption of self-similarity
such thatsy), ; ~ (Rj,)¥?, we obtain the inertial range behavior fBf; ~ r*/3. This corresponds to an inertial
range scaling of the (helicity) cospectrufiio(ks) ~ k~7/3. The ks denotes the wavenumber component in the
direction mutually orthogonal te = 1, andg = 2. This estimate for the scaling of the cospectrum coincides with
the Lumley estimatgl 6] for the (anisotropic sectar = 2) shear-stress (Reynolds) cospectrbima(k1). However,
the present dimensional estimate for the cospecifuptks) is due to the reflection-symmetry breaking, not due to
the rotational symmetry breaking.

If we constructith-order antisymmetrized correlation functions with scaling exporigritsthe inertial range, the
self-similarity argument dictates thigt = 2r/3. This would be the helical counterpart to the K41 scaling prediction
for the structure functions which says that ttth-order structure functions have scaling exponents n/3. It is
not at all clear that self-similarity is a reasonable assumption to make even in the case of low-order helical statistics
[17]. This conjecture may only hold in the case of the maximal helical cascade in which there is no joint cascade of
energy[18].

4, Conclusion

The understanding of helicity dynamics in three-dimensional flows is still evolving. It has been known for some
time that helicity is conserved in the fluid equations in the inviscid I{i®§. The simultaneous existence of both
helicity and energy cascades to the high-wavenumbers was first considered by Brissa{@Dgtlal that work,
the scenario for a pure helicity or maximally helical cascade was also proposed, in which energy cascade to the
small scales is blocked, giving rise to an energy spectfiin ~ k~7/3. Kraichnar{21] showed, based on physical
considerations, that the scenario of joint energy and helicity cascades to the high-wavenumbers, with recovery of
the Kolmogorov energy spectruiik) ~ k—>/3 is more likely. This joint-cascade picture has subsequently been
strengthened by observations in numerical simulatipBsfrom which it seems likely that the helicity injected at the
large scales cascades downscale, more or less passively transported by the energy cascade. More recently, Ditlevs
and Giuliani[23] show, both theoretically and using shell-model calculati@d$, that at high-Reynolds numbers
a joint-cascade of energy and helicity must exist in some range of wavenumbers. They argue that for wavenumber:
larger than this range the reflection-symmetry is restored by the dominant helicity dissipation term. CHebt al.
have shown by means of helical-wave decomposition of the velocity field, that the detailed transfer of energy (and
helicity) between helical-wave modes of opposite parity is consistent with the existence of a joint-cascade, with
—5/3 scaling for both energy and helicity spectra. They also confirm their theoretical predictions using numerical
simulations. Their analysis disagrees wil3,24] over the precise range wavenumber over which these cascades
exist, but nonetheless, both works agree that for high-Reynolds numbers, a joint-cascade of energy and helicity
will coexist for some range of wavenumbers, with parity restoration at sufficiently large wavenumbers. The present
analysis is also consistent with the joint-cascade at high-Reynolds numbers. The original Karman—Howarth result
and the helical version derived here are not mutually exclusive. The former picks out the reflection-symmetric part
of the flow, while the latter picks out the reflection-antisymmetric part. The two contributions are measured by
different quantities which allow for thaeparation of the parity and symmetry properties of the flow. It is not clear,
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at least to this author, whether the present formulation predicts that energy and helicity cascades will coexist for
all scales (consistent witf25]) or for only a certain range of scales (consistent &B]) at Reynolds numbers

high enough. This might have to be left to empirical tests using experimental and direct numerical simulations data.
Thus far, only the shell-model simulations of Ditlevsen and Giuljadj and Biferale et al[26] exist to guide our
intuition as to the scaling ranges of the cascades.

From the analysis of25] it appears that if one of the helical modes is blocked, which can easily be done in
simulations and shell-model calculations, but may not be possible in real flows, a pure helicity cascade will develop
in the remaining mode which blocks the energy cascade down to small scales, and yields an energy spectrum
E(k) ~ k"3, In this sense, the dimensional (self-similarity) argumenBeétion 3for the scaling exponent of
the cospectrunfqo(kz) ~ kg 3 is consistent with the scenario of a pure helicity cascade. Without speculating
on the feasibility of physically achieving such a purely helical cascade, we remark thaistieetrum E12(k3),
of the two orthogonal components along the third orthogonal direction, is a fundamentally different object than
the energy spectrum and may well display entirely different functional behavior. The helicity cospectrum, which
should be identically zero for homogeneous, isotropic, reflection-symmetric turbulence is a sensitive measure of
reflection-symmetry breakinf@7] and the presence of helicity. The present work has shown that it arises from pre-
cisely that contribution to the second-order correlation which was excluded in the original isotropic, homogeneous,
reflection-symmetric KArman—Howarth equation.

A further new possibility suggested by this work is the construction of antisymmetric higher-order (greater than 3)
correlation functions. Assuming each pair of indices ofiirorder, two-point velocity correlation function can be
appropriately antisymmetrized as has been done here for the second- and third-order cases, we may have a new serie
of objects, which we will call helical structure functions. These, along with the usual structure functions familiar
from studies of isotropic, reflection-symmetric flows, would form a complete set of statistical objects with which to
investigate statistical turbulence theories which are not necessarily confined to reflection-symmetric configurations.
All the usual issues such as scaling exponent values, intermittency and anomaly could be studied for the helical
structure functions. This work provides a dimensional argument for what their scaling exponents could be. It is
of interest to see how these behave relative to our predictions and to the anomalous scaling known for the usual
structure functions.

In conclusion, the present approach taken to derive the antisymmetric, or helical Karman—Howarth equation is
not inconsistent with other recent wof8-5]. However, our derivation directly studies the dynamics of precisely
those components of the second-order correlation functions that were omitted in the Karman—Howarth equation
because of assumed non-helicity of the flow. The information about helicity of the flow is then obtained from
velocity correlations instead of velocity—vorticity correlations or other correlations involving velocity derivatives.

In a high-Reynolds number experimental flow, measuring the second-order antisymmetric velocity correlation
function sz(r) in a coordinate system chosen such that rk, would give information about the mean helicity

in the flow, while measurement dff32(r) would give information about the helicity flux. Such objects are ideal
candidates for detecting parity violation in flows without having to resort to direct measurement of helicity. We
intend to present the related analysis of numerical and experimental data in a future work.
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Appendix A

The antisymmetric tensorzgoj‘/3 and SO*}M are directly related to helicity dissipation and fluxes as we will now
demonstrate. Let us consider a particular geometry in which the separation wéxtong thez(3)-axis. Then
the only non-zero components aﬁq‘z = —R§‘1 = (u1(X)u2(X + r) — up(X)u1(x + r)). This particular object
is the correlation of the two components of the velocity orthogonal to the vectorthe usual convention, it
is the correlation of the and w components relative to the separation vector. The only non-zero contribution
to the isotropic, antisymmetric velocity correlation tensor comes from the velocity components orthogonal to the
separation vector.

We contract the tensd{';‘ﬁ with the antisymmetric tenseg,, [15].

v €apy (ua(X)u,g(X +1)+ €Bay <uﬁ(x)“a(x +1))
r 2

r

r

=2H@mwrmuu)xua+w»yzszﬂ}. (A.1)

€aBy Ro‘?ﬁ(r) = GaﬂyH(r)Eozﬂv

The (pseudo)scalar functiaii(r) is the mean cross-product of the velocities at two points separated by the vector
length scale . To choose a particular coordinate system, if the separation vetitsr along thez-axis, thenH (r)
is thez-component of the cross-product. It vanishegréas> 0. The physical picture is depicted in the cartoon of
Fig. 1 This result is to be compared with the corresponding result for the symmetric contrilﬁjgomnntracted
with 8,. In that case, what is obtainedHs (uq (x)uq (x + 7)) = (U(X) - U(X + r)), the mean scalar (dot) product
of the velocities at two points separated by the scasesr — 0, we recover the non-zero mean energyu?).
The functioanz(rg) may be thought of as a measure of momentum transfer between two orthogonal components
of velocity along the direction perpendicular to both of them. If we take the cmﬁgf we have

oH (r) +4H(r) (A2)
r

apnDuRip (1) = €apdy (HPeapy L) (00 - 0(x+1)) =2

Taking the limit as* — 0, the left-hand side reduces @0 - w) = 2H, where’H is the mean helicity of the flow,
and we can solve for what must be the leading-order behavifi(ef:

H(r)=iHr+---. (A.3)
u, (x)

r

>

u, (x+r)

Fig. 1. Caricature of the type of correlation functioﬂgﬂ which are non-zero in flows that are not reflection-symmetric. The curved arrow
indicates the “handedness” of the function.
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The scalar coefficient (r) of the antisymmetric tenso?;;‘ﬁ(r) is, in the leading-order, a direct measure of the
mean helicity in the flow. If we consider the particular coordinate systeffigof1 we see thaﬂ?fz(r) = H(®r)
which is a leading-order measure of the mean helicity of the flow. We note again the advantage of this formulation
which allows one to measure mean helicity using only velocity correlations, without having to measure any local
gradients.

We perform a similar analysis for the third-order object with the contraction

S(r) ryr ryr rvrg
€uppSieyp = €apu—— <2€aﬂv_‘;,2y terp g~ a7 )
ryr
(1, () UX) X UX A+ 1)) = S(r) (3% - M) . (A.4)

If we now proceed to write, as if], the velocity vector as the sum of its longitudinal (alanygand transverse
components such thatx) = uy (x) + ur(x), we have

((ur + ur)y (g +Up) X (U +Up),) = S0) (3255 = 5,0 (A5)

where the unprimed velocities denote measuremenaat the primed velocities denote measuremertfar . It
is clear that both the left- and right-side vanish foe= . But we would like to examine the detailed balance in
terms of the longitudinal and transverse components on the left-hand side:

My, = (g + ur)y (U X Uy + (Ug X Uy + (Ur x U + (U x Uj))) = S(r) (3% — 5y#) .

(A.6)

Since this must be true for any choicewe can, without loss of generality, choase- ri so that it lies along the
x-axis. The matrix oEq. (A.6)is then diagonal and traceless, and we see, uBing21) that

Mii=up - (Ur x Up) = 285(r) = 1hr?,
Moz = M3z = ur - (Ug + Ur) x (U} +U})) = —S(r) = —hr. (A7)

Eq. (A.7)is aform of the so-called “2/15ths law” derived by L'vov et[dl]. The exact result of that work is obtained
by computing(uz, — u}) - (ur x u%)) which is equal, by homogeneity tai2 - (ur x uy) = 4S(r) = (2/15)hr2.

References

[1] T. von K&rméan, L. Howarth, On the statistical theory of isotropic turbulence, Proc. R. Soc. Lond. A 164 (1938) 192-215.
[2] A.N. Kolmogorov, Dissipation of energy in locally isotropic turbulence, Dokl. Akad. Nauk. SSSR 32 (1941) 16-18.
[3] O.G. Chkhetiani, On the third-moments in helical turbulence, JETP 63 (1996) 768-772.
[4] V.S. L'vov, E. Podivilov, |. Procaccia, Exact result for the 3rd order correlations of velocity in turbulence with helicity, 1997.
http://xxx.lanl.gov/abs/chao-dyn/9705016
[5] T. Gomez, H. Politano, A. Pouquet, Exact relationship for third-order structure functions in helical flows, Phys. Rev. E 61 (2002) 5321-5325.
[6] S. Kurien, K.R. Sreenivasan, Measures of anisotropy and the universal properties of turbulence, in: M. Lesieur (Ed.), New Trends in
Turbulence, Les Houches Summer School 2000 Proceedings, Springer, Berlin, 2002, pp. 1-61.
[7] I. Arad, B. Dhruva, S. Kurien, V.S. L'vov, |. Procaccia, K.R. Sreenivasan, Extraction of anisotropic contributions in turbulent flows, Phys.
Rev. Lett. 81 (1998) 5330-5333.
[8] I. Arad, L. Biferale, I. Mazzitelli, I. Procaccia, Disentangling scaling properties in anisotropic and inhomogeneous turbulence, Phys. Rev.
Lett. 82 (1999) 5040-5043.
[9] J.O. Hinze, Turbulence, McGraw-Hill, New York, 1975.
[10] G.K. Batchelor, The theory of axisymmetric turbulence, Proc. R. Soc. Lond. A 186 (1946) 480-502.
[11] S. Chandrasekhar, The invariant theory of isotropic turbulence in magnetohydrodynamics, Proc. R. Soc. Lond. A 204 (1951) 435-449.
[12] R.J. Hill, Applicability of Kolmogorov's and Monin’s equations of turbulence, J. Fluid Mech. 353 (1997) 67-81.


http://xxx.lanl.gov/abs/chao-dyn/9705016

176 S Kurien/Physica D 175 (2003) 167-176

[13] U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995.

[14] M. Taylor, J. Mohammed-Yusof, Private communication.

[15] D.D. Holm, Private communication.

[16] J. Lumley, Similarity and the turbulence energy spectrum, Phys. Fluids 10 (1967) 855-858.

[17] U. Frisch, Private communication.

[18] G.L. Eyink, Private communication.

[19] H.K. Moffatt, The degree of knottedness of tangled vortex lines, J. Fluid Mech. 35 (1969) 117-129.

[20] A. Brissaud, U. Frisch, J. Leorat, M. Lesieur, A. Mazure, Helicity cascades in fully developed isotropic turbulence, Phys. Fluids 16 (1973)
1366.

[21] R.H. Kraichnan, Helical turbulence and absolute equilibrium, J. Fluid Mech. 59 (1973) 745-752.

[22] V. Borue, S. Orszag, Spectra in three-dimensional homogeneous helical turbulence, Phys. Rev. E 55 (1997) 7005-7009.

[23] P.D. Ditlevsen, P. Giuliani, Phys. Fluids 13 (2001) 3508-3509.

[24] P.D. Ditlevsen, P. Giuliani, Phys. Rev. E 63 (2001) 036304.

[25] Q. Chen, S. Chen, G.L. Eyink, The joint cascade of energy and helicity in three-dimensional turbulence, Phys. Fluids, submitted for
publication.http://www.arXiv.org/abs/nlin.CD/0206030

[26] L. Biferale, D. Pierotti, F. Toschi, Phys. Rev. E 57 (1998) R2515.

[27] M. Kholmyansky, M. Shapiro-Orot, A. Tsinober, Experimental observations of spontaneous breaking of reflectional symmetry in turbulent
flow, Proc. R. Soc. Lond. A 457 (2001) 2699-2717.


http://www.arXiv.org/abs/nlin.CD/0206030

	The reflection-antisymmetric counterpart of the Karman-Howarth dynamical equation
	Introduction
	The symmetry and parity properties of the two-point velocity correlation functions
	The second-order correlation tensor
	The third-order correlation tensor

	The antisymmetric component of the Karman-Howarth equation
	Derivation of KH-helical scaling law
	The scaling behavior of higher-order correlation functions

	Conclusion
	Acknowledgements
	Appendix A
	References


