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Abstract

Some of the most impressive singular wave fronts seen in Nature are
the transbasin oceanic internal waves, which may be observed from
the Space Shuttle as they propagate and interact with each other,
for example, in the South China Sea. The characteristic feature of
these strongly nonlinear wavefronts is that they reconnect when two
of them collide transversely. We derive the EPDiff equation, and use it
to model this phenomenon as elastic collisions between singular wave
fronts (solitons) whose momentum is distributed along curves moving
in the plane. Numerical methods for EPDiff based on compatible dif-
ferencing algorithms (CDAs) are used for simulating these collisions
among curves. The numerical results show the same nonlinear behav-
ior of wavefront reconnections as that observed for internal waves in
the South China Sea. We generalize the singular solutions of EPDiff
for other applications, in computational anatomy and in imaging sci-
ence, where the singular wavefronts are evolving image outlines, whose
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momentum may be distributed on surfaces moving though space in
three dimensions. The key idea is always momentum exchange during
collisions of the wavefronts. A suite of 2d and 3d numerical simulations
provide collision rules for the wavefront reconnection phenomenon in
a variety of scenarios.
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1 Synopsis

Space Shuttle observations show great lines in the sea, which show up in Syn-
thetic Aperture Radar (SAR) images as in Figure 1. These are internal waves,
whose fronts appear in SAR images as unbroken curves extending for hun-
dreds of kilometers. For example, tidal flows and undulations of the Japanese
Current in the region of the Luzon Strait between Taiwan and the Philippines
generate internal wavefronts which are well over one hundred kilometers in
length and which propagate westward for hundreds of kilometers all the way
across the South China Sea. These wave fronts show strong coherence and
possess the characteristic feature of reconnecting with each other whenever
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any two of them intersect transversely. This reconnection is the hallmark
of a nonlinear process. Weaker waves may intersect, but not reconnect. We
seek to encode the motion of these internal wave fronts and their collision
rules mathematically in a minimal PDE (partial differential equation) model,
and to investigate these wave front reconnections in numerical simulations
of the model. Establishing a simplified PDE model whose solutions encode
the motion of these internal wave fronts and their collision rules will enable
understanding the effects of the nonhydrostatic processes that govern them,
without requiring the full numerical simulation and analysis of the 3d fluid
motion equations.

We shall also derive more detailed PDE models for the interactions of
these nonlinear wavefronts when topography and boundaries are also in-
cluded. However, we shall defer developing the numerical methods needed
to deal with these additional effects until elsewhere.

Our derivation of the 2d multilayer Euler-Poincaré (EP) equations be-
gins by vertically integrating the variational principle for Euler’s equations
in 3d. These 2d equations must be nonhydrostatic, because the wave fronts
they model possess strong horizontal gradients of vertical acceleration. These
nonhydrostatic terms are included in a hierarchy of EP equations which is
derived by making a series of simplifying approximations in the exact vari-
ational principle. The resulting multilayer 2d equations preserve the EP
properties of energy balance, circulation laws and potential vorticity (PV)
conservation. PV analysis in a multilayer fluid system is essential for as-
sessing its baroclinic instability [49]. However, PV for wave fronts is a new
concept, whose implications are hardly understood yet. We will show that
the new hierarchy of EP equations recovers a sequence of previously known
models of internal wave dynamics when specialized in various ways.

Next, from the full hierarchy we extract a simple, minimal PDE descrip-
tion, called EPDiff, which models internal wave fronts as delta functions of
momentum distributed on moving curves in the plane. This corresponds to
modeling internal wave fronts as contact discontinuities in velocity. EPDiff
thus explains the creation and stability of wave fronts as the development
of singular momentum solutions from continuous velocity distributions in a
PDE initial value problem (IVP). This description links the shape of the
wavefront velocity profiles to the Green’s function associated with the non-
local relation in the PDE between its singular momentum and its continuous
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velocity. Hence, EPDiff explains the uniform width of the wave front velocity
profiles that is observed in internal wave trains. Namely, the momentum of
the wavefront is concentrated on delta functions supported on the curved
evolving wavefronts. The corresponding velocity profile is then obtained via
a Green’s function relation between wave momentum and fluid velocity. This
minimal description of internal wave fronts as singular momentum solutions
of the evolutionary equation EPDiff encompasses their reconnections and
provides the geometric mechanism underlying their propagation and colli-
sion interactions. In 1d, these collisions are understood as elastic solition
collisions, whose solutions are obtained by the inverse scattering transform
(IST) for an associated isospectral linear eigenvalue problem. As far as we
know, the machinery of IST is not available in higher spatial dimensions for
EPDiff. However, the elastic scattering interactions seen in its wavefront
solutions in 2d (and in 3d) are explained by another geometric mechanism.
As we shall explain, this geometric mechanism for propagation and collisions
turns out to be Hamiltonian geodesic flow on the time-dependent smooth
maps (diffeomorphisms), defined with respect to the kinetic energy metric
that also determines the wave profile.

To solve the EPDiff equation, we develop a numerical method called the
compatible differencing algorithm (CDA) that is able to capture the collisions
among these weak solutions of EPDiff, and we characterize the wave front
interactions we observed numerically in a variety of scenarios.

In summary, we use EP variational theory to derive the EPDiff equation,
whose solution shows singular wave fronts, and we use new CDAs for its
numerical simulations. EPDIff is the first mathematical explanation of the
observed 2d internal wave front reconnections.

Geometric setting. We have found that modeling the reconnection pro-
cess in internal wave front dynamics requires a class of PDEs that are both
nonlinear and nonlocal. EPDiff is a not exactly a hyperbolic equation. It has
a characteristic velocity, but the relation its EP variational principle defines
between the fluid’s velocity and momentum in Newton’s Law is nonlocal.
That is, the fluid’s velocity is determined from its momentum by solving
an elliptic equation. Physically, the elliptic equation arises from nonhydro-
static processes that cause linear, or nonlinear, dispersion or focusing. This
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nonlocal relationship between velocity and momentum is reminiscent of the
Biot-Savart relationship between velocity and vorticity. However, like soli-
tons, internal wave fronts carry momentum and inertia, while fluid vortices
do not.

Our work has some close similarities with soliton theory and some im-
portant differences from it. The Korteweg-de Vries (KdV) equation at linear
order in the asymptotic expansion for shallow water waves and the Camassa-
Holm (CH) equation at quadratic order are both soliton equations, and they
are both associated with geodesic flow [33, 34, 47]. That is, they each make
optimal use of their kinetic energy, which provides a norm for their velocity.
The EPDiff equation has this same characteristic. Moreover, the singular so-
lution ansatz for the geodesic flow of momentum associated with the EPDiff
equation which we discuss below turns out to be a momentum map, as dis-
covered in Holm and Marsden [22]. The momentum map property of these
singular solutions means they comprise an invariant manifold, preserved by
the flow of EPDiff. This property allows us to reduce the dimension of the
wave front interactions to an invariant manifold of singular momentum so-
lutions of EPDiff. These solutions describe the observed propagation and
reconnection phenomena of the wave fronts, but they have no internal de-
grees of freedom, and thus they have no mechanism for wave breaking to
occur.

In this paper, we model internal wave fronts as contact discontinuities
in velocity, whose motion is governed by applying time-dependent smooth
maps which act on the curves in the plane that outline the wave fronts and
specify their momentum vectors at points along these curves. The motion of
the internal wave fronts is governed by the EPDiff equation. This equation
is the condition for the smooth maps that act on these curves to evolve by
geodesic flow, with respect to a metric determined by their kinetic energy,
which also determines the functional form of their wave profile. The wave
front motion may thus be determined numerically as an initial value problem
by solving the EPDiff equation.

In such a strongly geometric setting, we expect that combining finite
element methods and discrete exterior calculus may provide future improve-
ments in both modeling and simulations, by providing a useful setting for
integration of the analysis with the numerics in the description of internal
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wave fronts as singular weak solutions, or limiting solutions (contacts) for
nonlinear, nonlocal PDEs. However, we defer the full use of discrete exterior
calculus methods for numerically solving EPDiff until these methods have
been further developed. See [19, 35] for introductions to these methods.

Outline of the paper. Mathematical modeling problems for internal wave
fronts, and our approaches to solving them, are summarized in Section 2. A
preview of our numerical results appears in Section 3. Previous work in mul-
tilayer descriptions of internal waves is reviewed in Section 4. The columnar
motion ansatz for multilayer fluids is explained in Section 5, and is used there
to derive the nonhydrostatic 2d MultiLayer Columnar Motion (MLCM) equa-
tions and their natural boundary conditions. A series of weakly nonlinear
approximations is introduced into the EP variational principle for the MLCM
equations in Section 6. The resulting weakly nonlinear 2d multilayer equa-
tions are also compared to the 1d multilayer equations of Choi and Camassa
[11] and others. In Section 7, we derive the EPDiff geodesic equation by
neglecting dispersion due to potential energy. Singular solutions of EPDiff
and their canonical dynamics in the Lagrangian fluid representation are also
introduced in Section 7.

The main numerical results of this paper are given in Sections 8, 9 and
10. Section 8 describes our numerical approach using compatible differencing
algorithms. Section 9 provides a large suite of numerical simulations investi-
gating the collision rules for the interactions of wave-front solutions of EPDiff
in 2d. Section 10 extends our numerical solutions of EPDiff to 3d, and shows
that its stable codimension-one singular solution behavior persists in higher
dimensions. Finally, we discuss conclusions, future directions and remaining
outstanding problems for internal wavefront interactions in Section 11.

2 Problem statement, approach, and main
results

Space Shuttle observations of the South China Sea surface show a sequence
of large amplitude internal waves at basin scale moving westward after being
created by tides and currents running through the Luzon Strait on the eastern
side of the basin. These internal waves appear in Synthetic Aperture Radar
(SAR) images as long, slightly curved, internal wave fronts 100-200 km in
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length and separated by 50-80 km. When these isolated internal wave fronts
sweep across Dongsha Atoll in the middle of the South China Sea, they
are perturbed and subsequently re-radiated as two sets of wave front trains
propagating westward, each with greater curvature than the incoming wave
front. The SAR images of this process are shown in Figure 1. The transverse
interactions of the re-radiated wave fronts are so strong that they reconnect,
rather than pass through each other. This reconnection is shown in Figure
2. The reconnection phenomenon for nonlinear internal wave fronts in the
ocean indicates transfer of momentum and is one of the primary motivations
of the present study. Internal wave interactions have been well studied in one
dimension, often by using the weakly nonlinear Boussinesq approximation,
usually resulting in a variant of the Korteweg-de Vries (KdV) equation and its
soliton solutions [51]. However, the complex wave front interactions shown in
Figures 1 and 2 are plainly two dimensional. Moreover, their reconnection is
not captured by the 2d extension of KdV for weakly nonlinear waves with slow
transverse variations, known as the Kadomsev-Petviashvili (KP) equation.
(The KP equation assumes weak gradients in the direction transverse to
propagation. However, this assumption does not hold during the wavefront
reconnections we seek to model.) Thus, we begin our study of internal wave
front reconnection by developing a new set of equations that extends, to
multilayer fluids in two dimensions, the Su-Gardner [50] or Green-Naghdi [18]
equations for fully nonlinear waves on the free surface of a single-layer fluid
in one dimension. Related earlier derivations of one dimensional equations
for multilayer fluids appear in [11, 38, 39].

Our approach to developing these equations takes advantage of the Euler-
Poincaré (EP) theory of Hamilton’s variational principle for ideal fluids, in
the Eulerian representation [23], expressed as S = 0 with S = [ ¢(u) dt for
Eulerian horizontal fluid velocity u. The advantage of the EP approach for
our present purpose is that it provides a hierarchy of equations at various
levels of approximation that preserves the EP mathematical structure of the
highest level theory. This approach enables us to strike the appropriate
balance between accuracy and computational tractability, by choosing the
appropriate level in the hierarchy of approximations. The symmetries of the
EP variational principle at each level then endow its resulting evolutionary
equations with conservation laws via the Kelvin-Noether theorem [23]. For
example, Kelvin’s circulation theorem for the multilayer fluid theory in 2d
leads to local conservation of potential vorticity (PV) in each fluid layer, even
though these layers are strongly coupled.
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Figure 1: Synthetic Aperture Radar (SAR) images of the South China Sea
surface taken from the Space Shuttle show a sequence of large amplitude
internal waves at basin scale. These wave fronts are moving westward after
being created by tides and currents running through the Luzon Strait on the
eastern side of the basin. These wave fronts encounter the Dongsha Atoll in
the center of the basin and re-emerge after colliding with it.
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Figure 2: The transverse interactions of the wave fronts re-emerging from
their encounter with the Dongsha Atoll are so strong that the wave fronts
reconnect, rather than pass through each other. This indicates transfer of
momentum.
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The starting point in the derivation of these equations is the assumption of
columnar motion; so that the horizontal velocity in each layer is independent
of the vertical coordinate. We explain how substituting this columnarity into
the EP Hamilton’s principle for multilayer fluids reduces their description
from 3d to 2d, and results in a hierarchy of equations which arises when a
sequence of further approximations are introduced into Hamilton’s principle
in the EP framework.

The common features of the equations in this hierarchy are (1) they ex-
press Newton’s Law for the evolution of momentum in the Eulerian fluid
representation; (2) their nonlinearity involves both momentum and fluid ve-
locity; and (3) their momentum and fluid velocity satisfy a nonlocal rela-
tionship, which must be solved by inversion of an elliptic operator at each
time step. While keeping these features, we simplify the description by mak-
ing a series of approximations in Hamilton’s principle, until we finally arrive
at a minimal description which still captures the wave front reconnection
phenomenon. We then employ this minimal description to investigate and
classify the wave front interactions analytically and in numerical simulations.
Our application is for internal wave fronts, which we compare with our nu-
merical simulations in two dimensions. In a further developmental step, we
also consider numerical solutions of our description in three dimensions. As
mentioned earlier, this 3d extension yields singular solutions of EPDiff whose
momentum is defined on contact surfaces.

The EPDiff equation and its weak wavefront solutions. The EP
equation at which we eventually arrive by this sequence of variational approx-
imations is the following evolutionary integral-partial differential equation,
expressed in vector form as [28, 22],

%m—i— u-Vm+ Vu' -m+m(divu) =0, with m=u-o’Au, (1)
for which we assume periodic boundary conditions. This is the EPDiff equa-
tion, for “Euler-Poincaré equation on the diffeomorphisms,” where m and u
are vectors, 0;m denotes the time derivative of m, and « is a constant param-
eter with dimensions of length. EPDiff is the n—dimensional version of the
1d shallow water equation introduced in [6]. EPDiff arises from a variational
principle based on the fundamental dynamical properties of fluids. Math-
ematically, EPDiff describes geodesic motion on the diffeomorphism group
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with respect to |[ul|%:, the H! norm of the fluid velocity, which is the kinetic
energy of this vertically averaged model fluid [23].

The EPDiff equation (1) may be written equivalently as differential Rie-
mann invariance; namely, as invariance of the momentum one-form density
along the fluid velocity characteristics. That is,

%(m-dx@dVol)zO, along Z—j:uEG*m, (2)
where u = GG * m denotes convolution of the momentum m with the Green’s
function G to produce the fluid velocity u. This convolution is the elliptic-
solve step in the determination of the fluid’s velocity from its momentum for
this class of equations. This property is the nonlocal relationship mentioned
above. In the particular case of EPDiff, we use the elliptic Helmholtz operator
in m = u — o?Au, with length scale o. The Helmholtz operator relationship
between velocity u and momentum m is derived in Section 5 for strongly
nonlinear columnar motion of shallow water.

The relation of EPDiff to 1d soliton equations. In 1d, EPDiff becomes
Om 4+ moyu + O,(mu) =0, with m =u— a®0%u.
This is the dispersionless limit of the Camassa-Holm (CH) equation
Om + mOyu + 0y (mu) = —coOpu — TOPu, with m = u — a?02u,

which is a completely integrable soliton equation [6]. The CH equation re-
duces to the familiar KdV equation when o? — 0.
EPDiff in 1d with viscosity v is expressed as

om + moyu + 0, (mu) = v0im, with m =u—a’0%u.

When o? — 0 this becomes the well known Burgers equation,
3 9 2
Opu + 8z(§u ) =voiu.

The Burgers equation is hyperbolic and supports weak solutions (shocks) in
the limit v — 0.

EPDiff is a new departure for nonlinear hyperbolic equations. It is con-
servative in the absence of viscosity and it may then be written in Riemann
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invariant form (2). However, it is nonlocal, because obtaining its character-
istic velocity u from its momentum m by inverting the Helmholtz operator
via u = G * m requires an elliptic solve at each time step when a # 0. Our
analysis [28, 22| shows that EPDiff has interesting and unusual solution prop-
erties which are only beginning to be studied. The properties of its solutions
will provide great challenges for analysis and numerics.

Singular momentum solutions of EPDiff. For example, EPDiff has
weak singular momentum solutions that are expressed as [28, 22],

mixt) = [ Palt,S.)3(x - Qult, ) dS., (3)

where S, is a Lagrangian coordinate defined along a set of curves in the
plane by the equations x = Q,(t,S,) supported on the delta functions in
the EPDIff solution (3). Thus, the singular momentum solutions of EPDiff
are vector valued curves representing evolving wave fronts defined by the
Lagrange-to-Euler map (3) for their momentum.

The Green’s function for the Helmholtz operator relates the fluid velocity
to the momentum in EPDIff (1). Thus, substituting the defining relation
u = G * m into the singular momentum solution (3) yields the velocity
representation for the wave fronts as another superposition of integrals,

u(x,t) = 3 [ Palt, 5.6 (x, Qult,5.) dS.. (4)

The Green’s function G for the second order Helmholtz operator in this
expression has a discontinuity in slope across each Lagrangian curve moving
with the velocity of the flow. Being discontinuities in the gradient of velocity
that move along with the flow, these singular solutions for the velocity at the
wave fronts are classified as contact discontinuities in the fluid.

Thus, the weak solutions of EPDiff are contacts, rather than shocks.
This behavior challenges numerics and leads to a wide range of potential
physical applications. In addition to describing internal wave fronts, the
EPDiff equation describes the interaction of contacts in a variety of other
situations ranging from solitons [6] to turbulence [9, 16] to computational
anatomy [27, 46]. The EPDiff fluid dynamics equation in (1) describes the
limiting (pressureless) cases of all of these applications.
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Relation between contact solutions of EPDiff and solitons. The
EPDiff singular solutions (4) for the velocities of the internal wave fronts
represent the third of the three known types of fluid singularities: shocks,
vortices and contacts. The key feature of these contacts is that they carry mo-
mentum; so the wave front interactions they represent are collisions, in which
momentum is exchanged. This is very reminiscent of the soliton paradigm in
one dimension. Indeed, in one dimension the singular solutions (4) of EPDiff
are true solitons that undergo elastic collisions and are solvable by the inverse
scattering transform for an isospectral eigenvalue problem [6].

Applications of EPDiff in turbulence. Lagrangian averaging is a
promising approach in turbulence closure modeling. This approach has
the advantage that Lagrangian averaging commutes with the advective time
derivative in fluid mechanics. Thus, Lagrangian averaging preserves the vor-
ticity stretching process in the resulting approximate equations. For exam-
ple, after Lagrangian averaging the Navier-Stokes equation and using Tay-
lor’s hypothesis that the fluctuations move with the mean flow, one finds the
following turbulence closure model [9],

0
av+u-Vv+VuT-v+Vp:1/Av+F, (5)

with v=u—a?Au and V-u=0.

These are the equations of the Lagrangian averaged Navier-Stokes alpha
(LANS-alpha) model of turbulence, whose properties are reviewed, for exam-
ple, in [16]. EPDiff (1) is recovered from the LANS-alpha equations (5) when
the constraint of incompressibility (V - u = 0) is relaxed (so that pressure
gradient Vp may be dropped), and the viscous and forcing terms on the right
hand side are absent. Thus, these equations possess the following analogy:
EPDiff is to LANS-alpha, as Burgers is to Navier-Stokes. Namely, Burgers
is a simplified model of compressible Navier-Stokes which allows shocks as
singular solutions of its initial value problem, when F is absent and v — 0;
and EPDiff is a simplified model of compressible LANS-alpha which allows
contact discontinuities as singular solutions of its initial value problem, when
F is absent and v — 0. The reduction of the singular solutions from Burgers
shocks to EPDiff contacts is a result of the Lagrangian averaging process,
which tempers the nonlinearity in the Navier-Stokes equations.
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Applications of EPDiff in computational anatomy. Applications of
EPDiff (1) in computational image science (CIS) focus on computational
anatomy, based on pattern matching algorithms and smooth morphing of
planar figure outlines, called templates. For a review of this approach, see
[46]. An interesting objective of this CIS application is to reconstruct a 3d
map of the brain in the spatial region between two parallel 2d PET Scans. In
this application, the figure outlines are contact curves, which form a finite-
dimensional invariant manifold of EPDiff, as in equation (3). A 3d brain map
is constructed by treating two 2d PET scans in parallel planes as initial and
final conditions, and then flowing by EPDiff to interpolate in the 3d region
between them as an optimization problem. The 2d solution for the contact
curves evolving by EPDiff smoothly reconstructs the outlines of the PET
scan images on any parallel plane between them. The EPDiff contact inter-
actions also allow reconnection of planar outlines, corresponding to changes
of topology in planar sections of the 3d object being imaged [27]. The rep-
resentation (3) of the singular momentum solutions of EPDiff encodes the
image contours for this application.

Importantly, the momentum representation of the image contours (3) is
complete and nonredundant (one-to-one). Another advantage of the momen-
tum representation of image contours as singular solutions of EPDiff is that
this representation is linear in nature, being dual to the velocity vectors.
Thus, linear combinations of either velocity fields, or momenta are mean-
ingful mathematically and physically, provided they are applied to the same
template [27]. This means the average of a collection of momenta, of their
principal components, or time derivatives of momenta at a fixed template are
all well-defined quantities. The linearity the momentum representation also
allows for example the statistics of an ensemble of images to be analyzed,
or the results of adding noise to the image outlines to be computed using
EPDiff. All of these advantages of the singular momentum representation
for 2d images also apply in the corresponding representation of 3d images.
Evolution of singular momentum solutions of EPDiff as surfaces in 3d cor-
responding in medical imaging to growth, or changes in 3d shape with time.
The last part of this paper will deal with the computation of 3d solutions of
EPDiff.

Summary of the analytical approach. The rich array of possible ap-
plications of EPDiff motivates our investigation of its initial value problems
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in 1d, 2d and 3d. The paradigm raised in our analysis of internal wave front
interactions is the generalization of soliton collisions from 1d to 2d. The
class of shallow water equations we derive and study in 2d has a sequence of
simplifications that yield two dimensional generalizations of all the weakly
nonlinear shallow water equations that have historically been used to study
solitons and solitary waves in one dimension. We first argue that by using
the highest, most accurate level of the fully nonlinear description in 2d, one
should be able to reproduce the observed phenomenon of wave front recon-
nection observed for internal waves in the South China Sea. We then simplify
the description by stages until we finally arrive at EPDiff (1) in 2d, while
preserving what we believe is the key feature responsible for this wave front
reconnection phenomenon — its momentum transfer during collisions. Be-
cause of its other potential applications, particularly its linear encoding of
information for imaging science as momentum, we also consider the initial
value problem for 3d singular solutions of EPDiff. Its imaging science appli-
cations are envisioned as optimization problems. However, the first step in
understanding the role of momentum exchange for EPDiff in imaging science
is the solution of its initial value problem for the emergence of its singular
momentum solutions in 2d and 3d.

Brief sketch of the paper. The first few sections of this paper motivate
using the much simpler equation EPDiff (1), whose properties we study ana-
lytically and numerically in later sections, as a simplified but realistic model
of wave front interactions of nonlinear internal waves in the ocean. The last
few sections present numerical results for EPDiff in both 2d and 3d, which
Wwe Now preview.

3 Preview of numerical results

3.1 CFD methods for fluid singularities

Shocks, vortices and contacts are a compressible fluid’s singular nonlinear
responses to strong applied forces. Capturing these singular responses accu-
rately has always been the grand challenge of computational fluid dynam-
ics (CFD). Shocks move through the flow and carry inertia. Vortices move
with the flow, but they have no inertia. Contacts are discontinuities in the
derivatives of velocity and density that, like vortices, move with the fluid
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flow, and which do have inertia. Consequently, it makes dynamical sense to
speak of momentum exchange in contact-contact collisions. Today, various
CFD methods exist that accurately capture shocks and vortices. However,
considerably less is known about designing numerical methods for capturing
contacts and characterizing their nonlinear interactions, especially in higher
dimensions, when vorticity is present.

One might consider Lagrangian numerical methods as an obvious ap-
proach, because contact discontinuities move with the flow. However, for
head-on contact collisions, parallel studies showed that the Lagrangian ap-
proach suffers in comparison to compatible differencing algorithms (CDAs)
that we apply here in the Eulerian framework. In particular, the head-on
collision of oppositely moving contacts produces an elastic bounce seen in
the weak solution of EPDiff as a mutual annihilation and recreation of gen-
eralized functions, but only the annihilation was captured well by Lagrangian
methods in the parallel studies [37]. In the future, we may also consider de-
veloping new methods for EPDIiff based on discrete exterior calculus (DEC)
[19, 35].

3.2 Numerical approach

The second half of this paper numerically investigates and classifies the
EPDiff dynamics of contact interactions in various cases of its initial value
problem. This is accomplished by applying compatible differencing algo-
rithms to EPDiff in both 2d and 3d. One reason for choosing CDAs as the
preferred simulation method is that the EPDiff equation (1) may be rewritten
as

%m — u X curl m + grad(u - m) + m(divu) = 0. (6)

This equation contains the divergence, gradient and curl operators, whose
identities must be treated properly for accurate computations. Preserving
these vector calculus identities is the basis of CDAs and is the first funda-
mental property of discrete exterior calculus. Namely, these identities form
the discrete analog of the identity d? = 0 for the exterior derivative. As men-
tioned earlier, EPDiff represents geodesic motion, which naturally involves
exterior calculus and variational principles. A framework for designing DEC
methods with promising potential for simulations of EPDiff has been devel-
oped and advanced recently in [19, 35].
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3.3 Interaction dynamics of contacts

This paper takes advantage of recent developments in compatible differencing
algorithms by applying CDAs to new classes of problems involving contact-
contact interaction phenomena. For the report of a recent conference on
CDAs, see [32]. We characterize the emergence of contacts from smooth
initial velocity distributions, and describe their subsequent evolution, prop-
agation and interaction dynamics. We address dynamical issues for basic
interactions among contacts in one, two and three dimensions, as follows.

1d. An integrable shallow water equation whose peaked soliton solutions
emerge from a smooth spatially confined initial conditions for velocity.

2d. Interacting contact curve segments in the plane: trains of contact
curves emerging from an initially continuous fluid velocity distribution, prop-
agating, and interacting nonlinearly through fundamental collision rules. The
2d collision rules for singular solutions of EPDiff are elucidated by plotting
1d linear sections through the 2d solutions which show their spatial profiles
in various directions. The solution behavior along these sections shows the
same elastic collision properties and momentum exchange as seen for the 1d
peaked soliton solutions (peakons) in 1d for the dispersionless CH equation.

3d. Interacting contact surfaces in space: sheaves of contact surfaces
are shown emerging from an initially continuous fluid velocity distribution.
We investigate their propagation and interaction by plotting level surfaces of
speed, as well as plotting 2d planar slices through these surfaces.

More specifically, we examine dynamical issues for the following basic
interactions among the contacts, which are weak solutions of EPDiff, in one,
two, and three dimensions.

1d. In 1d, contacts move as points on a line, and EPDiff reduces to the
well known dispersionless Camassa-Holm (dCH) equation for shallow water
waves, whose contacts are solitons with sharp peaks, or peakons, as shown
in the time evolution in Figure 3. The N—peakon problem is known to be
completely integrable [6].

2d. In 2d, contacts move as segments of curves in the plane. These EPDiff
contacts correspond to oceanic internal waves in one application, or to pla-
nar image outlines in another. We shall address the following specific 2d
scenarios.
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Figure 3: A wave train consisting entirely of peakons emerges in 1d from an
initially Gaussian distribution of positive (rightward) velocity.

Evolution and interactions of EPDiff contact segments which are
initially straight line segments. Contacts move at the local fluid ve-
locity; so a contact segment must terminate with zero velocity. Hence, an
initially straight-line contact segment does not remain straight. Instead, it
evolves under EPDiff into a contact curve segment whose length increases,
as shown in Figure 4. The speed, |u|, is displayed as colors in this figure,
while the bottom panels shows profiles in the east (black), north (dotted
red), northeast (green), and southeast (dotted blue) directions through the
center of the box. An arrow shows the initial direction of u. See Section 9
for a fuller description of the contents of the figures.

The transverse collision of two contact curve segments may result in re-
connection (merger, or melding) of the curves, which is admitted by the rapid
evolution of EPDiff along the directions tangential to the curves. In Figure
5, note the striking similarity between the observed behavior, particularly in
the second frame, and the behavior seen in the earlier image of ocean internal
waves in Figure 2. We shall investigate the “collision rules” under which such
reconnections of wave fronts occur.

We will also consider offset collisions of initially parallel contact segments,
as shown in Figure 6. In that figure, notice the recreation (after annihilation)
of the portions of the contact curves in the regions where a head-on collision
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Figure 4: An initially straight, rightward moving peakon segment balloons
outward and stretches as it expands in 2d, but keeps its integrity as a single
wave front.

Figure 5: A skew overtaking collision of two peakon segments shows reconnec-
tion in which the wavefronts merge repeatedly upon intersecting transversely.
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Figure 6: Head-on collisions of peakon segments first annihilate and then
recreate their wavefronts.

takes place.

Emergence of contact curve segments from representative classes
of smooth initial fluid velocity distributions and their subsequent
interactions. For example, consider an initial velocity distribution whose
magnitude (speed) is a circular Gaussian ring (annulus) and whose direction
is chosen in the following ways.

Uniform translation (broken angular symmetry). This simulation, shown
in Figure 7, demonstrates that the initial value problem for EPDiff tends to
produce only contact solutions. It also shows the differences in their propa-
gation under convergent (left half of annulus) and divergent (right half of an-
nulus) geometry, and illustrates the exchange of momentum in an overtaking
collision. The collision as the rightmost contact curve is overtaken from the
left transfers some of the overtaking curve’s momentum forward and causes
the rightmost curve to bulge slightly, as seen in the last two frames. (Thus,
while momentum is transferred in this collision, the overtaking contact curve
does not “pass through” the rightmost contact curve.)

Uniform rotation (preserving angular symmetry). Figure 8 illustrates how
the radial and azimuthal components of EPDiff are coupled for radially sym-
metric solutions. The figure also shows collapse to the origin and reflection
back outward, which presents an extreme test of the accuracy of our Carte-
sian numerical algorithm. The radial collapse and bounce can be computed
semi-analytically for comparison, [26].
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Figure 7: A rightward moving circular Gaussian ring of initial velocity breaks
into divergent and convergent contact wave fronts.

Figure 8: An initially rotating circular Gaussian ring of velocity couples its
angular motion to the radial motion of contact wavefronts which propagate
both inward and outward. The collapsing circular wavefronts reflect from
the center of symmetry.
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Figure 9: An initially circular Gaussian ring of velocity is diverging along one
diagonal and converging along the other. This initial condition breaks into
interacting contact wavefronts which propagate outward along one diagonal
and converge inward along the other to annihilate and re-emerge, leaving
behind a complex mixing flow in the center.

M-fold discrete angular symmetry. Formation of contacts in the outward
divergent part of the flow, and the emergence, annihilation, and recreation
of contacts collapsing to the diagonal, are all illustrated in Figure 9. This
process is typically followed by very complex patterns of mixing flow involving
peakon profiles along each 1d section.

3d. In 3d, the initial value problem for EPDiff produces contact surfaces
moving through space. The interactions (collisions) of these contact surfaces
produce very complex but coherent patterns. In the figures we discuss here,
the left, back, and bottom panels of each box show 2d planar slices through
the center z (southeast), y (northeast), and z (north) values of |u|. The
corresponding planar slices through the level surfaces of |u| are shown on
the side panels of each box. 2d slices that form a plane of symmetry in 3d
invariably reflect the behavior of the corresponding 2d problem. We will
address the following scenarios in 3d.

Evolution and interactions of contact surfaces that are initially disc-
shaped velocity distributions. Initially flat contact surfaces evolve by
ballooning into curved contact surfaces, as shown in Figure 10.

Because EPDIff is isotropic, it allows equally rapid evolutions in the di-
rections normal and tangential to the contact surfaces. In particular, its
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Figure 10: In 3d, an initially rightward moving disc with exponential trans-
verse velocity profile (of correct width a