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a b s t r a c t 

A new spectral closure model for homogeneous anisotropic turbulence is proposed. The systematic devel- 

opment begins by closing the third-order correlation describing nonlinear interactions by an anisotropic 

generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then de- 

composed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polar- 

ization anisotropy. The directional and polarization components are then decomposed using irreducible 

representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at 

quadratic order, evolution equations are derived for the directional and polarization pieces of the correla- 

tion tensor. Numerical simulation of the model equations for a freely decaying anisotropic flow illustrate 

the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional 

and polarization contributions. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Leith diffusion model for energy transfer in homogeneous

sotropic turbulence [1] offers a significant improvement over other

lementary closures such as the Kovasznay and Heisenberg models

2] . To cite only one advantage, at any scale k at which the energy

pectrum satisfies E(k ) = 0 , the Kovasznay and Heisenberg mod-

ls both give ˙ E (k ) = 0 ; this guarantees realizability but it also im-

lies that energy cannot be transferred to an unexcited scale by

onlinearity alone. On the contrary, the diffusive character of the

eith model ensures that the energy at such a scale will eventually

e nonzero provided the energy spectrum does not vanish identi-

ally. Some further comparisons demonstrating the capabilities of

he Leith model appear in [3,4] . The analytical simplicity of the

eith model also makes it an attractive way to approach problems

f greater physical complexity involving coupled fluctuating fields

5] or resonant wave interactions [6] . 

On several occasions, Kraichnan suggested treating turbulent

nergy transfer as a diffusion process in wavenumber space [7,8] .

ut it was Weinstock [9] who first made an explicit connection be-

ween a diffusion model and an analytical closure. Briefly, the con-

ection is that so-called ‘local’ nonlinear interactions – triad inter-

ctions among modes with wavenumbers k, p , and q in which p or
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 q ) is small and q ≈ k (or p ≈ k )– are found to be approximately

escribed by diffusion in k -space in the Eddy Damped Quasi-

ormal Markovianized (EDQNM) closure [10] . This may seem plau-

ible, or even unremarkable on general grounds if we think of

 mode with wavevector k being ‘scattered’ into another with a

earby wavevector k + q . However, the analysis is nontrivial and

epends significantly on the geometry of nonlinear interactions in

he EDQNM closure [4] . In any case, this type of result is impor-

ant, because it shows that the Leith diffusion model is not merely

 phenomenological guess, but a limit of a rational closure theory.

or a similar treatment of the Heisenberg model, refer to [11,12] . 

While providing conceptual support to the Leith model, this

nalysis also suggests a significant modification, because its out-

ome is not a pure diffusion model but an integro-differential

odel in which the effective ‘diffusivity’ at wavenumber k depends

n an integral over scales p ≤ k . The result can be described as a

pair-interaction’ model in the sense of [13] . Only if the integral is

eplaced by some function of k alone is a purely diffusive model

ecovered. An integro-differential closure of this type, the ‘LWN’

for Local Wave-Number) model, was proposed as a refinement of

he original Leith model and explored in detail in [14] . 

Experience with the LWN and similar simplified spectral closure

odels [3,12] has shown that they can recover nontrivial proper-

ies of far more complex closures based on the triad interactions

f the exact Navier-Stokes nonlinearity. This observation suggests

 practical role for simplified closures, because it is evident that

ddressing the challenges of turbulence modeling with even as
for homogeneous anisotropic turbulence, Computers and Fluids 
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simple a model of triad interactions as EDQNM is impracti-

cal: roughly speaking, it would require solving three-dimensional

EDQNM at every point in a flow region. From this viewpoint, sim-

plified closures for the locally homogeneous part of the problem

seem both theoretically natural and practically indispensible. The

BHRZ model [15] is a good example of an attempt to apply the

Leith model to practical problems. 

The simplified models discussed above have either been re-

stricted to isotropic statistics, as in the energy transfer models de-

scribed in [2] , or have treated anisotropy in a rudimentary man-

ner: for example, the BHRZ model [15] simply adds anisotropic

terms suggested by single-point models to the isotropic Leith diffu-

sion model. Although the result is useful, it seems incomplete, be-

cause logically, single-point models should be deduced from two-

point models, not the other way around. It therefore seemed rea-

sonable to investigate whether a diffusion model similar to the

Leith model could apply to anisotropic turbulence. Some heuris-

tic anisotropic diffusion models have already been proposed and

analyzed in [5,16,17] . The purpose of this paper is to generalize the

Leith model to anisotropic statistics more systematically by carry-

ing out the arguments of [4] without assuming isotropy. 

The analysis will be based on the directional-polarization de-

composition of the correlation tensor due to Cambon [18] : this is

a generalization of the trace-deviator decomposition for solenoidal

tensors. We will apply the approximate analysis of local interac-

tions following [4] to derive diffusion models for the directional

and polarization components of the correlation tensor. We then

substitute a low-order model for these components using the SO(3)

decomposition [19] as developed in [20] ; in the terminology of

[20] this is the ‘spin two’ part of the correlation, which alone

determines the Reynolds stresses. The results will be applied to

single-point modeling, with a brief assessment of the Rotta linear

relaxation model [21] from the viewpoint of the present approxi-

mate two-point theory. 

2. Development of the general closure model 

The spectral evolution equation for the correlation tensor U ij ( k )

in homogeneous anisotropic turbulence has the form 

˙ 
 i j (k) = 

∫ 
d pd q δ(k − p − q ) S i j (k, p, q ) (1)

where S ij ( k , p , q ) is the third-order correlation describing nonlin-

ear interactions. The term δ(k − p − q ) states that Fourier modes

interact in triads satisfying k = p + q . The viscous and production

terms are not written in Eq. (1) because they have no role in this

paper. The EDQNM closure for S ij ( k , p , q ) has the form 

S i j (k, p, q ) = P imn (k) P jrs (k)�(k, p, q ) U ns (q ) U mr (p) 

− P imn (k) P mrs (p)�(k, p, q ) U ns (q ) U r j (k) 

− P imn (k) P mrs (q )�(k, p, q ) U ns (p) U r j (k) (2)

where 

P imn (k) = 

1 

2 

(
k m 

P in (k) + k n P im 

(k) 
)

(3)

is the Navier-Stokes nonlinearity including the pressure term,

and 

P im 

(k) = δi j − k −2 k i k j (4)

is the transverse projection operator arising from the solenoidal

constraint k i U i j (k) = k j U i j (k) = 0 [2] . 

In Eq. (2) , �( k , p , q ) is a relaxation time for triad interactions

[22] . In EDQNM, it is a phenomenological term for which a variety

of forms have been proposed and applied [3,22] . We will leave it

unspecified; the only important constraint is that to ensure energy

conservation, it must be invariant to interchange of the wavevec-

tor arguments k , p , and q . But it should be noted that treating the
Please cite this article as: R. Rubinstein et al., Leith diffusion model 
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riad interaction time as a scalar (following Cambon: see [23] ) is a

ignificant simplification: in Kraichnan’s Test-field Model [24] , it is

 rank six tensor related to the product of three response tensors.

ts replacement by a scalar is based on the expectation, or perhaps

ope, that the main effects of anisotropy occur through the corre-

ation tensor alone. 

Ref. [4] treated the local interaction limit 0 ≈ q � p ≈ k , argu-

ng that in this limit, the last term in Eq. (2) can be ignored on the

asis that in a power-law intertial range, for example, U ( q ) � U ( p ).

hen 

 i j (k, p, q ) ≈ P imn (k)�(k, p, q ) U ns (q ) 

×
(
P jrs (k) U mr (p) − P mrs (p) U r j (k) 

)
(5)

trictly speaking, we should add the terms coming from the com-

lementary limit 0 ≈ p � q ≈ k to ensure the required ( i, j ) index

ymmetry. But rather than lengthening all the formulas by writing

hese terms every time, we will understand index symmetrization,

nd write it explicitly in the final, if not in every intermediate re-

ult. 

Next, develop the term in parentheses in Eq. (5) as 

 jrs (k) U mr ( k − q ) − P mrs ( k − q ) U r j (k) 

= q r P js (k) U mr ( k−q ) + k s P jr (k) U mr ( k−q ) + q r P ms ( k−q ) U r j (k) 

−k s P mr ( k − q ) U r j (k) + q s P mr ( k − q ) U r j (k) 

= q r P js (k) U mr ( k − q ) + q r P ms ( k − q ) U r j (k) 

+ k s 
(
P jr (k) U mr ( k − q ) − P mr ( k − q ) U r j (k) 

)
(6)

ote that we ignore derivatives of the relaxation time � in this

nalysis. The term proportional to q s vanishes on contraction with

 ns ( q ). Otherwise, ignore terms proportional to q following [4] . The

ast line in Eq. (6) will lead to diffusion. Taylor expansion in q to

econd order gives 

 jr (k) U mr ( k − q ) − P mr ( k − q ) U r j (k) 

= P jr (k) 

(
−∂U mr (k) 

∂k ν
q ν + 

1 

2 

∂ 2 U mr (k) 

∂ k ν∂ k μ
q νq μ

)

−U jr (k) 

(
−∂P mr (k) 

∂k ν
q ν + 

1 

2 

∂ 2 P mr (k) 

∂ k ν∂ k μ
q νq μ

)

= 

(
U jr (k) 

∂P mr (k) 

∂k ν
− P jr (k) 

∂U mr (k) 

∂k ν

)
q ν

−1 

2 

(
U jr (k) 

∂ 2 P mr (k) 

∂ k ν∂ k μ
− P jr ( k) 

∂ 2 U mr ( k) 

∂ k ν∂ k μ

)
q νq μ (7)

Taking the local interaction limit has led to a simplified ‘pair

nteraction’ model [13] between modes with wavevectors k and q ,

hus effectively replacing S ij ( k , p , q ) by S ij ( k , q ). The term following

he second equality sign in Eq. (7) will vanish on integration over q .

hus, restoring the ( i, j ) index symmetry, 

 i j (k, q ) = P imn (k)�(k, q ) U ns (q ) k s 

× q νq μ

(
−U jr (k) 

∂ 2 P mr (k) 

∂ k ν∂ k μ
+ P jr ( k) 

∂ 2 U mr ( k) 

∂ k ν∂ k μ

)

+ P jmn (k)�(k, q ) U ns (q ) k s 

× q νq μ

(
−U ir (k) 

∂ 2 P mr (k) 

∂ k ν∂ k μ
+ P ir ( k) 

∂ 2 U mr ( k) 

∂ k ν∂ k μ

)
(8)

here we have replaced the triad relaxation time �( k , p , q ) by a

pair’ relaxation time �( k , q ) and absorbed the factors of 1/2 into

( k , q ). Although these formal manipulations only apply in the

imit q ≈ 0, we will borrow from [4] the idea of applying Eq. (8) to

he entire region q ≤ k . Then instead of the actual energy trans-

er relation Eq. (1) based on triad interactions, we have a new pair
for homogeneous anisotropic turbulence, Computers and Fluids 
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nteraction model, 

˙ 
 i j (k) = 

∫ 
q ≤k 

dq S i j (k, q ) 

= 

∫ 
q ≤k 

dq 

{
P imn (k)�(k, q ) U ns (q ) k s 

× q νq μ

(
−U jr (k) 

∂ 2 P mr (k) 

∂ k ν∂ k μ
+ P jr ( k) 

∂ 2 U mr ( k) 

∂ k ν∂ k μ

)

+ P jmn (k)�(k, q ) U ns (q ) k s 

× q νq μ

(
−U ir (k) 

∂ 2 P mr (k) 

∂ k ν∂ k μ
+ P ir ( k) 

∂ 2 U mr ( k) 

∂ k ν∂ k μ

)}
(9) 

We could stop here, but it is very convenient at this point to in-

roduce the directional-polarization decomposition of Cambon [18] .

t consists in the orthogonal decomposition 

 i j (k) = U 

dir (k) P i j (k) + U 

pol 
i j 

(k) (10) 

here 

 

dir (k) = 

1 

2 

P i j (k) U i j (k) (11) 

nd 

 

pol 
i j 

(k) = U i j (k) − U 

dir (k) P i j (k) (12) 

s simply the ‘remainder’ that satisfies Eq. (10) . Note that the en-

rgy is given by 

1 

2 

δi j 

∫ 
dk U i j (k) = 

∫ 
dk U 

dir (k) (13) 

nd that U 

pol 
i j 

(k) is trace-free. 

Substitute the decomposition Eq. (10) in the first term in paren-

heses in Eq. (9) . Taking account of an obvious cancellation of two

erms proportional to U 

dir , 

U jr (k) 
∂ 2 P mr (k) 

∂ k ν∂ k μ
+ P jr ( k) 

∂ 2 U mr ( k) 

∂ k ν∂ k μ

= −U 

pol 
jr 

(k) 
∂ 2 P mr (k) 

∂ k ν∂ k μ
+ 2 P jr ( k) 

∂U 

dir ( k) 

∂k ν

∂P mr ( k) 

∂k μ

+ P jr (k) P mr (k) 
∂ 2 U 

dir (k) 

∂ k ν∂ k μ
+ P jr ( k) 

∂ 2 U 

pol 
mr ( k) 

∂ k ν∂ k μ
(14) 

hen 

 i j (k, q ) = S a i j (k, q ) + S b i j (k, q ) + S c i j (k, q ) (15) 

here 

 

a 
i j (k, q ) = P imn (k)�(k, q ) U ns (q ) k s 

× q νq μP jr (k) P mr (k) 
∂ 2 U 

dir (k) 

∂ k ν∂ k μ
(16) 

 

b 
i j (k, q ) = −P imn (k)�(k, q ) U ns (q ) k s 

× q νq μU 

pol 
jr 

(k) 
∂ 2 P mr (k) 

∂ k ν∂ k μ
(17) 

 

c 
i j (k, p, q ) = P imn (k)�(k, q ) U ns (q ) k s 

× q νq μP jr (k) 
∂ 2 U 

pol 
mr (k) 

∂ k ν∂ k μ
(18) 

Evaluating the products of projection operators in Eq. (16) , 

 

a 
i j (k, q ) = q νq μU ns (q )�(k, q ) k s k n P i j (k) 

∂ 2 U 

dir (k) 

∂ k ν∂ k μ
(19) 
Please cite this article as: R. Rubinstein et al., Leith diffusion model 
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roportionality to P ij ( k ) implies that this term contributes only to

he evolution equation for U 

dir ( k ); suppose then that 

˙ 
 

dir (k) = 

(∫ 
q ≤k 

dq q νq μU ns (q )�(k, q ) 

)
k n k s 

∂ 2 U 

dir (k) 

∂ k ν∂ k μ
(20) 

ollowing [4] , in order to insure energy conservation we modify

q. (20) to read 

˙ 
 

dir (k) = 

∂ 

∂k ν

{(∫ 
q ≤k 

dq q νq μU ns (q )�(k, q ) 

)
k n k s 

∂ 

∂k μ
U 

dir (k) 

}

(21) 

he divergence form ensures that energy conservation is satisfied

dentically under plausible conditions on U 

dir ( k ) when k = 0 and k

 ∞ . 

Next look at the contributions to Eq. (14) dependent on U 

pol 
i j 

.

traightforward evaluation shows that 

 

b 
i j (k, q ) = −2 q νq μU ns (q ) k −2 

(
P in (k) k s k ν − P iν (k) k s k n 

)
U 

pol 
jμ

(k) (22) 

nd that further simplification of S c 
i j 
(k, q ) is not possible. 

At this point, we simplify the model by restricting attention to

he isotropic contribution to the damping integral in Eq. (21) by

etting 

 ns (q ) = U(q ) P ns (q ) �(k, q ) = �(k, q ) (23) 

he more general case of general tensor damping, which allows the

amping to be direction-dependent, is left to future research. For

he isotropic damping described by Eq. (23) , 
 

q ≤k 

dq q νq μP ns (q ) U(q )�(k, q ) 

= 

1 

15 

(
2 δμνδns − δμn δνs − δμs δνn 

)
η(k ) 

(24) 

here 

(k ) = 

∫ 
q ≤k 

dq q 4 �(k, q ) U(q ) (25) 

sing Eqs. (21) , (22) , and (18) with the isotropic damping formula

qs. (24) and (25) results in the model 

˙ 
 

dir (k)= 

4 

15 

∂ 

∂k ν
η(k ) k 2 

∂ 

∂k ν
U 

dir (k)− 2 

15 

∂ 

∂k ν
η(k ) k νk μ

∂ 

∂k μ
U 

dir (k) 

(26

˙ 
 

pol 
i j 

(k) = 

2 

3 

η(k ) U 

pol 
i j 

(k) + 

2 

15 

k 2 P im jr (k) η(k ) 
∂ 2 U 

pol 
mr (k) 

∂ k ν∂ k ν

− 1 

15 

k s k n P im jr (k) η(k ) 
∂ 2 U 

pol 
mr (k) 

∂ k n ∂ k s 

− 1 

15 

k s k m 

P in jr (k) η(k ) 
∂ 2 U 

pol 
mr (k) 

∂ k n ∂ k s 
(27) 

here 

 im jr (k) = P im 

(k) P jr (k) + P jm 

(k) P ir (k) − P i j (k) P rm 

(k) (28) 

The appearance of an integral in the damping factor η( k ) of

q. (25) distinguishes the present diffusion model from Leith’s

riginal model [1] ; compare also [14] where such a modification

as first suggested. Eqs. (26) and (27) implicitly contain an ar-

itrary constant through the phenomenological term �( k, q ) in

q. (25) . We refer to [3] for the choice of this constant, and to

12] for some of the possible models for �( k, q ). 
for homogeneous anisotropic turbulence, Computers and Fluids 
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3. Evolution equations for spin two 

Our next step is to substitute the SO(3) decompositions [19,20]

of U 

dir and U 

pol 
i j 

in Eqs. (26) and (27) . In this paper, the SO(3) de-

composition will be truncated at quadratic order, so that we as-

sume [20] 

 

dir (k) = 

1 

2 

U(k ) + H mn (k ) k −2 k m 

k n (29)

and 

 

pol 
i j 

(k) = J i j (k ) − k −2 k i k a J a j (k ) − k −2 k j k a J ai (k ) 

+ 

1 

2 

(
δi j + k −2 k i k j 

)
k −2 J mn (k ) k m 

k n (30)

where H ij ( k ) and J ij ( k ) are both symmetric trace-free second rank

tensors. These are the only terms in the SO(3) decomposition that

contribute directly to the Reynolds stress [20] . Simple calculations

[18] show that the Reynolds stress deviator, given by 

R i j = 

∫ 
dk 

(
(H mn (k ) k −2 k m 

k n ) P i j (k) + U 

pol 
i j 

(k) 
)

(31)

is related to the single-point moments 

H i j = 4 π

∫ ∞ 

0 

dk k 2 H i j (k ) (32)

J i j = 4 π

∫ ∞ 

0 

dk k 2 J i j (k ) (33)

by 

R i j = 

15 

2 

H i j + 

5 

2 

J i j (34)

For connections to the decomposition of the stress by ‘structure

tensors,’ we refer to [25] . 

3.1. Directional anisotropy 

The equation of motion for U ( k ) is found by integrating

Eq. (26) over a sphere of radius k : ∮ 
d� ˙ U 

dir (k) = 4 πk 2 ˙ U (k ) 

= 

∮ 
d�

[
4 

15 

∂ 

∂k ν

(
η(k ) k 2 

∂ 

∂k ν
U(k ) 

)

− 2 

15 

∂ 

∂k ν

(
η(k ) k νk μ

∂ 

∂k μ
U(k ) 

)]
(35)

Use 

∂ 

∂k ν

(
η(k ) k 2 

∂ 

∂k ν
U(k ) 

)
= 

∂ 

∂k ν

(
η(k ) kk νU 

′ (k ) 
)

= 3 η(k ) kU 

′ (k ) + k 
(
η(k ) kU 

′ (k ) 
)′ 

(36)

where the primes denote derivatives with respect to k . Then ∮ 
d�

∂ 

∂k ν

(
η(k ) k 2 

∂ 

∂k ν
U(k ) 

)
= 3 η(k ) k 3 U 

′ (k ) + k 3 
(
η(k ) kU 

′ (k ) 
)′

= 

(
k 3 η(k ) kU 

′ (k ) 
)′ 

(37)

If η( k ) is defined by the elementary closure 

η(k ) = C 

√ 

k 3 E(k ) (38)

for some phenomenological constant C , then the result is sim-

ply the isotropic Leith model in its original form [1] . Because

Eq. (37) is an exact derivative, we recover energy conservation ∫ ∞ 

0 

dk k 2 ˙ U (k ) = 

∫ ∞ 

0 

dk 
(
k 3 η(k ) kU 

′ (k ) 
)′ = 0 (39)
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The equation for H ij ( k ) follows by multiplying Eq. (26) by k i k j 
nd integrating over a sphere of radius k . The result is 

˙ 
 i j (k ) = 

2 

15 

η(k ) k 2 H 

′′ 
i j (k ) + 

2 

15 

(η′ (k ) k 2 + 4 kη(k )) H 

′ 
i j (k ) 

− 24 

15 

η(k ) H i j (k ) (40)

t is interesting to compare this model to the simple linear relax-

tion model 

˙ 
 i j (k ) = −24 

15 

η(k ) H i j (k ) (41)

his model damps anisotropy, and is thus consistent with intuitive

otions of ‘return to isotropy;’ however, it clearly cannot create

nisotropy at any initially isotropic scale of motion. Thus, if the

arge scales are forced anisotropically, Eq. (41) predicts that there

an be no anisotropic excitation beyond the forced scales. In con-

rast, the derivative terms in Eq. (40) can propagate the anisotropy

o all scales of motion. 

.2. Polarization anisotropy 

To derive the equation satisfied by J ij ( k ), substitute Eq. (30) in

q. (27) . Use the results 

 

2 J pol 
i j 

(k) = 

(
P im 

(k) P jn (k) + P in (k) P jm 

(k) 

− P i j (k) P mn (k) 
)(

J ′′ mn (k ) + 

2 

k 
J ′ mn (k ) 

)
+ 4 

(
− P im 

(k) P jn (k) − P in (k) P jm 

(k) + P i j (k) P mn (k) 

+ k i k m 

P jn (k) + k i k n P jm 

(k) + k j k m 

P in (k) 

+ k j k n P im 

(k) 
)
k −2 J mn (k ) (42)

 im jr (k) 
∂ 2 U 

pol 
mr (k) 

∂ k ν∂ k ν
= 2 P ia jb ( k) 

(
J ′′ ab ( k ) + 

2 

k 
J ′ ab ( k ) − 4 k −2 J ab (k ) 

)
(43)

 n k s 
∂ 

∂k s 

∂ 

∂k n 
J pol 
mr (k) = P marb (k) k 2 J ′′ ab (k ) (44)

 n k s 
∂ 

∂k m 

∂ 

∂k s 
J pol 
nr (k) = k s 

(
∂ 

∂k m 

k n 
∂ 

∂k s 
− δmn 

∂ 

∂k s 

)
J pol 
nr (k) 

= k s 
∂ 

∂k m 

∂ 

∂k s 
k n J 

pol 
nr (k) − k n 

∂ 

∂k m 

J pol 
nr (k) − k s 

∂ 

∂k s 
J pol 
mr (k) 

= P marb (k) 
(
J ab (k ) − kJ ′ ab (k ) 

)
(45)

ntegrating Eq. (27) over a sphere of radius k gives the equation of

otion 

˙ 
 i j (k ) = 

2 

15 

η(k ) 
(
k 2 J ′′ i j (k ) + 5 kJ ′ i j (k ) − 4 J i j (k ) 

)
(46)

. Application to the return to isotropy 

An obvious application of an anisotropic model is the ‘return to

sotropy,’ in which initially anisotropic turbulence decays freely in

ime. There is a related notion of the recovery of statistical isotropy

f the small scales in high Reynolds number turbulence. This latter

roblem partly motivated the use of the SO(3) decomposition of

ensor correlations in [19] and subsequent studies on the scaling

xponents and decay rates (in scale) of the higher order rotational

odes or spins. The wider significance of that problem and its con-

ection to the K41 theory are discussed in [26] . The present em-

hasis will instead be on the decay of overall anisotropy in time. 

In turbulence modeling, the return to isotropy is described by

he decay of the Reynolds stress deviator through the action of
for homogeneous anisotropic turbulence, Computers and Fluids 
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Fig. 1. Time evolution of total energy (black) from t = 0 . Anisotropic components 

H ( t ) (red) and J ( t ) (green) initiated at t = 32 . 
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a  
he ‘slow pressure-strain’ correlation. One such model is the Rotta

odel [21] 

˙ 
 i j = −C R 

ε

k 
R i j (47) 

here ε is the dissipation rate, k is the turbulent kinetic energy,

nd C R is an empirical constant called the Rotta constant . Here,

owever, we must consider the relaxation of both tensors H ij and

 ij , which are related to the stress deviator by Eq. (34) . In this

ense, Eqs. (40) and (46) can be considered a model for the slow

ressure-strain correlation, albeit one of a nonstandard form. 

A relaxation equation for H ij follows from rewriting Eq. (40)

s 

 

2 ˙ H i j (k ) = 

2 

15 

(
k 4 η(k ) H 

′ 
i j (k ) 

)′ − 24 

15 

η(k ) k 2 H i j (k ) (48) 

nd integrating over all wavenumbers k to obtain, 

˙ 
 i j = −8 

5 

∫ ∞ 

0 

dk η(k ) k 2 H i j (k ) (49) 

he result is not a rotta model of the form Eq. (47) , because the

ight side is not a multiple of H ij , and it can only be so written

fter making additional assumptions about both H ij ( k ) and η( k ) at

ll scales of motion. 

The analogous relaxation equation for J ij follows from rewriting

q. (46) as 

 

2 ˙ J i j (k ) = 

2 

15 

{ (η(k ) k 4 J ′ i j (k )) ′ +5(η(k ) k 3 J i j (k )) ′ −((η(k ) k 4 ) ′ J i j (k )) ′ 

+ ((η(k ) k 4 ) ′′ − 5(η(k ) k 3 ) ′ − 4 η(k ) k 2 ) J i j (k ) } (50) 

nd again integrating over all k to obtain, 

˙ 
 i j = 

2 

15 

∫ ∞ 

0 

dk 
(
(η(k ) k 4 ) ′′ − 5(η(k ) k 3 ) ′ − 4 η(k ) k 2 

)
J i j (k ) (51) 

his result is even farther from a rotta model than Eq. (49) . Com-

aring Eqs. (49) and (51) suggests that it is very unlikely that the

elaxation of H ij and J ij could be described even approximately by

odels of the form Eq. (47) with the same relaxation rate C R . 

To illustrate the evolution of anisotropy according to this model,

e consider a problem in which isotropic forcing leads to a steady

tate for U ( k, t ) (it will be useful to indicate the time variable ex-

licitly) while the anisotropy tensors H ij ( k, t ) and J ij ( k, t ) decay

reely following Eqs. (40) and (46) . Initially, 

(k, t = 0) = U 0 k exp 

(
−3 

2 

(k/k 0 ) 
2 
)

(52) 

s all components H ij ( k, t ) and all components J ij ( k, t ) decay freely

he same way, it suffices to consider the evolution of any one com-

onent of each tensor, which we will denote by H ( k, t ) and J ( k, t )

espectively. These are initialized similarly as 

(k, t = 32) = H 0 k exp 

(
−3 

2 

(k/k 0 ) 
2 
)

(53) 

(k, t = 32) = J 0 k exp 

(
−3 

2 

(k/k 0 ) 
2 
)

(54) 

o that the single point moments 

(t) = 4 π

∫ ∞ 

0 

dk k 2 H(k, t) (55) 

(t) = 4 π

∫ ∞ 

0 

dk k 2 J(k, t) (56) 

re equal at the time ( t = 32 ) they are initiated. 

The form of the U equation solved is 

˙ 
 (k ) = C U 

(
k 3 η(k ) kU 

′ (k ) 
)′ = 0 , (57) 
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here the constant C U was chosen so that Kolmogorov’s 1941 re-

ult, E(k ) = C K ε
2 / 3 k −5 / 3 is satisfied in the inertial range using a

alue of C k = 1 . 5 [4,14] . For purposes of computing, we have also

ntroduced analogous constants in the H - and J -equations ( C H , and

 J ), which multiply the right-hand-side of the respective equations.

e have not yet determined a “correct” value for C H and C J but

ave found that setting them to 

2 

15 

C H = 

2 

15 

C J = C U , (58) 

ields realizable results for the case of simple anisotropic decay. 

The model equations were solved using an iterative-implicit

rank-Nicolson temporal discretization and a second-order spatial

iscretization, to achieve second-order temporal and spatial ac-

uracy. The iterations were performed to a convergence yielding

n averaged absolute error between iterations of < 10 −9 over the

esh at each time step. In order to resolve both high and low

avenumbers, we have made the transformation k = exp 

(
z 
)
. The

ctual variables solved for are k 3 U ( k ), k 3 H ( k ), and k 3 J ( k ). The high-

 and low- z boundaries are treated by extrapolating a ghost-cell

ased on an arbitrary power-law in k –which becomes a simple

rocess on the z -mesh. This treatment of the low- and high- k

oundaries permits a self-consistent flux condition at the bound-

ries, permitting the U, H and J to flux off the numerical mesh. This

llows the calculations to be conducted with zero viscosity (infinite

eynolds number) in which case the dissipation is accounted for

y the flux off the mesh. The grid spacing was selected so that the

ime-decay was independent of the mesh size. The mesh was uni-

orm in z , with 
z = 1 . 5 × 10 2 , and spanning z = [ −20 , +10 ] . The

ime-steps were held constant at 
t = 5 × 10 −5 . Convergence tests

ave indicated that this gives the current results approximately six

igits of accuracy. 

The calculations were conducted by first driving U towards a

teady state with a constant forcing given by 

 (k ) = F 0 k 
2 exp 

(
−3 

2 

(k/k 0 ) 
2 
)
, (59) 

here F 0 is chosen so that 

 = 

∫ ∞ 

0 

dk k 2 F (k ) = 1 . (60) 

t a time of t = 32 , the anisotropy was initiated. This strategy was

dopted so that the decay dynamics of H and of J could be isolated

rom the temporal dynamics of U , since the dynamical behavior of

 has already been studied [4] . 

Fig. 1 shows the evolution of the total energy E ( t ) from t = 0

nd the single point moments H ( t ) and J ( t ) from t = 32 . The energy
for homogeneous anisotropic turbulence, Computers and Fluids 
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Fig. 2. Spectra of directional contribution H ( k, t ) (left) and polarization contribution J ( k, t ) (right) evolving in time. 
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reaches a steady value, while the anisotropic moments decay from

their initial values. 

The evolution of the spectra H ( k, t ) and J ( k, t ) at identical times

after initialization are shown in Fig. 2 . It is evident that the diffu-

sive terms generate smaller anisotropic scales, whilst the spectrum

as a whole decays; note the shift of the peak to lower values as

the evolution proceeds. The spectral contribution of J in the high

wavenumbers persists longer than that of H given identical initial-

izations. These results illustrate two basic properties of this model:

diffusive creation of anisotropic small scales, and the absence of

any simple relation between H ( t ) and J ( t ) during decay. 

These calculations also demonstrate the emergence of a power-

law scaling at high wavenumbers (small scales) for H ( k, t ) and J ( k,

t ). The exponents of these power-laws can be analytically com-

puted for the case of a steady-state turbulence. In this situation,

the model can be shown to admit scalings for 

H(k, t) = H ∞ 

k γH (61)

with 

γH = −[11 + 

√ 

553 ] / 6 ≈ −5 . 752 . . . , (62)

and for 

J(k, t) = J ∞ 

k γJ (63)

with 

γJ = −2[1 + 

√ 

2 ] ≈ −4 . 828 . . . (64)

The values computed numerically for a decaying anisotropic turbu-

lence are, for H ( k, t ) 

γ̄H ≈ −5 . 750 . . . (65)

and 

γ̄J ≈ −4 . 652 . . . (66)

Although the numerically computed exponents correspond to

freely decaying anisotropic turbulence, they appear to be in rea-

sonable agreement with the analytical results for steady-state tur-

bulence, thus lending support to our numerical calculations and

boundary treatment. We will forbear attempts to justify these ex-

ponents on physical grounds, but simply note that different models

may give different results, (see for example [17,27] ). 

5. Conclusions 

We have developed a diffusion model for anisotropic turbulence

analogous to the Leith model for isotropic turbulence by consider-

ing local interactions in the EDQNM closure following [4,9] . A pre-

liminary conclusion from the analysis of the return to isotropy is
Please cite this article as: R. Rubinstein et al., Leith diffusion model 
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hat single point modeling of this problem is not straightforward

ecause spectral properties have an important role. 

It would be unrealistic to expect that local interactions could

ive a complete account of the dynamics. Even in the isotropic

ase, the Leith model seems to treat energy transfer at any scale

s random straining by larger scales, somewhat at variance with

he usual eddy viscosity heuristics. Thus, an anisotropic analysis of

he complementary distant interaction limit k � p ≈ q , which is

elated to the Heisenberg model [12] , provides an interesting per-

pective for future research. 
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