
This article was downloaded by:[Los Alamos National Laboratory]
[Los Alamos National Laboratory]

On: 9 July 2007
Access Details: [subscription number 731943949]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Turbulence
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713665472

A study of the Navier-Stokes-α model for
two-dimensional turbulence

First Published on: 01 January 2007
To cite this Article: Lunasin, E., Kurien, S., Taylor, M. A. and Titi, E. S. , (2007) 'A
study of the Navier-Stokes-α model for two-dimensional turbulence', Journal of
Turbulence, 8:1, 1 - 21
To link to this article: DOI: 10.1080/14685240701439403
URL: http://dx.doi.org/10.1080/14685240701439403

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

© Taylor and Francis 2007

http://www.informaworld.com/smpp/title~content=t713665472
http://dx.doi.org/10.1080/14685240701439403
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [L
os

 A
la

m
os

 N
at

io
na

l L
ab

or
at

or
y]

 A
t: 

18
:3

6 
9 

Ju
ly

 2
00

7 

Journal of Turbulence
Volume 8, No. 30, 2007

A study of the Navier–Stokes-α model for two-dimensional
turbulence

E. LUNASIN∗, S. KURIEN†, M. A. TAYLOR‡ AND E. S. TITI∗, §, §§

∗Department of Mathematics, University of California, Irvine, CA, 92697, USA
†Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA

‡Department of Exploratory Simulation Technologies, Sandia National Laboratories, Albuquerque,
NM 87185, USA

§Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot
76100, Israel

§§Department of Mechanical and Aerospace Engineering, University of California, Irvine,
CA 92697, USA

The Navier–Stokes-α model of turbulence is a mollification of the Navier–Stokes equations, in which
the vorticity is advected and stretched by a smoothed velocity field. The smoothing is performed by
filtering the velocity field over spatial scales of size smaller than α. This is achieved by convolution
with a kernel associated with Green’s function of the Helmholtz operator scaled by a parameter α.
The statistical properties of the smoothed velocity field are expected to match those of Navier–Stokes
turbulence for scales larger than α, thus providing a more computable model for those scales. For
wavenumbers k such that kα � 1, corresponding to spatial scales smaller than α, there are three
candidate power laws for the energy spectrum, corresponding to three possible characteristic time
scales in the model equations: one from the smoothed field, the second from the rough field and
the third from a special combination of the two. In two dimensions, the second time scale may be
understood to characterize the dynamics of the conserved enstrophy. We measure the scaling of the
energy spectra from high-resolution simulations of the two-dimensional Navier–Stokes-α model, in
the limit as α→∞. The energy spectrum of the smoothed velocity field scales as k−7 in the direct
enstrophy cascade regime, consistent with dynamics dominated by the timescale associated with
the rough velocity field. We are thus able to deduce that the dynamics of the dominant cascading
conserved quantity, namely the enstrophy of the rough velocity, governs the scaling of all derived
statistical quantities.

Keywords: Turbulence models; Sub-grid scale models; Large-eddy simulations; Two-dimensional Navier–Stokes-α
model

2000 Mathematics Subject Classifications: 76F55; 76F65.

1. Introduction

Let v(x, t) denote the velocity field and p(x, t) the pressure of a homogeneous incompressible
fluid with constant density ρ(x) = 1. The Navier–Stokes equations (NSE)

∂tv − v × (∇ × v) = −∇ p + ν�v + f,

∇ · v = 0, (1)

v(x, 0) = vin(x),
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2 E. Lunasin et al.

govern the dynamics of such fluid flows, where the body force f (x), the viscosity ν > 0
and the initial velocity field vin(x) are given. We supplement the system in (1) with pe-
riodic boundary conditions in a basic box [0, L]n , where n = 2, or 3. We assume here,∫

[0,L]n f (x) dx = ∫
[0,L]n vin(x) dx = 0, which implies that

∫
[0,L]n v(x, t) dx = 0 for all t > 0.

It is computationally prohibitively expensive to perform reliable direct numerical simulation
(DNS) of the NSE for high Reynolds number flows, due to the wide range of scales of motion
that need to be resolved. The use of numerical models allows researchers to simulate turbulent
flows of interest using smaller computational resources. In this paper we study a particular
sub-grid scale turbulence model known as the Navier–Stokes-α (NS-α) model:

∂tv − u × (∇ × v) = −∇ p + ν�v + f

∇ · u = ∇ · v = 0 (2)

v = u − α2�u.

The system in (2) reduces to the Navier–Stokes system when α = 0, i.e. u = v. One can think
of the parameter α as the length scale associated with width of the filter which smooths v to
obtain u. The filter is associated with Green’s function of the Helmholtz operator (I − α2�)
(given in the third equation of (2)). When α > 0, notice that the nonlinear term u × (∇ × v)
in (2) is milder than that in (1).

The inviscid and unforced version of the α-model in (2) was derived in [19] based on the
Hamilton variational principle subject to the incompressibility constraint div v = 0. It is worth
mentioning that the inviscid model, the so-called Euler-α model, coincides with the inviscid
second-grade non-Newtonian fluid model (see, e.g., [8, 9, 12]). By adding the viscous term
−ν�v and the forcing f in an ad hoc fashion, the authors in [3–5, 14] obtain the NS-α system
(3) which they then named the viscous Camassa–Holm equations (VCHE), also known as
the Lagrangian averaged Navier–Stokes-α model (LANS-α). The LANS-α model is different
from the viscous second-grade non-Newtonian visco-elastic fluid in that the viscous term in
the former is −ν�v, distinguishable from −ν�u in the latter. In [3–5], it was found that
the analytical steady state solutions for the 3D NS-α model compared well with averaged
experimental data from turbulent flows in channels and pipes for wide range of Reynolds
numbers. It was this fact which led the authors of [3–5] to suggest that the NS-α model
be used as a closure model for the Reynolds averaged equations (RANS). It has since been
discovered that there is in fact a whole family of ‘α’-models which provide similar successful
comparison with empirical data—among these are the Clark-α model [1, 10], the Leray-α
model [7], the modified Leray-α model [20] and the simplified Bardina model [2, 24] (see
also [27] for a family of similar models).

We assume periodic boundary conditions with basic box [0, L]n , and denote the spatial
Fourier coefficients of u(x) and v(x) by û(ξ ) and v̂(ξ ), respectively. Let (·, ·) denote the L2-
inner product and | · | denote the L2-norm over the basic box [0, L]n (we also use | · | for the
modulus of a vector). In the two-dimensional (2D) case we have two conserved quantities for
the (inviscid and unforced) NS-α equations, namely the energy,

Eα =
∞∑

|ξ |=1

Eα(ξ ), (3)

where

Eα(ξ ) = 1

2
(v̂(ξ ) · û(ξ )) = 1

2
(|û(ξ )|2 + α2|ξ |2|û(ξ )|2) (4)
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A study of the Navier–Stokes-α model for two-dimensional turbulence 3

and the enstrophy

�α =
∞∑

|ξ |=1

�α(ξ ) (5)

where

�α(ξ ) = 1

2
|q̂(ξ )|2 (6)

and the vorticity

q̂(ξ ) = (∇̂ × v)(ξ ). (7)

The energy of the smoothed field u is given by

Eu =
∞∑

|ξ |=1

Eu(ξ ) (8)

where

Eu(ξ ) = 1

2
|û(ξ )|2, (9)

and is not conserved in the inviscid and unforced equations.
For a wavenumber k, we define the component uk of a velocity field u by

uk := uk(x) =
∑
|ξ |=k

û(ξ )ei 2π
L ξ ·x , (10)

and the component uk ′,k ′′ with a range of wavenumbers [k ′, k ′′) by

uk ′,k ′′ := uk ′,k ′′ (x) =
∑

k ′≤k<k ′′
uk . (11)

We denote by Eα(k) the energy spectrum associated with

eα
k = 1

2

〈|uk,2k |2 + α2|∇uk,2k |2
〉
, (12)

which is the average energy per unit mass of eddies of linear size l ∈ ( 1
2k , 1

k ], then

eα
k =

∫ 2k

k
Eα(χ ) dχ. (13)

Similarly, we denote by Eu(k) the energy spectrum associated with eu
k = 1

2 〈|uk,2k |2〉, that is,

eu
k =

∫ 2k

k
Eu(χ ) dχ. (14)

In [15] it was shown that Eu(k) has the following remarkable property in three-dimensional
(3D) viscous NS-α case:

Eu(k) ∼
{

k−5/3, when kα 
 1
k−β, when kα � 1

(15)

where β = 3 > 5/3 corresponds to a sharper roll-off than the NSE scaling of the energy
power spectrum k−5/3 for kα � 1. Thus, Eu(k) is offered as a model spectrum for the NSE
for spatial scales of motion larger than α. From the point of view of numerical simulation,
the faster (compared to NSE) decay of Eu(k) of NS-α for kα > 1, indicates suppression of
scales smaller than α and in principle implies reduced resolution requirements for simulating
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4 E. Lunasin et al.

a given flow. The scaling in the kα > 1 regime, that is, the exponent β, was determined in
[14] using a time scale which depends solely on the smoothed velocity field. Later on, in [1,
7, 20], three possibilities for the exponent β were derived since there are two velocities in the
NS-α model. The three possibilities for the exponent β depend on whether the time scale of
an eddy of size k−1 is determined by (k|uk |)−1, (k|vk |)−1, or (k

√
(uk, vk) )−1 (see e.g. [1, 2, 15,

20] and section 2). Determining the actual scaling requires resolved numerical simulations.
In the rest of the paper, we will use the notations E(k) and Eu(k) interchangeably for finite α

simulations when there is no ambiguity in meaning.
The 3D NS-α model was tested numerically in [6], for moderate Reynolds number in a

simulation of size 2563, with periodic boundary conditions. It was observed that the large
scale features of a turbulent flow were indeed captured and there was a rollover of the energy
spectrum from k−5/3 for kα 
 1 to something steeper for kα � 1, although the scaling ranges
were insufficient to enable extraction of the scaling exponent β of (15) unambiguously. Other
numerical tests of the NS-α model were performed in [17, 18, 25], with similar results.

Our goal in this work is to measure the scaling of the energy spectrum of the NS-α in the
regime kα � 1 in the forward enstrophy cascade regime for 2D turbulence. Assuming the
validity of the semi-rigorous arguments introduced in [15], we can then infer from our compu-
tations the timescale characteristic of an eddy of size 1/k. Lending some more weight to the
essentially dimensional arguments in [15], we expect that of the three possible timescales, the
one determining the physics should be the one corresponding to the cascade of the conserved
quantity in the regime of interest. We choose to perform the measurement for the 2D case
with the expectation that discerning scaling ranges and exponents will be cheaper and more
tenable in a 2D system than in a 3D system at the same grid-resolution. Nevertheless, we hope
that the results in 2D will provide some insight into the characteristic time of scales 1/k for
kα � 1 and hence the scaling of the spectrum in the 3D case.

In two-dimensional Navier–Stokes turbulence there are two inertial ranges, one for the in-
verse cascade of energy E and the other for the direct cascade of enstrophy with corresponding
scalings of the energy spectrum as follows [22]:

E(k) ∼
{ k−5/3, where k 
 k f , inverse energy cascade regime

k−3, where kd � k � k f , direct enstrophy cascade regime,

where k f is the injection (forcing) wavenumber for both energy and enstrophy, and kd is
the enstrophy dissipation wavenumber. The k−3 scaling is thought to be accurate upto a log-
correction [23]. In a NS-α model implementation, if we choose α smaller than the injection
scale such that k f α 
 1, we expect a modification of the scaling in the enstrophy cascade
regime as follows:

Eu(k) ∼



k−5/3, where k 
 k f ,

k−3, where k f 
 k 
 1/α,

k−γ , where 1/α 
 k 
 kd ,

(16)

where γ > 3. For the 2D NS-α, we show, using semi-rigorous arguments as in [1, 2, 13, 15,
20], that there are three possible scalings, γ ∈ {7, 19/3, 17/3}. We verify numerically which
of these scalings actually emerges, and therefore deduce the typical time scale for the eddies
of size smaller than the length scale α.

As may be seen from equations (16), for finite α there are three distinct scaling ranges for
2D NS-α. Since we are primarily interested in the value of γ , we would like to maximize
the range of scales over which k−γ scaling dominates. Therefore, we minimize the inverse
cascade range of k−5/3 scaling by forcing in the lowest modes. We also minimize the k−3

scaling range by increasing α all the way to α → ∞. The latter limit is well defined and yields
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A study of the Navier–Stokes-α model for two-dimensional turbulence 5

what we will call the NS-∞ equations [21]

∂tv − u × ∇ × v = −∇ p + ν�v + f

∇ · u = ∇ · v = 0 (17)

v = −L2�u,

where here the forcing term is rescaled appropriately to avoid trivial dynamics for large values
of α, and decaying turbulence at the limit when α→∞. This procedure is equivalent to the
taking the α → ∞ limit for the unforced equation and then adding the forcing term back in
ad hoc. Assuming that the scaling of the spectrum as α → ∞ is identical to the scaling in
the range kα � 1, for finite (small) α and sufficiently long scaling ranges, we obtain the first
resolved numerical calculation of the sub-α scales. The assumption is not unreasonable as
nothing singular is expected to occur as α grows, other than the lengthening of the scaling
range of interest.

The paper is organized as follows. In section 2, we summarize our analytical results. We show
that the 2D NS-α model exhibits an inverse cascade of the energy Eα = 1

2

∫
[0,L]2 u(x) ·v(x) dx

and a forward cascade of the enstrophy �α = 1
2

∫
[0,L]2 |q(x)|2 dx , where q(x) = ∇ × v(x).

Then, we show that in the forward enstrophy cascade regime, the energy of the smoothed
velocity Eu = 1

2

∫
[0,L]2 u(x) ·u(x) dx should follow the Kraichnan k−3 power law for kα 
 1.

For k such that kα � 1 and k f 
 k 
 kd , we will show how the three possible power laws,
k−17/3, k−19/3 and k−7, arise. We also comment on how only one of the possibilities makes
physical sense as it arises from the dynamics of the conserved enstrophy.

In section 3, we present the details of our numerical scheme, data parameters and empirical
justification for adopting a hypoviscousity sink term for the energy in the low modes. Our
numerical calculations ranged in resolution from 2562 to 40962. Our data show a convergence
to k−7 power law in the range kα 
 1 as α → ∞. This scaling allows us to conclude that
the characteristic timescale in the enstrophy cascade region of the smoothed 2D NS-α energy
spectrum is determined by the time scale which depends on the square of the unsmoothed
velocity field, that is the variable v.

In the concluding section 4, we summarize our results and discuss a general scheme for
predicting scaling exponents of any α-model which in principle contains more than one char-
acteristic timescale owing to the presence of two ‘velocities’.

2. Statistical predictions for the NS-α model

2.1 Average transfer and cascade of energy and enstrophy for the 2d NS-α model

In two-dimensional turbulence, energy and enstrophy transfer behave as follows: in the
wavenumber range below k f , the energy and enstrophy go from higher modes to lower modes;
in the wavenumber range above k f , the energy and enstrophy go from low to high wavenum-
bers. In a certain wavenumber regime above k f , there is much stronger direct transfer of
enstrophy than energy, leading to what is called the direct enstrophy cascade. Similarly, in a
certain range below k f , there is a more dominant transfer of energy, leading to what is called
the inverse energy cascade. For the 2D NS-α model, we show that there is similar behaviour
of transfer and cascade for its energy Eα and enstrophy �α . We follow the techniques in [16]
to arrive at this conclusion. Here we summarize our main results. The complete details can be
found in the appendix.
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6 E. Lunasin et al.

For m � k f , let εα
m be the net amount of energy Eα (see (3)) transferred per unit time into

the modes higher than or equal to m, and ηα
m be the net amount of enstrophy �α (see (5))

transferred per unit time into the modes higher than or equal to m. From the scale-by-scale
evolution equation of energy Eα and enstrophy �α we get the following relationship between
εα

m and ηα
m : 〈

εα
m

〉 ≤ ηα
m

m2(1 + α2m2)
, (18)

where 〈·〉 denotes an ensemble average with respect to infinite time average measure (see the
appendix). This result suggests that for large m, the average net of transfer of energy to high
modes is significantly smaller than the corresponding transfer of enstrophy. This yields the
characteristic direct enstrophy cascade.

The inverse energy cascade is expected to take place in the range below the k f . Within this
range, i.e. m 
 k f , we obtain 〈−ηα

m

〉 ≤ m2(1 + α2m2)
〈−εα

m

〉
, (19)

that is, the (inverse) average net transfer of energy to lower modes is much stronger than the
corresponding enstrophy transfer which yields the characteristic inverse energy cascade. This
establishes the expected 2D NS-α cascades for energy Eα and enstrophy �α .

2.2 NS-α model effects on the scaling of the energy spectrum in the enstrophy cascade
regime

We next derive, using the arguments in [13, 14], the expected scaling for the 2D NS-
α energy spectrum. We start by splitting the flow into the three wavenumber ranges
[1, k), [k, 2k), [2k, ∞). We assume k f < k, where k f is the forcing wavenumber, since we are
interested on the effects of the NS-α model in the enstrophy cascade regime. We decompose
the u, v and vorticity q corresponding to the three wavenumber range, and for simplicity, we
denote as follows:

u = u<
k + uk,2k + u>

2k

v = v<
k + vk,2k + v>

2k

q = q<
k + qk,2k + q>

2k,

where, φ<
l = φ1,l , φ>

l = φl,∞. We recall (·, ·) and | · | denote the L2-inner product and L2-
norm, respectively. The enstrophy balance equation for the NS-α model for an eddy of size
∼ k−1 is given by

1

2

d

dt
(qk,2k, qk,2k) + ν(−�qk,2k, qk,2k) = Zk − Z2k, (20)

where

Zk := −b(u<
k , q<

k , qk,2k + q>
2k) + b(uk,2k + u>

2k, qk,2k + q>
2k, q<

k )

−Z2k := −b(u>
2k, q>

2k, q<
k + qk,2k) + b(u<

k + uk,2k, q<
k + qk,2k, q>

2k)

b(u, v, w) := (u · ∇v, w).

Zk may be interpreted as the net amount of enstrophy per unit time that is transferred into
wavenumbers larger than or equal to k. Similarly, Z2k represents the net amount of enstrophy
per unit time that is transferred into wavenumbers larger than or equal to 2k. Thus, Zk − Z2k

represents the net amount of enstrophy per unit time that is transferred into wavenumbers in the
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A study of the Navier–Stokes-α model for two-dimensional turbulence 7

interval [k, 2k). Taking an ensemble average (with respect to infinite time average measure)
of (20) we get

ν〈(−�qk,2k, qk,2k)〉 = 〈Zk〉 − 〈Z2k〉. (21)

Using the definition of Eα(k) in (13), we can rewrite the averaged enstrophy transfer equation
(21) as

νk5(1 + α2k2)Eα(k) ∼ ν

∫ 2k

k
k4(1 + α2k2)Eα(k) dk ∼ 〈Zk〉 − 〈Z2k〉 .

Thus, as long as νk5(1 + α2k2)Eα(k) 
 〈Zk〉 (that is, 〈Z2k〉 ≈ 〈Zk〉, there is no leakage of
enstrophy due to dissipation), the wavenumber k belongs to the inertial range. Similar to the
other α-models, the correct averaged velocity of an eddy of length size ∼ 1/k is not known.
That is, we do not know a priori in these models the characteristic time scale of an eddy of
size ∼ 1/k.

In the forward cascade inertial subrange, we follow Kraichnan [22] and postulate that the
eddies of size larger than 1/k transfer their energy to eddies of size smaller than 1/(2k) in the
time τk it takes to travel their length ∼ 1/k. That is,

τk ∼ 1

kUk
, (22)

where Uk is the average velocity of eddies of size ∼ 1/k. Since there are two velocities in the
NS-α model, there are three physically relevant possibilities for this average velocity, namely

U 0
k =

〈
1

L2

∫
�

|vk,2k(x)|2dx

〉1/2

∼
(∫ 2k

k
(1 + α2k2)Eα(k)dk

)1/2

∼ (
k(1 + α2k2)Eα(k)

)1/2
,

U 1
k =

〈
1

L2

∫
�

uk,2k(x) · vk,2k(x)dx

〉1/2

∼
(∫ 2k

k
Eα(k)dk

)1/2

∼ (k Eα(k))1/2 ,

U 2
k =

〈
1

L2

∫
�

|uk,2k(x)|2dx

〉1/2

∼
(∫ 2k

k

Eα(k)

(1 + α2k2)
dk

)1/2

∼
(

k Eα(k)

1 + α2k2

)1/2

.

That is,

U n
k ∼ (k Eα(k))1/2

(1 + α2k2)(n−1)/2
, (n = 0, 1, 2). (23)

We may therefore write the typical time scale of an eddy of size k−1 in (22) as

τ n
k ∼ 1

kU n
k

= (1 + α2k2)(n−1)/2

k3/2(Eα(k))1/2
, (n = 0, 1, 2). (24)

For n = 0, the time scale of (24) is the inverse of 〈|qk,2k |〉 (the average vorticity of eddies of
size ∼ 1/k). Thus the n = 0 timescale is also the most reasonable physical choice for this
problem since 1

2 |q|2 is the forward cascading conserved quantity. In keeping with [22], the
timescale of the cascading conserved quantity in a particular scale regime should govern the
scaling of all related quantities in that regime. Nevertheless, in keeping with the historical
approach to the problem [13, 14], there are in principal three different time scales and it is left
to empirical evidence to determine which is the governing one.

The enstrophy dissipation rate ηα which is a constant equal to the flux of enstrophy from
wavenumber k to 2k is given by

ηα ∼ 1

τ n
k

∫ 2k

k
(1 + α2k2)k2 Eα(k)dk ∼ k9/2(Eα(k))3/2

(1 + α2k2)(n−3)/2
, (25)
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8 E. Lunasin et al.

and hence

Eα(k) ∼ η
2/3
α (1 + α2k2)(n−3)/3

k3
.

Thus, the energy spectrum of the smoothed velocity u is given by

Eu(k) ≡ Eα(k)

1 + α2k2
∼




η2/3
α k−3, when kα 
 1 ,

η
2/3
α

α2(6−n)/3
k−(21−2n)/3, when kα � 1 .

(26)

Therefore, depending on the average velocity of an eddy of size k−1 for the NS-α model, we
obtain three possible scalings of the energy spectrum, k−(21−2n)/3, (n = 0, 1, 2) all of which
decay faster than the Kraichnan k−3 power law, in the subrange kα � 1. In the work of [26] the
k−17/3 power law was estimated using dimensional analysis, using a time scale which depends
solely on the smoothed velocity field, consistent with n = 2 in our notation. The actual power
law was not measured at the time due to insufficient dynamic range of their simulations. Our
simulations here show that the scaling is k−7, which corresponds to n = 0 in our notation.
Hence we deduce that the conserved quantity for the forward cascade, namely the enstrophy
of the rough field, governs the dynamics and scaling for related quantities.

3. Results

3.1 Details of the numerical simulation

The Navier–Stokes equations and the Navier–Stokes-α model equations with stochastic forc-
ing were solved numerically in a periodic domain of length L = 1 on each side. The wavenum-
bers k are thus integer multiples of 2π . A pseudospectral code was used with fourth-order
Runge–Kutta time-integration. Simulations were carried out with resolutions ranging from
2562 to a maximum resolution of 40962 on the Advanced Scientific Computing QSC ma-
chine at the Los Alamos National Laboratory. To maximize the enstrophy inertial subrange,
the forcing is applied in the wavenumber shells 2 < k < 4. We also add a hypoviscous term
(µ�−1v) which provides a sink in the low wavenumbers. Let H = 1 − α2�, then v = Hu.
We simulate the following equation:

∂t u − H−1(u × (∇ × v)) = −∇π + µ(�−1u) + ν�u + f, (27)

where π denotes the modified pressure and µ > 0 is a hypoviscosity coefficient. The equation
in (27) is equivalent to

∂tv − u × (∇ × v) = −∇ p + µ(�−1v) + ν�v + f̃ , (28)

where f̃ = H( f ) (compare with equation (2)). We demonstrate in the next section, that adding
a hypoviscous term does not have a significant effect on our observed numerical results. We
use no extra dissipation term in the small scales besides the regular dissipation in the Navier–
Stokes or the Navier–Stokes-α. Some relevant parameters and results of our simulation are
presented in table 1. The 2562 simulations were performed to ascertain whether it was feasible
to perform the computations in reasonable time without a low-wavenumber sink term, the
hypoviscosity. The simulations of 10242 and higher show the convergence of the scaling
exponent of interest, namely the value of γ .

The condition for a resolved simulation is judged by the degree to which the enstrophy
dissipation scale is resolved since the enstrophy cascade is expected to govern the dynamics
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A study of the Navier–Stokes-α model for two-dimensional turbulence 9

Table 1. Parameters of the simulations: number of grid points per side N , α in units of �x ,

viscocity coefficient ν, hypoviscosity coefficient µ, maximum wavenumber kmax =
√

2
3 N ,

enstrophy dissipation scale lη = ( ν3

ηα
)1/6, where ηα is the enstrophy dissipation rate.

N α α/L ν µ kmaxlη

256 0 0 1e−3 0 10
5 10

10 10
2.04 0.008 0 10

5 10
10 10

∞ ∞ 0 2
5 2

10 2

1024 0 0 1e−4 15 12.5
3.25 0.003 12.5
15 0.015 12
100 0.097 6
∞ ∞ 2

2048 0 0 5e−5 10 18
6.5 0.003 18
∞ ∞ 2

4096 0 0 1e−5 10 15
∞ ∞ 2

in the range k � k f . The enstrophy dissipation rate for NSE and NS-α are

η = ηα = ν〈|∇q|2〉, (29)

where q = ∇ × v, and v is respectively, either the NS velocity or the unfiltered velocity for
the NS-α. The enstrophy dissipation scale is then computed, following Kraichnan [22, 23],
by dimensional analysis in a manner analogous to the way in which the Kolmogorov energy
dissipation scale is calculated in 3D turbulence:

lη[α] =
(

ν3

η[α]

)1/6

. (30)

A resolved simulation has kmaxlη > 1. In all our simulations, kmaxlη ≥ 2, indicating well-
resolved flow. Note, however, in table 1 that, keeping all other parameters fixed, increasing α

decreases kmaxlη, indicating that as if the NS-α flow is less resolved, from the point of view of
the enstrophy cascade, than the NSE for a given grid and viscosity. However, this observation
is misleading since the computations for the NS-α were done with a rescaled forcing term
with an amplitude growing indefinitely as α→∞. Therefore, by increasing α, the NS-α is
forced more vigorously, and damped strongly. We discuss this further in section (3.4).

3.2 Dependence of scaling behaviour on hypoviscosity

The hypoviscosity term in (28) provides a sink in the low wavenumbers for the energy.
This allows the flow to reach statistical equilibrium in more reasonable computational time.
However, since it is an ad hoc addition to the NSE or NS-α model, we need to ascertain
whether it affects the behaviour in the range of scales of interest, namely the range k > 1/α.
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Figure 1. Energy spectra for a 2562 simulation with fixed viscosity and varying hypoviscosity coefficient µ. The
wavenumber k is in multiples of 2π . The solid lines are the DNS (α = 0) calculations of E(k). The dotted lines are the
NS-α model calculations of Eu (k) for small α. The behaviour of the spectra is largely independent of the magnitude
of the hypoviscosity in the enstrophy cascade subrange (6 < k < 15). The inset shows the spectra compensated by
k4.5. The resolution of this simulation is far too small to observe the expected scaling exponent.

In figure 1, we compare the energy spectra for 2562 run for DNS (α = 0) and 2D NS-α with
α = 2.04 (in units of �x). The solid lines represent the DNS runs with varying hypoviscosity
coefficient. In the inset, the compensated plots for the DNS show very little difference. The
dotted lines correspond to the 2D NS-α runs with varying hypoviscosity coefficient. Again, as
seen in the compensated plots in the inset, there is very little dependence on the hypoviscosity.
These numerical results show that for a small to moderate hypoviscosity coefficient, the
spectral slope in the enstrophy inertial range is not significantly affected by the addition of the
hypoviscous term. Furthermore, as we see in table 1 for the 2562 simulation, the enstrophy
dissipation length scale lη is not affected by varying hypoviscosity coefficient.

From the above empirical observation, we conclude that, for the range of scales of interest,
we can safely use a hypoviscous term and save significant computational time in our higher
resolution runs.

3.3 Varying alpha; convergence to NS-∞
In this section, we show the effect of varying the parameter α. For a given grid, we fix the
viscosity coefficient and vary α in order to measure the scaling exponent γ of the energy
spectrum in the enstrophy inertial subrange.

In figures 2, 3 and 4 we show the NSE spectrum E(k) and the spectrum Eu(k) from 10242,
20482 and 40962 simulations, each with fixed viscosity and varying α. As expected, the scaling
ranges increase as the number of grid-points increases. In each figure the solid black line is
the DNS spectrum E(k), and approaches a scaling close to k−3 as N increases. In both figures
2 and 3 for 0 < α ≤ 15 (in units of �x), we see the spectrum Eu(k) peels away from the
NSE spectrum (α = 0) near kα = 1 but displays no clear scaling behaviour for kα > 1 until
α ≥ 100. To discern a clear power law of the NS-α model spectrum, we consider the data
from simulation of the NS-∞ equations (17). This allows us to see the scaling of the NS-α
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Figure 2. Energy spectra for 10242 simulation. The black curve is the DNS (α = 0) which shows close to k−3

scaling in the enstrophy cascade range 6 < k < 20. The solid red curve is the Eu (k) spectrum as α → ∞ which
scales close to k−7 in the enstrophy cascade range 6 < k < 25. The energy spectra for intermediate values of α tend
to the α → ∞ limit as α increases. The inset shows the DNS energy spectrum (black) compensated by k3.7 and the
α → ∞ energy spectrum (red) compensated by k7.4

model energy spectrum without contamination by finite-α or DNS for the NSE (k−3) effects.
At our maximum resolution of 40962 in figure 4, as α→∞ (solid red line), there is a clear
convergence of the scaling to k−7. Table 2 summarizes our findings for the scaling of the Eu(k)
spectrum as α→∞ for each of our simulations. According to (26), the scaling k−7 corresponds
to an enstrophy time scale determined by the velocity v. We conclude that the dynamics of
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Figure 3. Energy spectra for 20482 simulation. The black curve is the energy spectrum of the DNS which shows
close to k−3 scaling in the enstrophy cascade range 6 < k < 35. The solid red curve is the Eu (k) spectrum as α → ∞
which scales approximately as k−7.1 in the wavenumber region 6 < k < 25. The inset shows the DNS energy spectrum
(black) compensated by k3.5 and the α → ∞ energy spectrum (red) compensated by k7.1
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Figure 4. Energy spectra for 40962 simulation. The black curve is the spectrum for the DNS, the red curve is
the spectrum for α → ∞. The black curve in the inset corresponds to the NSE energy spectrum compensated by
k3 ln(k f + k)1/3 following [23]. The red curve in the inset is the energy spectrum Eu (k) for NS-∞ compensated by
k7. The region 6 < k < 40 is flat indicating the nominal range over which the k−7 scaling holds.

the smoothed velocity field, which is the purported model for turbulence, is nevertheless still
governed by the unfiltered velocity field.

In this analysis and conclusion, we have assumed that the scaling in the asymptotic limit
α→∞ would be identical to the scaling for kα > 1 for small α. In figure 5, we demonstrate
that this assumption is reasonable by showing that the scaling of the energy spectrum for small
α = 6.5 is approaching close to k−7 scaling for a small range of kα > 1. We are therefore
reasonably convinced that going for the asymptotic limit is indeed giving us the correct scaling
for finite (small) α; the α→∞ limit merely maximizes the range over which a clear scaling
exponent can be measured at a given resolution.

3.4 NS-α model effects on the dissipation length scales of the flow

In table 1, we observe that, keeping the viscosity, hypoviscosity and the resolution fixed,
increasing α tends to decrease the enstrophy dissipation length-scale lη (see (30)). We also
learned that the rate of dissipation of the energy Eu is dictated by the typical time scale of
the unfiltered velocity field. In this section, we further explore the effects of the α parameter
on the smallest scales of the flow. We recall that the NS-α computations were done with a
rescaled forcing term, a fact which is important in the discussion to follow.

In the left panel of table 3, we present the enstrophy dissipation length scale lη (see (30)) for
the 10242 simulation as α increases. This length scale, as we already know, gets smaller with

Table 2. Convergence of α→∞ scaling exponent γ of Eu (k)
as the resolution is increased

N 256 1024 2048 4096
γ 8.0 7.4 7.1 7.0
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Figure 5. Compensated energy spectra for 20482 simulation for α = 6.5 (kα = 39.75; vertical dashed line). The
energy spectrum is compensated by k7, k19/3, and , k17/3 respectively. The region 39 < k < 70 in the first subplot
follows a flat regime which indicates the nominal range over which the k−7 scaling holds.

increasing α value. A visual of this effect is given in figure 6, where we plot the isosurfaces
of vorticity q for increasing values of α. Observe how the vorticity values grow while the
vorticity structures become much finer as α increases.

By contrast, consider a ‘dissipation’ length scale for the smooth velocity,

lηu =
(

ν3

ηu

)1/6

, (31)

where ηu = ν〈|∇ω|2〉, (32)

and ω = ∇ × u, (33)

corresponding to a naively calculated length scale for the smooth enstrophy �u = |∇ × u|2.
It should be emphasized that the dissipation rate (32) does not correspond to a flux of �u , as
the latter is not conserved in the inertial range. The right panel of table 3 shows the length
scale (31) grows as α increases. Corresponding to this we present in figure 7 the isosurfaces
of ∇ × u for increasing values of α. Note that in this case, the vorticity values diminish while
the vorticity structures become increasingly smooth and diffuse.

Table 3. Dissipation length scales when varying α. N = resolution, α, ν = viscoisty coefficient, µ—hypoviscosity
coefficient, lη—enstrophy (�α) dissipation length scale, lηu —smoothed enstrophy dissipation length scale

N αa ν µ lη N αa ν µ lηu

1024 0 1e−4 15 0.004133 1024 0 1e−4 15 0.004133
3.25 0.004099 3.25 0.004490
15 0.003973 15 0.005659
100 0.002165 100 0.006827
∞ 0.000488 ∞ 0.006858

aIn units of �x .
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14 E. Lunasin et al.

Figure 6. Isosurfaces of vorticity ∇ × v for the 10242 simulation. α = 0, 3.25, 15, 100, ∞, reading each row of
figures from left to right. The vorticity field exhibits increasingly fine structures as α is increased.

Thus on the one hand, the smooth velocity field and its vorticity are consistent with reduced
resolution requirements for the NS-α model; on the other, the behaviour of the conserved
quantity for the (inviscid and unforced) NS-α model indicates a requirement for increased
number of grid points, counter to what one would like to see in a sub-grid model. Note,
however, that in order to avoid trivial dynamics as α increases, we have effectively scaled the
forcing term in the simulations of the NS-α. That is, the computed equation (28) tends to the
(17) as α → ∞. This was done so that we could conveniently study the case of large α, thus
extending the scaling range of interest. It could well be that for a detailed study of small-α with
the forcing unscaled, the desired computational gains expected of a sub-grid model could be
observed. However, our main goal in this study, the scaling exponent γ , could not be clearly
obtained at achievable resolutions without going for the large-α limit. Thus, a straightforward
comparison, for the purpose of checking the NS-α as a sub-grid model, is not clear.

Figure 7. Isosurfaces of vorticity ∇ × u for the 10242 simulation. α = 0, 3, 25, 15, 100, ∞, reading each row of
figures from left to right. The structures become smoother with increasing α.
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4. Conclusion

We began this work not knowing a priori how the α-model affects the scaling of the smooth
velocity spectrum in the forward cascade regime for 2D flows. This was because in principle
there are three characteristic time scales corresponding to three characteristic velocities. Also,
until now there were no high-resolution numerical simulations data to guide our expectation
of how the kα � 1 regime should scale.

We first showed analytically that the enstrophy �α = 1
2 |∇ × v|2 dominates the forward

cascade in 2D NS-α. Subsequently, we were able to measure Eu(k) ∼ k−7 scaling over almost
two decades for kα � 1 in resolved numerical simulations. According to dimensional argu-
ments this means that the characteristic time scale of the rough velocity v alone determines the
scaling of the spectra in the forward cascade regime. The physical interpretation of this result
is that the quantity governing the scaling of all measures of interest must be the one governing
the forward cascade. This result is the first unambiguous high-resolution measurement of the
effects of the α-model on the scaling of the energy spectrum.

We can now speculate on how to predict the unknown scaling exponents for any α-model.
Based on our main result in this paper, we expect that the scaling exponent for kα � 1 will be
governed by the time scale of the conserved quantity with the dominant cascade in that regime.
To test this hypothesis, we have performed numerical simulation of a related α-model known
as the Leray-α model [7]. For that model, the forward cascade is dominated by the conserved
quantity (∇u, ∇v) and its corresponding time scale is n = 1 in our notation, yielding for this
model a scaling of k−5 for the energy spectrum E(k). We have observe the k−5 scaling as
predicted and expect to publish the details of this investigation shortly.

It would seem reasonable to extend this argument to speculate on the the scaling of the 3D
NS-α. Currently, the k−3 scaling predicted for kα � 1 in 3D [14] is obtained by assuming
that the time scale which governs the small scales is determined by the smooth velocity u. The
scaling in 3D has not been verified empirically to date. If we extend our a posteriori guess as to
the cause of the scaling to 3D, it would mean that since the corresponding energy Euv = 1

2 (u, v)
governs the forward cascade dynamics in 3D, the scaling of Eu(k) ∼ k−11/3, that is, steeper
than the k−3 predicted in [14]. This issue can only be decided upon further investigation.
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Appendix A: Average transfer and cascade of the energy Eα and enstrophy Ωα in the
two-dimensional NS-α model

Here we will show analytically, the transfer and cascade of the energy in the two-dimensional
NS-α model. Following the exposition as in [16], we will show that the conserved (in the
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16 E. Lunasin et al.

absence of viscosity and forcing) energy Eα (3) and enstrophy �α (5) in the two-dimensional
NS-α model have similar transfer and cascade behaviour as in the two-dimensional turbulence.
We recall that we denote by φ<

l = φ1,l and φ>
l = φl,∞.

(i) Average energy transfer
We start by decomposing the velocity fields into two components: the large-scale compo-
nent u<

m and v<
m containing eddies of size larger than 1/m, and the small-scale component

u>
m and v>

m containing eddies of size smaller than or equal to the lengthscale 1/m. That
is,

u = u<
m + u>

m

v = v<
m + v>

m .

For the forcing f , we assume it to be time independent and contains only finite number
of modes, namely,

f = fm,m, where, 1 < m < m < ∞.

Here we will look at the two cases: m ∈ (1, m) and m ∈ (m, ∞). We recall that (·, ·) and |·|,
denote the L2-inner product and L2-norm, respectively. From the above decomposition,
we define the kinetic energy contained in the large and small eddies (respectively) as

E<
α = 1

2
(u<

m, v<
m ) and E>

α = 1

2
(u>

m, v>
m ).

We are interested on how the energy Eα is transferred between large and small scales.
Consider the case where m > m (i.e. beyond the injection of energy). Following the
notation as in [14], let us denote by b̃(u, v, w) = (−u × (∇ × v), w). We write (2) in
its functional differential form (see, e.g. [16, 28]), and apply the large and small scale
decomposition to get the corresponding energy equations for the large and small scales:

1

2

d

dt
(v<

m , u<
m) + ν(v<

m , −�u<
m) + b̃(u<

m + u>
m, v<

m + v>
m , u<

m) = ( f, u<
m)

(A1)
1

2

d

dt
(v>

m , u>
m) + ν(v>

m , −�u>
m) + b̃(u<

m + u>
m, v<

m + v>
m , u>

m) = 0.

Define

�< := −b̃(u>
m, v>

m , u<
m) + b̃(u<

m, v<
m , u>

m)
(A2)

�> := b̃(u>
m, v>

m , u<
m) − b̃(u<

m, v<
m , u>

m)

Notice that �> + �< = 0. We can rewrite the energy equations in the following form:

d

dt
E<

α + ν(v<
m , −�u<

m) = �< + ( f, u<
m)

(A3)
d

dt
E>

α + ν(v>
m , −�u>

m) = �>.

We can interpret the individual terms above as follows: ( f, u<
m) represents the energy

flow injected into the large scales, by the forcing term. �< represents the net amount of
energy per unit time that is transferred from small to large length scales. �> represents
the net amount of energy per unit time that is transferred from large to small length scales.
−b̃(u<

m, v<
m , u>

m) represents the energy flow induced in the high modes by inertial forces
associated with lower modes.
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A study of the Navier–Stokes-α model for two-dimensional turbulence 17

Let F be the set of all vector trigonometric polynomials with periodic domain �.
We then set V = {φ ∈ F : ∇ · φ = 0 and

∫
�

φ(x) dx = 0}. We set V to be the closure
of V in the Sobolev space H 1. The solution operator u(t) = Sα(t)u0 of (2) defines a
dynamical system on the phase space V . A generalized notion of infinite time averaging,
as it was defined in [16], induces a probability invariant measure with respect to Sα(t).
We denote this measure by dP , and the ensemble average with respect to this measure
will be denoted by

〈φ(·)〉 =
∫

V
φ(w)dP(w). (A4)

Thus, beyond the range where energy is injected, the average transfer of energy is into
the higher modes, that is

〈�>〉 = ν〈v>
m , −�u>

m〉 ≥ 0. (A5)

Now consider modes that are below the injection of energy. For that purpose, assume
m > 1 and consider m such that 1 < m < m. The NS-α equation (2) can be decomposed
as follows:

1

2

d

dt
(v<

m , u<
m) + ν(v<

m , −�u<
m) + b̃(u<

m + u>
m, v<

m + v>
m , u<

m) = 0
(A6)

1

2

d

dt
(v>

m , u>
m) + ν(v>

m , −�u>
m) + b̃(u<

m + u>
m, v<

m + v>
m , u>

m) = ( f, u>
m).

The associated energy equation for the lower modes reads

d

dt
Eα

< + ν(v<
m , −�u<

m) = �<.

We then take the ensemble average to get

〈�<〉 = ν〈v<
m , −�u<

m〉 ≥ 0. (A7)

That is, for wavenumber regime below the injection of energy the average transfer of
energy is from high wavenumbers to lower wavenumbers.

(ii) Average enstrophy transfer
Next we consider the details of the transfer of enstrophy. Again, we assume f is time
independent and contains only a finite number of modes. Here, we do a slightly dif-
ferent exposition as in [16]. We take the curl of the momentum equation and using the
incompressibility condition and the vector identity

∇ × (a × b) = a(∇ · b) − b(∇ · a) − (a · ∇)b + (b · ∇)a, (A8)

we get the vorticity formulation for the 2D NS-α equation:

∂t q − ν�q + u · ∇q = ∇ × f, (A9)

where q = ∇×v and we recall that v = u−α2�u. We split the flow into two components
u = u<

m + u>
m and q = q<

m + q>
m .

The amount of enstrophy contained in the large and small eddies are given, respectively,
by

�<
α = |∇ × v<

m |2
(A10)

�>
α = |∇ × v>

m |2.
We would like to show how the enstrophy is transferred between the large and small
scales. First consider the case m > m (i.e. beyond the injection of energy). Following
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18 E. Lunasin et al.

the notation as in the NSE [16], we denote by b(u, v, w) = (u · ∇v, w). We write the
evolution of the enstrophy governing the large and small scales:

1

2

d

dt
(q<

m , q<
m ) + ν(q<

m , −�q<
m ) + b(u<

m + u>
m, q<

m + q>
m , q<

m ) = (∇ × f, q<
m )

(A11)
1

2

d

dt
(q>

m , q>
m ) + ν(q>

m , −�q>
m ) + b(u<

m + u>
m, q<

m + q>
m , q>

m ) = 0.

where we denote by

�< := −b(u<
m + u>

m, q<
m + q>

m , q<
m ) = −b(u<

m, q<
m , q>

m ) + b(u>
m, q>

m , q<
m )

(A12)
�> := −b(u<

m + u>
m, q<

m + q>
m , q>

m ) = b(u<
m, q<

m , q>
m ) − b(u>

m, q>
m , q<

m ).

�< is the net amount of enstrophy transferred into low modes and �> is the net amount
of enstrophy transferred into high modes. Note that for almost every t , �< + �> = 0.
From this, we can rewrite the enstrophy equations above in the following form:

1

2

d

dt
|q<

m |2 + ν|∇q<
m |2 = �< + (∇ × f, q<

m )
(A13)

1

2

d

dt
|q>

m |2 + ν|∇q>
m |2 = �>.

Taking the ensemble average (with respect to the infinite time averaging measure dP) of
the equation for enstrophy associated with the low modes, we get〈

�>
〉 = ν

〈|∇q>
m |2〉 ≥ 0. (A14)

This implies that, beyond the injection of energy, the average transfer of enstrophy is
from low modes into higher modes. Next we consider the modes below the injection of
energy. Assuming 1 < m < m, we get

1

2

d

dt
(q<

m , q<
m ) + ν(q<

m , −�q<
m ) + b(u<

m + u>
m, q<

m + q>
m , q<

m ) = 0
(A15)

1

2

d

dt
(q>

m , q>
m ) + ν(q>

m , −�q>
m ) + b(u<

m + u>
m, q<

m + q>
m , q>

m ) = (∇ × f, q>
m ).

We take the ensemble average of enstrophy equation associated with the low modes to
get

〈�<〉 = −〈�>〉 = ν|∇q<
m |2 ≥ 0,

that is, the average net transfer of enstrophy is from high modes to lower modes for
wavenumber regime below the injection of energy.

(iii) Direct enstrophy cascade and inverse energy cascade
In (i) and (ii), we have seen that in the range above the injection of energy both the energy
and enstrophy is transferred from low to higher wavenumbers. On the wavenumbers
regime below the injection of energy, both the energy and enstrophy are transferred from
high to lower wavenumbers. Here we will show that, in the wavenumbers regime above
the injection of energy, there is a much stronger transfer of enstrophy leading to what is
called direct enstrophy cascade. On the other hand, in the wavenumbers regime below
the injection of energy, the energy transfer is much stronger than the enstrophy transfer
leading to what is known as the inverse cascade of energy.
We split the flow into three parts assuming the same form restriction on the forcing as
above. Consider m ′′ ≥ m ′ ≥ m. Let u = u<

m ′ + um ′,m ′′ + u>
m ′′ and q = q<

m ′ + qm ′,m ′′ + q>
m ′′ .
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A study of the Navier–Stokes-α model for two-dimensional turbulence 19

The vorticity field associated with the wavenumbers between m ′ and m ′′ is

d

dt
qm ′,m ′′ − ν�qm ′,m ′′ + B(u<

m ′ + um ′,m ′′ + u>
m ′′ , q<

m ′ + qm ′,m ′′ + q>
m ′′ ) = 0,

where we denote by B(v, w) := (v · ∇)w. The evolution equation for the enstrophy
associated with the modes between m ′ and m ′′ is given by

1

2

d

dt
|qm ′,m ′′ |2 + ν|∇qm ′,m ′′ |2 = −b(u<

m ′ + um ′,m ′′ + u>
m ′′ , q<

m ′ + qm ′,m ′′ + q>
m ′′ , qm ′,m ′′ ),

where b(u, v, w) := ((u · ∇)v, w). One can compute by using the bilinear properties of
b (see, e.g. [11, 16, 28]) that

−b(u<
m ′ + um ′,m ′′ + u>

m ′′ , q<
m ′ + qm ′,m ′′ + q>

m ′′ , qk) = ηα
m ′ − ηα

m ′′ , (A16)

where ηα
m ′ is the net amount of enstrophy transferred per unit time into the modes higher

than or equal to m ′ and ηα
m ′′ is the net amount of enstrophy transferred per unit time into

the modes higher than or equal to m ′′, and given by

ηα
m ′ = −b(u<

m ′ , q<
m ′ , qm ′,m ′′ + q>

m ′′ ) + b(um ′,m ′′ + u>
m ′′ , qm ′,m ′′ + q>

m ′′ , q<
m ′ )

−ηα
m ′′ = −b(u>

m ′′ , q>
m ′′ , q<

m ′ + qm ′,m ′′ ) + b(u<
m ′ + um ′,m ′′ , q<

m ′ + qm ′,m ′′ , q>
m ′ ).

In the explicit form, we have

1

2

d

dt
|qm ′,m ′′ |2 + ν|∇qm ′,m ′′ |2 = ηα

m ′ − ηα
m ′′ . (A17)

Taking the ensemble average of (A17), we get〈
ηα

m ′′
〉 = 〈

ηα
m ′

〉 − ν〈|∇qm ′,m ′′ |2〉.
That is, the average net transfer of enstrophy into the modes higher than m ′′ is equal to
the average net transfer of enstrophy into the modes higher than or equal to m ′ minus
the enstrophy lost due to viscous dissipation within the range [m ′, m ′′]. In [m ′, m ′′], it is
assumed that the viscous dissipation is negligible and the enstrophy is simply transferred
to smaller and smaller eddies. This occurs whenever〈

ηα
m ′′

〉 ≥ 〈
ηα

m ′
〉 � ν〈|∇qm ′,m ′′ |2〉. (A18)

The range of wavenumbers k > m up to where (A18) holds is called the enstrophy inertial
subrange. Now within this range there is still an average net transfer of energy to higher
modes. Denote by

〈
εα

m

〉
:= 〈�>〉 and ηα

m := 〈�>〉. From (A5) and (A14),

1

ν

〈
εα

m

〉 ≤ 〈|qm,∞|2〉
1 + α2m2

≤ 〈|∇qm,∞|2〉
m2(1 + α2m2)

= 1

ν

ηα
m

m2(1 + α2m2)
.

Hence,

〈
εα

m

〉 ≤
〈
ηα

m

〉
m2(1 + α2m2)

. (A19)

This result suggests that for large m, in particular, k f < m < kd , where kd is the dissi-
pation wavenumber, the average net of transfer of energy to high modes is significantly
smaller than the corresponding transfer of enstrophy. This yields the characteristic direct
enstrophy cascade in this range.
The inverse energy cascade takes place in the range below the injection of energy. Consider
1 < m ′ < m ′′ < m. We follow the same steps as above. We decompose the flow into three
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components u = u<
m ′ + um ′,m ′′ + u>

m ′′ and proceeding as before, we obtain〈
εα

m ′′
〉 = 〈

εα
m ′

〉 + ν〈(vm ′m ′′ , −�um ′,m ′′ )〉. (A20)

As we have seen in (i), we have in this case the inverse transfer of energy

〈εα
m ′′ 〉 ≤ 0 and

〈
εα

m ′
〉 ≤ 0.

Therefore, as long as 〈
εα

m ′′
〉
<∼

〈
εα

m ′
〉 
 ν〈vm ′,m ′′ , −�um ′,m ′′ 〉, (A21)

we have inverse cascade. Now within the range corresponding to energy cascade (below
injection of the force f ) both the energy and enstrophy are transferred to lower modes〈−εα

m

〉 = ν〈(∇v1,m, ∇u1,m)〉 = ν〈|∇u1,m |2 + α2|�u1,m |2〉 ≥ 0〈−ηα
m

〉 = ν〈|∇q1,m |2〉 ≥ 0.

Since u1,m contains only modes smaller than m, we therefore have

|∇q1,m |2 ≤ m2(1 + α2m2)(∇v1,m, ∇u1,m), (A22)

which implies 〈−ηα
m

〉 ≤ m2(1 + α2m2)
〈−εα

m

〉
, (A23)

that is, in the wavenumber regime below the injection of energy, the (inverse) average
net transfer of energy to lower modes is much stronger than the corresponding enstrophy
transfer which yields the characteristic inverse energy cascade.
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