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Abstract
We present data from high-resolution numerical simulations of the Navier–
Stokes-α and the Leray-α models for two-dimensional turbulence. It was
shown previously (Lunasin et al 2007 J. Turbul. 8 30) that for wavenumbers
k such that kα � 1, the energy spectrum of the smoothed velocity field
for the two-dimensional Navier–Stokes-α (NS-α) model scales as k−7. This
result is in agreement with the scaling deduced by dimensional analysis of
the flux of the conserved enstrophy using its characteristic time scale. We
therefore hypothesize that the spectral scaling of any α-model in the sub-α
spatial scales must depend only on the characteristic time scale and dynamics
of the dominant cascading quantity in that regime of scales. The data presented
here, from simulations of the two-dimensional Leray-α model, confirm our
hypothesis. We show that for kα � 1, the energy spectrum for the two-
dimensional Leray-α scales as k−5, as expected by the characteristic time scale
for the flux of the conserved enstrophy of the Leray-α model. These results
lead to our conclusion that the dominant directly cascading quantity of the
model equations must determine the scaling of the energy spectrum.
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1. Introduction

In [20] we observed that the scaling exponent of the energy spectrum of the two-dimensional
(2D) Navier–Stokes-α model (NS-α), for wavenumbers k such that kα � 1, is k−7. A
posteriori, we saw that this scaling corresponding to that predicted by assuming that the
dynamics for kα � 1 was governed by the characteristic time scale for flux of the conserved
enstrophy. We were therefore led to speculate that (in general) the unknown scaling exponent
for any α-model may be predicted by the dynamical time scales for the dominant conserved
quantity for that model in the regime kα � 1. In this paper, we present new numerical
simulations of the 2D Leray-α model which support this hypothesis.

We measure the scaling of the energy spectra from simulations of two-dimensional flow,
performed at a resolution of 40962, in the limit as α → ∞, for two models: the NS-α model
[10, 11, 15, 21]

∂t ṽ − ν�ṽ − ũ × ∇ × ṽ = −∇p̃ + f, (1)

∇ · ũ = ∇ · ṽ = 0, (2)

ṽ = (I − α2�)ũ, (3)

and the Leray-α model [5]

∂tv − ν�v + (u · ∇)v = −∇p + f, (4)

∇ · u = ∇ · v = 0, (5)

v = (I − α2�)u, (6)

where v, u and p are the unsmoothed velocity, smoothed velocity and the pressure respectively
for the Leray-α model and we use ˜ to distinguish the variables in the NS-α model; ν is the
viscosity, and f is the body force. Note that the two systems above reduce to Navier–Stokes
equations (NSE) when α = 0. One can think of the parameter α as the length scale associated
with the width of the filter which smooths v (or ṽ) to obtain u (or ũ). The filter is associated with
the Green’s function (Bessel potential) of the Helmholtz operator (I − α2�). We supplement
both of the systems above with periodic boundary conditions in a basic box [0, L]2.

The inviscid and unforced version of the three-dimensional (3D) NS-α was introduced
in [15] based on the Hamilton variational principle subject to the incompressibility constraint
div ṽ = 0. By adding the viscous term −ν�ṽ and the forcing f in an ad hoc fashion, the
authors in [1–3] and [10] obtain the NS-α system which they named, at the time, the viscous
Camassa–Holm equations (VCHE), also known as the Lagrangian-averaged Navier–Stokes-α
model (LANS-α). In [1–3] it was found that the analytical steady-state solutions for the 3D
NS-α model compared well with averaged experimental data from turbulent flows in channels
and pipes for wide range of large Reynolds numbers. It was this fact which led the authors of
[1–3] to suggest that the NS-α model be used as a closure model for the Reynolds-averaged
equations. Since then, it has been found that there is in fact a whole family of ‘α’- models
which provide similar successful comparison with empirical data—among these are the Clark-
α model [6, 7], the Leray-α model [5], the modified Leray-α model [16] and the simplified
Bardina model [8, 19] (see also [23] for a family of similar models).

The 3D NS-α model was tested numerically in [2, 4], for moderate Reynolds number in
a simulation of size 2563, with periodic boundary conditions. It was observed that the large
scale features of a turbulent flow were indeed captured and there was a roll over of the energy
spectrum from k−5/3 for kα � 1 to something steeper for kα � 1, although the scaling ranges
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were insufficient to enable extraction of the power law unambiguously. Other numerical tests
of the NS-α model were performed in [13, 14], and [21], with similar results.

In the limit as α → ∞, we call the two equations NS-∞ [17] and Leray-∞, respectively,
where the forcing term on both models are rescaled appropriately to avoid trivial dynamics.
The equations for the NS-∞ and Leray-∞ are exactly the equations (1) and (4) together with
the incompressibility condition except that equations (3) and (6) are replaced by the equations
ṽ = −L2�ũ and v = −L2�u, respectively. Under the assumption that the scaling of the
spectrum as α → ∞ is identical to the scaling in the range kα � 1 for finite (small) α

and sufficiently long scaling ranges, we obtain a high resolution numerical calculation of the
sub-α scales. This assumption was verified in the finite α calculation of the NS-α model for
two-dimensions in [20]. We stress again here that one has to rescale the forcing appropriately
in order to avoid trivial dynamics for large values of α, and decaying turbulence in the limit
when α→∞ [17].

Let Uk and Vk denote the typical smoothed and unsmoothed velocities of an eddy of
size 1/k for the Leray-α model. Similarly, let Ũk and Ṽk denote the typical smoothed and
unsmoothed velocities of an eddy of size 1/k for the NS-α model. Such ‘typical’ velocities
may be defined by the energy per unit area in the shell [k, 2k) as we will show in the next
section. From our simulations of 2D NS-∞ in [20], the energy spectrum of the smoothed
velocity ũ scales as k−7. In this paper, we will show from numerical simulations that the
energy spectrum of the smoothed velocity u of the 2D Leray-∞ model scales as k−5. These
scalings can also be derived analytically (see [20] and section 2 below) under the assumption
that an eddy of size 1/k, for kα � 1, has a typical time scale comparable to the inverse of
the square root of the enstrophy contained in this eddy. That is, the dominant direct cascading
quantity, which is the enstrophy in the 2D NS-α and Leray-α, dictates these typical time scales.
Specifically, under this assumption, the governing time scales for an eddy of size 1/k in each
model are given by (kṼk)

−1 (for NS-α) and (k
√

UkVk)
−1 (for Leray-α). We assert that the

difference in the dominant forward cascading conserved quantities in these two models is what
leads to the different power laws. Our numerical results in 2D for two different α-models,
with different forward cascading conserved quantities, support this assertion.

Based on our studies in 2D, we extrapolate our conclusions to the 3D case as follows.
For the 3D NS-α model and 3D Leray-α model, the governing time scales for an eddy of size
1/k, for kα � 1, must be given by (k

√
ŨkṼk)

−1 and (kVk)
−1, respectively. This is because

the energy conserved (in the absence of forcing and viscosity) in the 3D NS-α is given by∫
�

ũ · ṽ dx while in the 3D Leray-α it is given by
∫
�

v · v dx. Accordingly, we assert that for
kα � 1, the energy spectra of the smoothed velocity fields in the 3D case will scale as k−11/3

(steeper than k−3 as originally suggested in [11]) for the 3D NS-α, and as k−17/3 (steeper
than k−13/3 proposed in [5]) for the 3D Leray-α model. This assertion is yet to be confirmed
computationally in future work. Our prediction of k−17/3 power law for the smoothed energy
spectrum of the 3D Leray-α model corresponds to one of the three candidate power laws
derived in [5]. The idea that the average velocity of an eddy of size of the order 1/k can be
evaluated in three different ways, which will then lead to three different power laws, was in
fact first introduced in [5].

Throughout the paper we denote by τk the characteristic time scale of an eddy of size
1/k,� = [0, L]2. We denote the rough and smoothed vorticities by q = ∇ ×v (or q̃ = ∇ × ṽ)
and ω = ∇ × u (or ω̃ = ∇ × ũ), respectively. The paper is organized as follows. In section 2
we derive the power laws for the 2D Leray-α model and then give a comparison to the
corresponding power laws of the 2D NS-α equations. In section 3, we give a brief review of
the numerical results in [20] and then present our numerical results for the 2D Leray-α. In
the last section, we give a summary of our main results and give a brief description of how
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this study can help us predict the unknown power laws for the 3D NS-α and 3D Leray-α
equations. As mentioned above, our predictions, based on this study, on the power laws for
the two models just mentioned, are different from those suggested in [5, 11]. In those works,
the k−3 and k−13/3 power laws for the 3D NS-α and 3D Leray-α model, respectively, were
proposed under the assumption that the time scale which governs the small scales is determined
by the smoothed velocity field alone (even though there were two other candidate power laws
derived in [5]).

We dedicate this work to our friend and colleague Darryl D Holm on the occasion of his
60th birthday in acknowledgement of his continuing support and inspiration in stimulating
scientific interactions and discussions over the past years and many to come.

2. Navier–Stokes-α versus Leray-α model in two dimensions

In this section we give a comparison between the two α-models. For completeness we briefly
present the analytical arguments for the different power laws of the energy spectra which
arise in the 2D Leray-α equations. For complete details we direct the reader to look at
the derivation of power laws of the 2D NS-α in [20] (see also [5, 6, 8, 9, 11, 12, 16] for the
analytical calculation of the power laws of energy spectra for the other α-models). To compute
the scaling of the smoothed energy spectrum Eu(k) of the 2D Leray-α in the wavenumber
regime kα � 1 in the forward enstrophy inertial subrange, we start by splitting the flow into
the three wavenumber ranges [1, k), [k, 2k), [2k,∞). For a wavenumber k, we define the
component uk of a velocity field u by

uk := uk(x) =
∑
|ξ |=k

û(ξ) ei 2π
L

ξ ·x, (7)

and the component uk′,k′′ with a range of wavenumbers [k′, k′′) by

uk′,k′′ := uk′,k′′(x) =
∑

k′�k<k′′
uk. (8)

Eu(k) is then the energy spectrum associated with

ek = 1
2

〈‖uk,2k‖2
L2(�)

〉
which is the average (with respect to an infinite time average measure [12]) smoothed energy
per unit mass of eddies of linear size l ∈ (

1
2k

, 1
k

]
.

We assume kf < k, where kf is the forcing wavenumber, since we are interested on
the effects of the Leray-α model in the enstrophy cascade regime. We decompose u, v and
∇ ×u and ∇ × v corresponding to the three wavenumber ranges. We then write the enstrophy
balance equation for the Leray-α model for an eddy of size ∼k−1. Taking an ensemble average
(with respect to infinite time average measure) of the enstrophy balance equation we get

ν
〈(‖�uk,2k‖2

L2(�) + α2‖∇�uk,2k‖2
L2(�)

)〉 = 〈Zk〉 − 〈Z2k〉, (9)

where Zk may be interpreted as the net amount of enstrophy per unit time that is transferred into
wavenumbers larger than or equal to k. Similarly, Z2k represents the net amount of enstrophy
per unit time that is transferred into wavenumbers larger than or equal to 2k. Thus, Zk − Z2k

represents the net amount of enstrophy per unit time that is transferred into wavenumbers in
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the interval [k, 2k). We then rewrite the averaged enstrophy transfer equation (9) as

νk5Eα(k) ∼ ν

∫ 2k

k

k4Eα(k) dk ∼ 〈Zk〉 − 〈Z2k〉,

where Eα(k) is the energy spectrum associated with

eα
k = 1

2

〈‖uk,2k‖2
L2(�) + α2‖∇uk,2k‖2

L2(�)

〉
, (10)

which is the average energy per unit mass of eddies of linear size l ∈ (
1

2k
, 1

k

]
.

Thus, as long as νk5Eα(k) � 〈Zk〉 (that is, 〈Z2k〉 ≈ 〈Zk〉, there is no leakage of enstrophy
due to dissipation), the wavenumber k belongs to the inertial range. In the forward cascade
inertial subrange, we follow Kraichnan [18] (see also [9]) and postulate that the eddies of size
larger than 1/k transfer their energy to eddies of size smaller than 1/(2k) in the time τk it
takes to travel their length ∼1/k. That is,

τk ∼ 1

kUk

, (11)

where Uk is the average velocity of eddies of size ∼1/k. Since there are two different velocities
in the Leray-α model, there are three physically relevant possibilities for this average velocity,
namely

U 0
k =

〈
1

L2

∫
�

|vk,2k(x)|2 dx

〉1/2

∼
(∫ 2k

k

(1 + α2k2)Eα(k) dk

)1/2

∼ (k(1 + α2k2)Eα(k))1/2,

U 1
k =

〈
1

L2

∫
�

uk,2k(x) · vk,2k(x) dx

〉1/2

∼
(∫ 2k

k

Eα(k) dk

)1/2

∼ (kEα(k))1/2 ,

U 2
k =

〈
1

L2

∫
�

|uk,2k(x)|2 dx

〉1/2

∼
(∫ 2k

k

Eα(k)

(1 + α2k2)
dk

)1/2

∼
(

kEα(k)

1 + α2k2

)1/2

.

These define the aforementioned ‘typical’ velocities, in particular Vk = U 0
k and Uk = U 2

k .
Corresponding definitions may be made for Ṽk and Ũk using the variables for the NS-α model,
see [20]. Thus,

Un
k ∼ (kEα(k))1/2

(1 + α2k2)(n−1)/2
, n = 0, 1, 2. (12)

We may therefore write the typical time scale of an eddy of size k−1 in (11) as

τn
k ∼ 1

kUn
k

= (1 + α2k2)(n−1)/2

k3/2(Eα(k))1/2
, n = 0, 1, 2. (13)

That is, in keeping with the historical approach to the problem [9, 10], there are in principle
three different time scales and it is left to empirical evidence to infer the correct time scale for
a particular α-model.

The enstrophy dissipation rate ηα which is a constant equal to the flux of enstrophy from
wavenumber k to 2k is given by

ηα ∼ 1

τn
k

∫ 2k

k

k2Eα(k) dk ∼ k9/2(Eα(k))3/2

(1 + α2k2)(n−1)/2
, (14)
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Table 1. Comparison between the NS-α and Leray-α in two dimensions (in the second block-row,
Ũk and Ṽk should be replaced by Uk and Vk , respectively, to obtain the τk for Leray-α).

NS-α Leray-α
Energy eα = ∫

�
ũ · ṽ dx Energy eL

α = ∫
�

u · v dx

Ideal invariants: Enstrophy �α = ∫
�

|q̃|2 dx Enstrophy �L
α = ∫

�
q · ω dx

Expected scaling
in the range kα � 1
If τk = (kṼk)

−1 k−7 k−17/3

If τk = (k
√

ŨkṼk)
−1 k−19/3 k−5

If τk = (kŨk)
−1 k−17/3 k−13/3

Convergence of k−γ

as resolution is increased
10242 γ = 7.4 5.5
20482 γ = 7.1 5.2
40962 γ = 7.0 5.0

and hence

Eα(k) ∼ η
2/3
α (1 + α2k2)(n−1)/3

k3
.

Thus, the energy spectrum of the smoothed velocity u is given by

Eu(k) ≡ Eα(k)

1 + α2k2
∼

⎧⎪⎨
⎪⎩

η2/3
α k−3, when kα � 1,

η
2/3
α

α2(4−n)/3
k−(17−2n)/3, when kα � 1.

(15)

Therefore, depending on the average velocity of an eddy of size k−1 for the Leray-α model, we
obtain three possible scalings of the energy spectrum, k−(17−2n)/3, (n = 0, 1, 2) all of which
decay steeper than the Kraichnan k−3 power law, in the subrange kα � 1. The goal, which
we stress here again, is to infer the correct time scale by measuring the scaling exponent of
energy spectra computed from high-resolution numerical simulation data.

We summarize some points of comparison between the two models in table 1. In the
absence of viscosity ν and the forcing f , the two conserved quantities, namely the energy and
enstrophy, for the two models, in two dimensions, are specified in the first block-row of table 1.
Since the energy in 2D flow goes upscale ([9, 12, 18, 20]), we are more interested in the
enstrophy which has its dominate cascade downscale ([9, 12, 18, 20]). For the NS-α model,
the enstrophy conserved is �α = ∫

�
|q̃|2 dx, while for the Leray-α, the conserved enstrophy

is given by �L
α = ∫

�
q · ω dx. It is for this reason that the characteristic time scale for eddies

of size smaller than the length-scale α, for the two models, differ. The second block-row gives
the three possible characteristic time scales, and the corresponding scaling predictions, three
for each of the models. The notation in table 1 defaults to that for NS-α; replace Ũk and Ṽk

by Uk and Vk , respectively, in the formula for τk for Leray-α.
These three possibilities for τk and the corresponding power laws are given in table 1. In

[20], it was shown that the energy spectrum of the 2D NS-∞ equations attains a power law
of k−7 as the resolution is increased. The convergence of the spectral scaling is presented in
the third block-row in table 1. A similar study for the 2D Leray-∞ shows a convergence to a
power law of k−5 as we shall show in the next section.
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Figure 1. Energy spectra E(k) = Eu(k) from a 40962 simulation of the NS-α equations. (a) The
lower curve (blue) is the spectrum for NS-∞ and the upper curve (black) for the NSE (α = 0). (b)
Top to bottom: the energy spectrum for NS-∞ compensated by k7, k19/3, and k17/3, respectively.
The compensated spectrum in the top panel is flat in the range 6 < k < 40, indicating the nominal
range over which the k−7 scaling holds.

3. Numerical results

3.1. Details of the numerical simulation

The Leray-α equations were solved numerically in a periodic domain of length L = 1 on each
side. The wavenumbers k are thus integer multiples of 2π . A pseudospectral code was used
with fourth-order Runge–Kutta time integration. Simulations were carried out with resolutions
ranging from 10242 up to 40962 on the Advanced Scientific Computing QSC machine at the
Los Alamos National Laboratory. To maximize the enstrophy inertial subrange, the forcing
is applied in the wavenumber shells 2 < k < 4. We also add a hypoviscous term µ(−�)−1v

which provides a sink in the low wavenumbers. To discern a clear power law of the Leray-α
model spectrum, we consider data from simulation of the Leray-∞ equations

∂tv − (u · ∇)v = −∇p + ν�v + f (16)

∇ · u = ∇ · v = 0 (17)

v = −L2�u, (18)

Similar to the case of the 2D NS-∞ equations [17, 20], this allows us to see the scaling
of the Leray-α model energy spectrum without contamination by finite-α effects.

3.2. Results for the Leray-∞ equations

In figures 1 and 2 we use the notation E(k) for Eu(k). In figure 1 we present the main
numerical results from [20] for the 2D NS-∞ equations, showing the k−7 scaling of the energy
spectrum. In figure 2 we show that the 2D Leray-∞ energy spectrum attains a k−5 power law
in a 40962 resolution simulation. From table 1, the scaling k−5 stems, based on the analytical
arguments in section 2, from a characteristic time scale given by τk = (k

√
VkUk)

−1, which is
comparable to the inverse of the square root of the enstrophy of an eddy of the size 1/k. To
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Figure 2. Energy spectrum E(k) = Eu(k) from a 40962 simulation of the Leray-α equations.
(a) Energy spectrum for the Leray-∞. (b) Top to bottom: energy spectrum of Leray-α compensated
by k17/3, k5, and k13/3, respectively. The compensated spectrum in the middle panel is flat in the
range 7 < k < 50, indicating the nominal range over which the k−5 scaling holds.

see this, recall from section 2 that the typical smoothed and unsmoothed velocity of eddy of
size ∼1/k are given by

Uk = 1

L2
〈‖uk,2k(x)‖L2(�)〉, (19)

Vk = 1

L2
〈‖vk,2k(x)‖L2(�)〉, (20)

then, we can define

Wk = 1

L2
〈‖∇ × uk,2k‖L2(�)〉, (21)

Qk = 1

L2
〈‖∇ × vk,2k‖L2(�)〉, (22)

as the smoothed and unsmoothed enstrophy per unit area in the shell [k, 2k). Now, observe
that

τk = (k
√

VkUk)
−1 ∼ (

√
QkWk)

−1.

Therefore, the numerical results in figure 2 clearly support our claim that the characteristic
time scale τk = (k

√
VkUk)

−1 determined by the dominant cascading quantity, namely the
enstrophy

∫
�

q · ω dx for the 2D Leray-∞ model, governs the dynamics of eddies in the
subrange kα � 1. This conclusion is consistent with our original prediction in [20] that, in
general, the dominant cascading conserved quantity in the α-model dictates the time scale
associated with eddy of size 1/k and hence the power law of the energy spectrum Eu(k) in
the subrange kα � 1.

4. Conclusion

The main goal of this study is to verify our claim in [20] about the choice of particular
characteristic time scales of eddy of size 1/k, for kα � 1, for particular α-model equations.
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Our results in [20] led us to conclude that the choice depends on the form of the cascading
conserved enstrophy, which is the dominant forward cascading quantity. To verify this
conclusion, we perform a high resolution simulation of the 2D Leray-α equations in the
limit as α→∞ similar to our study of the 2D NS-∞ equations. We summarize the three steps
to this study which verifies these claims:

(i) Identify the conserved quantities (in the absence of viscosity and forcing) for 2D Leray-α,
and the dominant one in the forward cascade regime.

(ii) Calculate the power laws using semi-rigorous arguments as in [6, 8, 9, 11, 12, 16, 20].
This will give us the three possible power laws of the energy spectrum in the wavenumber
regime kα � 1.

(iii) Perform a high-resolution simulation to identify which one of the power laws of the energy
spectrum calculated in step (ii) actually arise for the 2D Leray-α model.

As we have speculated in [20], the scaling exponent in the wavenumber regime kα � 1 will
be governed by the time scale of the dominant cascading conserved quantity in that regime.
If we extend the same argument to predict the scaling for the 3D NS-α and the 3D Leray-α
model equations then we obtain the following predictions. Since Euv = 1

2

∫
[0,L]3 ũ · ṽ dx

and Evv = 1
2

∫
[0,L]3 v · v dx are the conserved energy which are the dominant cascading

quantities for the 3D NS-α and 3D Leray-α, respectively, then we predict the scaling of
Eu(k) ∼ k−11/3 for the 3D NS-α (that is, steeper than the k−3 proposed in [11]) and the
scaling of Eu(k) ∼ k−17/3 for the 3D Leray-α (that is, steeper than the k−13/3) suggested in
[5] in the wavenumber regime kα � 1. Our prediction of k−17/3 power law corresponds to
one of the power laws initially derived in [5] as candidate power law for the smoothed energy
spectrum of the 3D Leray-α model. The verification of these possibilities in the 3D case will
be explored in future work.
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