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Abstract

Some of the most impressive singular wave fronts seen in Nature are
the transbasin oceanic internal waves, which may be observed from
the Space Shuttle as they propagate and interact with each other,
for example, in the South China Sea. The characteristic feature of
these strongly nonlinear wavefronts is that they reconnect when two
of them collide transversely. We derive the EPDiff equation, and use it
to model this phenomenon as elastic collisions between singular wave
fronts (solitons) whose momentum is distributed along curves moving
in the plane. Numerical methods for EPDiff based on compatible dif-
ferencing algorithms (CDAs) are used for simulating these collisions
among curves. The numerical results show the same nonlinear behav-
ior of wavefront reconnections as that observed for internal waves in
the South China Sea. We generalize the singular solutions of EPDiff
for other applications, in computational anatomy and in imaging sci-
ence, where the singular wavefronts are evolving image outlines, whose
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momentum may be distributed on surfaces moving though space in
three dimensions. The key idea is always momentum exchange during
collisions of the wavefronts. A suite of 2d and 3d numerical simulations
provide collision rules for the wavefront reconnection phenomenon in
a variety of scenarios.
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1 Synopsis

Space Shuttle observations show great lines in the sea, which show up in Syn-
thetic Aperture Radar (SAR) images as in Figure 1. These are internal waves,
whose fronts appear in SAR images as unbroken curves extending for hun-
dreds of kilometers. For example, tidal flows and undulations of the Japanese
Current in the region of the Luzon Strait between Taiwan and the Philippines
generate internal wavefronts which are well over one hundred kilometers in
length and which propagate westward for hundreds of kilometers all the way
across the South China Sea. These wave fronts show strong coherence and
possess the characteristic feature of reconnecting with each other whenever
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any two of them intersect transversely. This reconnection is the hallmark
of a nonlinear process. Weaker waves may intersect, but not reconnect. We
seek to encode the motion of these internal wave fronts and their collision
rules mathematically in a minimal PDE (partial differential equation) model,
and to investigate these wave front reconnections in numerical simulations
of the model. Establishing a simplified PDE model whose solutions encode
the motion of these internal wave fronts and their collision rules will enable
understanding the effects of the nonhydrostatic processes that govern them,
without requiring the full numerical simulation and analysis of the 3d fluid
motion equations.

We shall also derive more detailed PDE models for the interactions of
these nonlinear wavefronts when topography and boundaries are also in-
cluded. However, we shall defer developing the numerical methods needed
to deal with these additional effects until elsewhere.

Our derivation of the 2d multilayer Euler-Poincaré (EP) equations be-
gins by vertically integrating the variational principle for Euler’s equations
in 3d. These 2d equations must be nonhydrostatic, because the wave fronts
they model possess strong horizontal gradients of vertical acceleration. These
nonhydrostatic terms are included in a hierarchy of EP equations which is
derived by making a series of simplifying approximations in the exact vari-
ational principle. The resulting multilayer 2d equations preserve the EP
properties of energy balance, circulation laws and potential vorticity (PV)
conservation. PV analysis in a multilayer fluid system is essential for as-
sessing its baroclinic instability [49]. However, PV for wave fronts is a new
concept, whose implications are hardly understood yet. We will show that
the new hierarchy of EP equations recovers a sequence of previously known
models of internal wave dynamics when specialized in various ways.

Next, from the full hierarchy we extract a simple, minimal PDE descrip-
tion, called EPDiff, which models internal wave fronts as delta functions of
momentum distributed on moving curves in the plane. This corresponds to
modeling internal wave fronts as contact discontinuities in velocity. EPDiff
thus explains the creation and stability of wave fronts as the development
of singular momentum solutions from continuous velocity distributions in a
PDE initial value problem (IVP). This description links the shape of the
wavefront velocity profiles to the Green’s function associated with the non-
local relation in the PDE between its singular momentum and its continuous
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velocity. Hence, EPDiff explains the uniform width of the wave front velocity
profiles that is observed in internal wave trains. Namely, the momentum of
the wavefront is concentrated on delta functions supported on the curved
evolving wavefronts. The corresponding velocity profile is then obtained via
a Green’s function relation between wave momentum and fluid velocity. This
minimal description of internal wave fronts as singular momentum solutions
of the evolutionary equation EPDiff encompasses their reconnections and
provides the geometric mechanism underlying their propagation and colli-
sion interactions. In 1d, these collisions are understood as elastic solition
collisions, whose solutions are obtained by the inverse scattering transform
(IST) for an associated isospectral linear eigenvalue problem. As far as we
know, the machinery of IST is not available in higher spatial dimensions for
EPDiff. However, the elastic scattering interactions seen in its wavefront
solutions in 2d (and in 3d) are explained by another geometric mechanism.
As we shall explain, this geometric mechanism for propagation and collisions
turns out to be Hamiltonian geodesic flow on the time-dependent smooth
maps (diffeomorphisms), defined with respect to the kinetic energy metric
that also determines the wave profile.

To solve the EPDiff equation, we develop a numerical method called the
compatible differencing algorithm (CDA) that is able to capture the collisions
among these weak solutions of EPDiff, and we characterize the wave front
interactions we observed numerically in a variety of scenarios.

In summary, we use EP variational theory to derive the EPDiff equation,
whose solution shows singular wave fronts, and we use new CDAs for its
numerical simulations. EPDIff is the first mathematical explanation of the
observed 2d internal wave front reconnections.

Geometric setting. We have found that modeling the reconnection pro-
cess in internal wave front dynamics requires a class of PDEs that are both
nonlinear and nonlocal. EPDiff is a not exactly a hyperbolic equation. It has
a characteristic velocity, but the relation its EP variational principle defines
between the fluid’s velocity and momentum in Newton’s Law is nonlocal.
That is, the fluid’s velocity is determined from its momentum by solving
an elliptic equation. Physically, the elliptic equation arises from nonhydro-
static processes that cause linear, or nonlinear, dispersion or focusing. This
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nonlocal relationship between velocity and momentum is reminiscent of the
Biot-Savart relationship between velocity and vorticity. However, like soli-
tons, internal wave fronts carry momentum and inertia, while fluid vortices
do not.

Our work has some close similarities with soliton theory and some im-
portant differences from it. The Korteweg-de Vries (KdV) equation at linear
order in the asymptotic expansion for shallow water waves and the Camassa-
Holm (CH) equation at quadratic order are both soliton equations, and they
are both associated with geodesic flow [33, 34, 47]. That is, they each make
optimal use of their kinetic energy, which provides a norm for their velocity.
The EPDiff equation has this same characteristic. Moreover, the singular so-
lution ansatz for the geodesic flow of momentum associated with the EPDiff
equation which we discuss below turns out to be a momentum map, as dis-
covered in Holm and Marsden [22]. The momentum map property of these
singular solutions means they comprise an invariant manifold, preserved by
the flow of EPDiff. This property allows us to reduce the dimension of the
wave front interactions to an invariant manifold of singular momentum so-
lutions of EPDiff. These solutions describe the observed propagation and
reconnection phenomena of the wave fronts, but they have no internal de-
grees of freedom, and thus they have no mechanism for wave breaking to
occur.

In this paper, we model internal wave fronts as contact discontinuities
in velocity, whose motion is governed by applying time-dependent smooth
maps which act on the curves in the plane that outline the wave fronts and
specify their momentum vectors at points along these curves. The motion of
the internal wave fronts is governed by the EPDiff equation. This equation
is the condition for the smooth maps that act on these curves to evolve by
geodesic flow, with respect to a metric determined by their kinetic energy,
which also determines the functional form of their wave profile. The wave
front motion may thus be determined numerically as an initial value problem
by solving the EPDiff equation.

In such a strongly geometric setting, we expect that combining finite
element methods and discrete exterior calculus may provide future improve-
ments in both modeling and simulations, by providing a useful setting for
integration of the analysis with the numerics in the description of internal
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wave fronts as singular weak solutions, or limiting solutions (contacts) for
nonlinear, nonlocal PDEs. However, we defer the full use of discrete exterior
calculus methods for numerically solving EPDiff until these methods have
been further developed. See [19, 35] for introductions to these methods.

Outline of the paper. Mathematical modeling problems for internal wave
fronts, and our approaches to solving them, are summarized in Section 2. A
preview of our numerical results appears in Section 3. Previous work in mul-
tilayer descriptions of internal waves is reviewed in Section 4. The columnar
motion ansatz for multilayer fluids is explained in Section 5, and is used there
to derive the nonhydrostatic 2d MultiLayer Columnar Motion (MLCM) equa-
tions and their natural boundary conditions. A series of weakly nonlinear
approximations is introduced into the EP variational principle for the MLCM
equations in Section 6. The resulting weakly nonlinear 2d multilayer equa-
tions are also compared to the 1d multilayer equations of Choi and Camassa
[11] and others. In Section 7, we derive the EPDiff geodesic equation by
neglecting dispersion due to potential energy. Singular solutions of EPDiff
and their canonical dynamics in the Lagrangian fluid representation are also
introduced in Section 7.

The main numerical results of this paper are given in Sections 8, 9 and
10. Section 8 describes our numerical approach using compatible differencing
algorithms. Section 9 provides a large suite of numerical simulations investi-
gating the collision rules for the interactions of wave-front solutions of EPDiff
in 2d. Section 10 extends our numerical solutions of EPDiff to 3d, and shows
that its stable codimension-one singular solution behavior persists in higher
dimensions. Finally, we discuss conclusions, future directions and remaining
outstanding problems for internal wavefront interactions in Section 11.

2 Problem statement, approach, and main
results

Space Shuttle observations of the South China Sea surface show a sequence
of large amplitude internal waves at basin scale moving westward after being
created by tides and currents running through the Luzon Strait on the eastern
side of the basin. These internal waves appear in Synthetic Aperture Radar
(SAR) images as long, slightly curved, internal wave fronts 100-200 km in



D. D. Holm & M. F. Staley Singular Wave Fronts 8

length and separated by 50-80 km. When these isolated internal wave fronts
sweep across Dongsha Atoll in the middle of the South China Sea, they
are perturbed and subsequently re-radiated as two sets of wave front trains
propagating westward, each with greater curvature than the incoming wave
front. The SAR images of this process are shown in Figure 1. The transverse
interactions of the re-radiated wave fronts are so strong that they reconnect,
rather than pass through each other. This reconnection is shown in Figure
2. The reconnection phenomenon for nonlinear internal wave fronts in the
ocean indicates transfer of momentum and is one of the primary motivations
of the present study. Internal wave interactions have been well studied in one
dimension, often by using the weakly nonlinear Boussinesq approximation,
usually resulting in a variant of the Korteweg-de Vries (KdV) equation and its
soliton solutions [51]. However, the complex wave front interactions shown in
Figures 1 and 2 are plainly two dimensional. Moreover, their reconnection is
not captured by the 2d extension of KdV for weakly nonlinear waves with slow
transverse variations, known as the Kadomsev-Petviashvili (KP) equation.
(The KP equation assumes weak gradients in the direction transverse to
propagation. However, this assumption does not hold during the wavefront
reconnections we seek to model.) Thus, we begin our study of internal wave
front reconnection by developing a new set of equations that extends, to
multilayer fluids in two dimensions, the Su-Gardner [50] or Green-Naghdi [18]
equations for fully nonlinear waves on the free surface of a single-layer fluid
in one dimension. Related earlier derivations of one dimensional equations
for multilayer fluids appear in [11, 38, 39].

Our approach to developing these equations takes advantage of the Euler-
Poincaré (EP) theory of Hamilton’s variational principle for ideal fluids, in
the Eulerian representation [23], expressed as S = 0 with S = [ ¢(u) dt for
Eulerian horizontal fluid velocity u. The advantage of the EP approach for
our present purpose is that it provides a hierarchy of equations at various
levels of approximation that preserves the EP mathematical structure of the
highest level theory. This approach enables us to strike the appropriate
balance between accuracy and computational tractability, by choosing the
appropriate level in the hierarchy of approximations. The symmetries of the
EP variational principle at each level then endow its resulting evolutionary
equations with conservation laws via the Kelvin-Noether theorem [23]. For
example, Kelvin’s circulation theorem for the multilayer fluid theory in 2d
leads to local conservation of potential vorticity (PV) in each fluid layer, even
though these layers are strongly coupled.
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Figure 1: Synthetic Aperture Radar (SAR) images of the South China Sea
surface taken from the Space Shuttle show a sequence of large amplitude
internal waves at basin scale. These wave fronts are moving westward after
being created by tides and currents running through the Luzon Strait on the
eastern side of the basin. These wave fronts encounter the Dongsha Atoll in
the center of the basin and re-emerge after colliding with it.
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Figure 2: The transverse interactions of the wave fronts re-emerging from
their encounter with the Dongsha Atoll are so strong that the wave fronts
reconnect, rather than pass through each other. This indicates transfer of
momentum.
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The starting point in the derivation of these equations is the assumption of
columnar motion; so that the horizontal velocity in each layer is independent
of the vertical coordinate. We explain how substituting this columnarity into
the EP Hamilton’s principle for multilayer fluids reduces their description
from 3d to 2d, and results in a hierarchy of equations which arises when a
sequence of further approximations are introduced into Hamilton’s principle
in the EP framework.

The common features of the equations in this hierarchy are (1) they ex-
press Newton’s Law for the evolution of momentum in the Eulerian fluid
representation; (2) their nonlinearity involves both momentum and fluid ve-
locity; and (3) their momentum and fluid velocity satisfy a nonlocal rela-
tionship, which must be solved by inversion of an elliptic operator at each
time step. While keeping these features, we simplify the description by mak-
ing a series of approximations in Hamilton’s principle, until we finally arrive
at a minimal description which still captures the wave front reconnection
phenomenon. We then employ this minimal description to investigate and
classify the wave front interactions analytically and in numerical simulations.
Our application is for internal wave fronts, which we compare with our nu-
merical simulations in two dimensions. In a further developmental step, we
also consider numerical solutions of our description in three dimensions. As
mentioned earlier, this 3d extension yields singular solutions of EPDiff whose
momentum is defined on contact surfaces.

The EPDiff equation and its weak wavefront solutions. The EP
equation at which we eventually arrive by this sequence of variational approx-
imations is the following evolutionary integral-partial differential equation,
expressed in vector form as [28, 22],

%m—i— u-Vm+ Vu' -m+m(divu) =0, with m=u-o’Au, (1)
for which we assume periodic boundary conditions. This is the EPDiff equa-
tion, for “Euler-Poincaré equation on the diffeomorphisms,” where m and u
are vectors, 0;m denotes the time derivative of m, and « is a constant param-
eter with dimensions of length. EPDiff is the n—dimensional version of the
1d shallow water equation introduced in [6]. EPDiff arises from a variational
principle based on the fundamental dynamical properties of fluids. Math-
ematically, EPDiff describes geodesic motion on the diffeomorphism group
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with respect to |[ul|%:, the H! norm of the fluid velocity, which is the kinetic
energy of this vertically averaged model fluid [23].

The EPDiff equation (1) may be written equivalently as differential Rie-
mann invariance; namely, as invariance of the momentum one-form density
along the fluid velocity characteristics. That is,

%(m-dx@dVol)zO, along Z—j:uEG*m, (2)
where u = GG * m denotes convolution of the momentum m with the Green’s
function G to produce the fluid velocity u. This convolution is the elliptic-
solve step in the determination of the fluid’s velocity from its momentum for
this class of equations. This property is the nonlocal relationship mentioned
above. In the particular case of EPDiff, we use the elliptic Helmholtz operator
in m = u — o?Au, with length scale o. The Helmholtz operator relationship
between velocity u and momentum m is derived in Section 5 for strongly
nonlinear columnar motion of shallow water.

The relation of EPDiff to 1d soliton equations. In 1d, EPDiff becomes
Om 4+ moyu + O,(mu) =0, with m =u— a®0%u.
This is the dispersionless limit of the Camassa-Holm (CH) equation
Om + mOyu + 0y (mu) = —coOpu — TOPu, with m = u — a?02u,

which is a completely integrable soliton equation [6]. The CH equation re-
duces to the familiar KdV equation when o? — 0.
EPDiff in 1d with viscosity v is expressed as

om + moyu + 0, (mu) = v0im, with m =u—a’0%u.

When o? — 0 this becomes the well known Burgers equation,
3 9 2
Opu + 8z(§u ) =voiu.

The Burgers equation is hyperbolic and supports weak solutions (shocks) in
the limit v — 0.

EPDiff is a new departure for nonlinear hyperbolic equations. It is con-
servative in the absence of viscosity and it may then be written in Riemann
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invariant form (2). However, it is nonlocal, because obtaining its character-
istic velocity u from its momentum m by inverting the Helmholtz operator
via u = G * m requires an elliptic solve at each time step when a # 0. Our
analysis [28, 22| shows that EPDiff has interesting and unusual solution prop-
erties which are only beginning to be studied. The properties of its solutions
will provide great challenges for analysis and numerics.

Singular momentum solutions of EPDiff. For example, EPDiff has
weak singular momentum solutions that are expressed as [28, 22],

mixt) = [ Palt,S.)3(x - Qult, ) dS., (3)

where S, is a Lagrangian coordinate defined along a set of curves in the
plane by the equations x = Q,(t,S,) supported on the delta functions in
the EPDIff solution (3). Thus, the singular momentum solutions of EPDiff
are vector valued curves representing evolving wave fronts defined by the
Lagrange-to-Euler map (3) for their momentum.

The Green’s function for the Helmholtz operator relates the fluid velocity
to the momentum in EPDIff (1). Thus, substituting the defining relation
u = G * m into the singular momentum solution (3) yields the velocity
representation for the wave fronts as another superposition of integrals,

u(x,t) = 3 [ Palt, 5.6 (x, Qult,5.) dS.. (4)

The Green’s function G for the second order Helmholtz operator in this
expression has a discontinuity in slope across each Lagrangian curve moving
with the velocity of the flow. Being discontinuities in the gradient of velocity
that move along with the flow, these singular solutions for the velocity at the
wave fronts are classified as contact discontinuities in the fluid.

Thus, the weak solutions of EPDiff are contacts, rather than shocks.
This behavior challenges numerics and leads to a wide range of potential
physical applications. In addition to describing internal wave fronts, the
EPDiff equation describes the interaction of contacts in a variety of other
situations ranging from solitons [6] to turbulence [9, 16] to computational
anatomy [27, 46]. The EPDiff fluid dynamics equation in (1) describes the
limiting (pressureless) cases of all of these applications.
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Relation between contact solutions of EPDiff and solitons. The
EPDiff singular solutions (4) for the velocities of the internal wave fronts
represent the third of the three known types of fluid singularities: shocks,
vortices and contacts. The key feature of these contacts is that they carry mo-
mentum; so the wave front interactions they represent are collisions, in which
momentum is exchanged. This is very reminiscent of the soliton paradigm in
one dimension. Indeed, in one dimension the singular solutions (4) of EPDiff
are true solitons that undergo elastic collisions and are solvable by the inverse
scattering transform for an isospectral eigenvalue problem [6].

Applications of EPDiff in turbulence. Lagrangian averaging is a
promising approach in turbulence closure modeling. This approach has
the advantage that Lagrangian averaging commutes with the advective time
derivative in fluid mechanics. Thus, Lagrangian averaging preserves the vor-
ticity stretching process in the resulting approximate equations. For exam-
ple, after Lagrangian averaging the Navier-Stokes equation and using Tay-
lor’s hypothesis that the fluctuations move with the mean flow, one finds the
following turbulence closure model [9],

0
av+u-Vv+VuT-v+Vp:1/Av+F, (5)

with v=u—a?Au and V-u=0.

These are the equations of the Lagrangian averaged Navier-Stokes alpha
(LANS-alpha) model of turbulence, whose properties are reviewed, for exam-
ple, in [16]. EPDiff (1) is recovered from the LANS-alpha equations (5) when
the constraint of incompressibility (V - u = 0) is relaxed (so that pressure
gradient Vp may be dropped), and the viscous and forcing terms on the right
hand side are absent. Thus, these equations possess the following analogy:
EPDiff is to LANS-alpha, as Burgers is to Navier-Stokes. Namely, Burgers
is a simplified model of compressible Navier-Stokes which allows shocks as
singular solutions of its initial value problem, when F is absent and v — 0;
and EPDiff is a simplified model of compressible LANS-alpha which allows
contact discontinuities as singular solutions of its initial value problem, when
F is absent and v — 0. The reduction of the singular solutions from Burgers
shocks to EPDiff contacts is a result of the Lagrangian averaging process,
which tempers the nonlinearity in the Navier-Stokes equations.
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Applications of EPDiff in computational anatomy. Applications of
EPDiff (1) in computational image science (CIS) focus on computational
anatomy, based on pattern matching algorithms and smooth morphing of
planar figure outlines, called templates. For a review of this approach, see
[46]. An interesting objective of this CIS application is to reconstruct a 3d
map of the brain in the spatial region between two parallel 2d PET Scans. In
this application, the figure outlines are contact curves, which form a finite-
dimensional invariant manifold of EPDiff, as in equation (3). A 3d brain map
is constructed by treating two 2d PET scans in parallel planes as initial and
final conditions, and then flowing by EPDiff to interpolate in the 3d region
between them as an optimization problem. The 2d solution for the contact
curves evolving by EPDiff smoothly reconstructs the outlines of the PET
scan images on any parallel plane between them. The EPDiff contact inter-
actions also allow reconnection of planar outlines, corresponding to changes
of topology in planar sections of the 3d object being imaged [27]. The rep-
resentation (3) of the singular momentum solutions of EPDiff encodes the
image contours for this application.

Importantly, the momentum representation of the image contours (3) is
complete and nonredundant (one-to-one). Another advantage of the momen-
tum representation of image contours as singular solutions of EPDiff is that
this representation is linear in nature, being dual to the velocity vectors.
Thus, linear combinations of either velocity fields, or momenta are mean-
ingful mathematically and physically, provided they are applied to the same
template [27]. This means the average of a collection of momenta, of their
principal components, or time derivatives of momenta at a fixed template are
all well-defined quantities. The linearity the momentum representation also
allows for example the statistics of an ensemble of images to be analyzed,
or the results of adding noise to the image outlines to be computed using
EPDiff. All of these advantages of the singular momentum representation
for 2d images also apply in the corresponding representation of 3d images.
Evolution of singular momentum solutions of EPDiff as surfaces in 3d cor-
responding in medical imaging to growth, or changes in 3d shape with time.
The last part of this paper will deal with the computation of 3d solutions of
EPDiff.

Summary of the analytical approach. The rich array of possible ap-
plications of EPDiff motivates our investigation of its initial value problems
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in 1d, 2d and 3d. The paradigm raised in our analysis of internal wave front
interactions is the generalization of soliton collisions from 1d to 2d. The
class of shallow water equations we derive and study in 2d has a sequence of
simplifications that yield two dimensional generalizations of all the weakly
nonlinear shallow water equations that have historically been used to study
solitons and solitary waves in one dimension. We first argue that by using
the highest, most accurate level of the fully nonlinear description in 2d, one
should be able to reproduce the observed phenomenon of wave front recon-
nection observed for internal waves in the South China Sea. We then simplify
the description by stages until we finally arrive at EPDiff (1) in 2d, while
preserving what we believe is the key feature responsible for this wave front
reconnection phenomenon — its momentum transfer during collisions. Be-
cause of its other potential applications, particularly its linear encoding of
information for imaging science as momentum, we also consider the initial
value problem for 3d singular solutions of EPDiff. Its imaging science appli-
cations are envisioned as optimization problems. However, the first step in
understanding the role of momentum exchange for EPDiff in imaging science
is the solution of its initial value problem for the emergence of its singular
momentum solutions in 2d and 3d.

Brief sketch of the paper. The first few sections of this paper motivate
using the much simpler equation EPDiff (1), whose properties we study ana-
lytically and numerically in later sections, as a simplified but realistic model
of wave front interactions of nonlinear internal waves in the ocean. The last
few sections present numerical results for EPDiff in both 2d and 3d, which
Wwe Now preview.

3 Preview of numerical results

3.1 CFD methods for fluid singularities

Shocks, vortices and contacts are a compressible fluid’s singular nonlinear
responses to strong applied forces. Capturing these singular responses accu-
rately has always been the grand challenge of computational fluid dynam-
ics (CFD). Shocks move through the flow and carry inertia. Vortices move
with the flow, but they have no inertia. Contacts are discontinuities in the
derivatives of velocity and density that, like vortices, move with the fluid
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flow, and which do have inertia. Consequently, it makes dynamical sense to
speak of momentum exchange in contact-contact collisions. Today, various
CFD methods exist that accurately capture shocks and vortices. However,
considerably less is known about designing numerical methods for capturing
contacts and characterizing their nonlinear interactions, especially in higher
dimensions, when vorticity is present.

One might consider Lagrangian numerical methods as an obvious ap-
proach, because contact discontinuities move with the flow. However, for
head-on contact collisions, parallel studies showed that the Lagrangian ap-
proach suffers in comparison to compatible differencing algorithms (CDAs)
that we apply here in the Eulerian framework. In particular, the head-on
collision of oppositely moving contacts produces an elastic bounce seen in
the weak solution of EPDiff as a mutual annihilation and recreation of gen-
eralized functions, but only the annihilation was captured well by Lagrangian
methods in the parallel studies [37]. In the future, we may also consider de-
veloping new methods for EPDIiff based on discrete exterior calculus (DEC)
[19, 35].

3.2 Numerical approach

The second half of this paper numerically investigates and classifies the
EPDiff dynamics of contact interactions in various cases of its initial value
problem. This is accomplished by applying compatible differencing algo-
rithms to EPDiff in both 2d and 3d. One reason for choosing CDAs as the
preferred simulation method is that the EPDiff equation (1) may be rewritten
as

%m — u X curl m + grad(u - m) + m(divu) = 0. (6)

This equation contains the divergence, gradient and curl operators, whose
identities must be treated properly for accurate computations. Preserving
these vector calculus identities is the basis of CDAs and is the first funda-
mental property of discrete exterior calculus. Namely, these identities form
the discrete analog of the identity d? = 0 for the exterior derivative. As men-
tioned earlier, EPDiff represents geodesic motion, which naturally involves
exterior calculus and variational principles. A framework for designing DEC
methods with promising potential for simulations of EPDiff has been devel-
oped and advanced recently in [19, 35].
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3.3 Interaction dynamics of contacts

This paper takes advantage of recent developments in compatible differencing
algorithms by applying CDAs to new classes of problems involving contact-
contact interaction phenomena. For the report of a recent conference on
CDAs, see [32]. We characterize the emergence of contacts from smooth
initial velocity distributions, and describe their subsequent evolution, prop-
agation and interaction dynamics. We address dynamical issues for basic
interactions among contacts in one, two and three dimensions, as follows.

1d. An integrable shallow water equation whose peaked soliton solutions
emerge from a smooth spatially confined initial conditions for velocity.

2d. Interacting contact curve segments in the plane: trains of contact
curves emerging from an initially continuous fluid velocity distribution, prop-
agating, and interacting nonlinearly through fundamental collision rules. The
2d collision rules for singular solutions of EPDiff are elucidated by plotting
1d linear sections through the 2d solutions which show their spatial profiles
in various directions. The solution behavior along these sections shows the
same elastic collision properties and momentum exchange as seen for the 1d
peaked soliton solutions (peakons) in 1d for the dispersionless CH equation.

3d. Interacting contact surfaces in space: sheaves of contact surfaces
are shown emerging from an initially continuous fluid velocity distribution.
We investigate their propagation and interaction by plotting level surfaces of
speed, as well as plotting 2d planar slices through these surfaces.

More specifically, we examine dynamical issues for the following basic
interactions among the contacts, which are weak solutions of EPDiff, in one,
two, and three dimensions.

1d. In 1d, contacts move as points on a line, and EPDiff reduces to the
well known dispersionless Camassa-Holm (dCH) equation for shallow water
waves, whose contacts are solitons with sharp peaks, or peakons, as shown
in the time evolution in Figure 3. The N—peakon problem is known to be
completely integrable [6].

2d. In 2d, contacts move as segments of curves in the plane. These EPDiff
contacts correspond to oceanic internal waves in one application, or to pla-
nar image outlines in another. We shall address the following specific 2d
scenarios.
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Figure 3: A wave train consisting entirely of peakons emerges in 1d from an
initially Gaussian distribution of positive (rightward) velocity.

Evolution and interactions of EPDiff contact segments which are
initially straight line segments. Contacts move at the local fluid ve-
locity; so a contact segment must terminate with zero velocity. Hence, an
initially straight-line contact segment does not remain straight. Instead, it
evolves under EPDiff into a contact curve segment whose length increases,
as shown in Figure 4. The speed, |u|, is displayed as colors in this figure,
while the bottom panels shows profiles in the east (black), north (dotted
red), northeast (green), and southeast (dotted blue) directions through the
center of the box. An arrow shows the initial direction of u. See Section 9
for a fuller description of the contents of the figures.

The transverse collision of two contact curve segments may result in re-
connection (merger, or melding) of the curves, which is admitted by the rapid
evolution of EPDiff along the directions tangential to the curves. In Figure
5, note the striking similarity between the observed behavior, particularly in
the second frame, and the behavior seen in the earlier image of ocean internal
waves in Figure 2. We shall investigate the “collision rules” under which such
reconnections of wave fronts occur.

We will also consider offset collisions of initially parallel contact segments,
as shown in Figure 6. In that figure, notice the recreation (after annihilation)
of the portions of the contact curves in the regions where a head-on collision
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Figure 4: An initially straight, rightward moving peakon segment balloons
outward and stretches as it expands in 2d, but keeps its integrity as a single
wave front.

Figure 5: A skew overtaking collision of two peakon segments shows reconnec-
tion in which the wavefronts merge repeatedly upon intersecting transversely.
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Figure 6: Head-on collisions of peakon segments first annihilate and then
recreate their wavefronts.

takes place.

Emergence of contact curve segments from representative classes
of smooth initial fluid velocity distributions and their subsequent
interactions. For example, consider an initial velocity distribution whose
magnitude (speed) is a circular Gaussian ring (annulus) and whose direction
is chosen in the following ways.

Uniform translation (broken angular symmetry). This simulation, shown
in Figure 7, demonstrates that the initial value problem for EPDiff tends to
produce only contact solutions. It also shows the differences in their propa-
gation under convergent (left half of annulus) and divergent (right half of an-
nulus) geometry, and illustrates the exchange of momentum in an overtaking
collision. The collision as the rightmost contact curve is overtaken from the
left transfers some of the overtaking curve’s momentum forward and causes
the rightmost curve to bulge slightly, as seen in the last two frames. (Thus,
while momentum is transferred in this collision, the overtaking contact curve
does not “pass through” the rightmost contact curve.)

Uniform rotation (preserving angular symmetry). Figure 8 illustrates how
the radial and azimuthal components of EPDiff are coupled for radially sym-
metric solutions. The figure also shows collapse to the origin and reflection
back outward, which presents an extreme test of the accuracy of our Carte-
sian numerical algorithm. The radial collapse and bounce can be computed
semi-analytically for comparison, [26].
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Figure 7: A rightward moving circular Gaussian ring of initial velocity breaks
into divergent and convergent contact wave fronts.

Figure 8: An initially rotating circular Gaussian ring of velocity couples its
angular motion to the radial motion of contact wavefronts which propagate
both inward and outward. The collapsing circular wavefronts reflect from
the center of symmetry.
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Figure 9: An initially circular Gaussian ring of velocity is diverging along one
diagonal and converging along the other. This initial condition breaks into
interacting contact wavefronts which propagate outward along one diagonal
and converge inward along the other to annihilate and re-emerge, leaving
behind a complex mixing flow in the center.

M-fold discrete angular symmetry. Formation of contacts in the outward
divergent part of the flow, and the emergence, annihilation, and recreation
of contacts collapsing to the diagonal, are all illustrated in Figure 9. This
process is typically followed by very complex patterns of mixing flow involving
peakon profiles along each 1d section.

3d. In 3d, the initial value problem for EPDiff produces contact surfaces
moving through space. The interactions (collisions) of these contact surfaces
produce very complex but coherent patterns. In the figures we discuss here,
the left, back, and bottom panels of each box show 2d planar slices through
the center z (southeast), y (northeast), and z (north) values of |u|. The
corresponding planar slices through the level surfaces of |u| are shown on
the side panels of each box. 2d slices that form a plane of symmetry in 3d
invariably reflect the behavior of the corresponding 2d problem. We will
address the following scenarios in 3d.

Evolution and interactions of contact surfaces that are initially disc-
shaped velocity distributions. Initially flat contact surfaces evolve by
ballooning into curved contact surfaces, as shown in Figure 10.

Because EPDIff is isotropic, it allows equally rapid evolutions in the di-
rections normal and tangential to the contact surfaces. In particular, its
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Figure 10: In 3d, an initially rightward moving disc with exponential trans-
verse velocity profile (of correct width alpha) balloons outward as a contact
wavefront which retains its integrity.

Figure 11: The skew collision of two initially disc-shaped contact wavefronts
shows reconnection in 3d.

tangential evolution admits significant stretching. It also allows reconnec-
tion of contact surfaces which intersect transversely as they collide. The
reconnection is caused by transfer of momentum. This phenomenon is illus-
trated in Figure 11. We shall investigate the “collision rules” under which
such reconnections of surfaces occur.

An offset collision of initially parallel contact surfaces is shown in Figure
12. As in 2d, we observe the recreation (after annihilation) of a contact
surface after a head-on collision takes place. Notice also how the outer edges
(away from the head-on collision) of the contact surfaces merge to form a
ring.

Emergence of contact curve surfaces from representative classes
of smooth initial fluid velocity distributions and their subsequent
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Figure 12: The head-on collision of two initially disc-shaped contact wave-
fronts shows annihilation and reconnection in 3d.

Figure 13: A rightward moving spherical Gaussian shell of initial velocity
breaks into divergent and convergent contact wave fronts.

interactions. For example, consider an initial velocity distribution whose
magnitude is a radially symmetric Gaussian shell (spherical annulus) and
whose direction is chosen in the following ways.

Uniform translation (broken angular symmetry). The simulation shown
in Figure 13, as in the corresponding figure for 2d, demonstrates that EPDiff
tends to produce only contact solutions, and illustrates the differences in their
propagation under convergent (left half of spherical annulus) and divergent
(right half of spherical annulus) geometry.

Uniform rotation (preserving angular symmetry about the vertical direc-
tion). The frames in Figure 14 show collapse of the spherical contact surfaces
to the origin, and their reflection back outward. This shows the coupling be-
tween angular and radial motion.

Two-fold discrete angular symmetry. Figure 15 illustrates the formation
of contacts for the outward divergent part of the flow and the emergence,
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Figure 14: An initially spherical Gaussian shell of velocity rotating about the
vertical axis expands outward and collapses inward with cylindrical symme-
try, as it breaks into divergent and convergent contact wave fronts.

Figure 15: An initially spherical Gaussian shell of velocity diverging in one
diagonal vertical plane and converging in the other breaks into interacting
contact surfaces.

annihilation and recreation of contacts collapsing along lines of discrete sym-
metry. The 2d slice through the horizontal midplane (which is projected on
the bottom panel) shows 2d behavior similar to that in Figure 9.

4 History of modeling internal wave fronts

Modeling observed internal waves propagating over real topography requires
a fully two-dimensional, multilayer description. Strong, complex, two dimen-
sional wave-wave and wave-topography interactions have long been observed,
for example, in internal waves propagating through the Strait of Gibraltar
[63]. Even more complex interactions were recently observed from the Space
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Shuttle for internal wave trains propagating in the vicinity of Dongsha Island
in the South China Sea by Liu et al. [40]; see Figures 1 and 2. These interac-
tions produce remarkable nonlinear phenomena. In particular, they produce
wave front reconnection, as well as the diffraction and refraction expected of
large amplitude internal waves interacting with bathymetry and boundaries
such as straits, coasts, shoals, islands and atolls.

Equations for strongly nonlinear dispersive waves on the free surface of
a single layer of incompressible fluid with topography are usually attributed
to Green and Naghdi [18], although the same equations were derived earlier
by Su and Gardner [50]. These equations for single layer columnar motion
(ILCM) generalize the Boussinesq family of shallow-water equations to al-
low for strong nonlinearity. For finite wave amplitudes, the 1LCM equations
capture strongly nonlinear effects, such as the upstream emission of solitary
waves and the downstream surface depression and oscillations due to flow
over a obstacle at Froude numbers greater than unity [43, 39]. References
[43, 39] show that numerical simulations of the 1ILCM equations tend to be
faithful representations of the corresponding Euler solutions, provides that
wave breaking does not occur. The works of Choi and Camassa [10, 11] ex-
tended the 1ILCM description to a two-layer fluid with fixed horizontal upper
and lower boundaries, including the cases of two thin layers and of a thin
layer over an infinitely deep layer. The CC equations admit bi-directional so-
lutions and they may be derived from a variational principle by following the
averaged Lagrangian methods pioneered in Whitham [51]. (See also Miles
and Salmon [45], who derived the 1LCM equations using Hamilton’s prin-
ciple in the material representation.) As a consequence of their variational
principle, the CC equations possess conservation laws for mass, momentum,
and energy. The same equations were derived earlier and analyzed for well-
posedness in Liska, Margolin and Wendroff [38, 39] by substituting directly
in the governing equations the columnar motion assumption that the ver-
tical velocity is a linear function of vertical coordinate. Choi and Camassa
[11] showed explicitly, by assuming first weak nonlinearity and then unidirec-
tional wave propagation, that these equations recover all the known weakly
nonlinear evolution equations for interfacial waves. The well-posedness is-
sue identified by Liska et al. [38, 39] for these equations is similar to the
steepening lemma result proved for the CH equation in [6]. Namely, an ini-
tial velocity distribution possessing an inflection point of negative slope will
develop a vertical slope in finite time. This loss of well-posedness in finite
time is part of the mechanism for the formation of the singular solutions we
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seek to investigate here. These singular solutions dominate the initial value
problems we study and one should expect to deviate from standard concepts
of well-posedness in studying their emergence from smooth initial conditions.

In the next few sections of this paper, we shall use the Euler-Poincaré
(EP) variational principle for continuum motion in the spatial, or Eulerian,
representation [23] to extend the CC equations by deriving multilayer colum-
nar motion (MLCM) equations. MLCM describes strongly nonlinear inter-
nal waves propagating on the interfaces of layer-stratified incompressible fluid
driven by gravity, moving over topography and possessing a free surface. The
MLCM equations are derived here by imposing columnar motion in the EP
variational principle for the Euler equations of a multilayer incompressible
fluid with a free surface and variable topography. In one dimension, when
the free surface and bathymetry are neglected, the MLCM equations recover
the CC equations [11].

Strictly speaking, the CC equations are for vertically averaged horizon-
tal velocities, not simply for columnar motion. Thus, they need not have
emerged from an action principle for multilayer columnar motion. The ver-
tically averaged horizontal velocities do undergo columnar motion, but this
alone is insufficient to expect a prior: that the CC equations would arise
by substituting columnarity into the action principle. However, Choi and
Camassa noticed a posteriori that their equations do satisfy a variational
principle [11]. We have used their observation, combined with the suggestive
results of Liska, Margolin and Wendroff [38, 39] and of Miles and Salmon [45]
to extend the CC equations to the more general MLCM situation required for
modeling the large scale internal wave interactions observed in the Gibraltar
Strait and the South China Sea.

The new MLCM equations (20) derived here generalize the CC equations
for the interfacial motion between two layers with fixed horizontal upper and
lower boundaries, to allow for waves at the top free surface as observed by
the Space Shuttle, to include an arbitrary number of fluid layers, and to ac-
count for variable bottom topography. These equations provide fundamental
insight into how topography and the multiple layers of a stably stratified
incompressible fluid are coupled by nonlinear, nonhydrostatic, dynamical ef-
fects. This dynamical coupling arises in addition to the more familiar mul-
tilayer hydrostatic effects. We derive these nonhydrostatic equations and
their natural boundary conditions from the Euler-Poincaré variational prin-
ciple for continuum motion of Holm, Marsden and Ratiu [23] by including
in the fluid Lagrangian the kinetic energy due to vertical oscillations in the
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columnar motion approximation. Their traveling waves, stability properties,
well-posedness, weakly nonlinear aspects, relations to other approximations
and numerical simulations will be addressed elsewhere.

After deriving the highest level nonhydrostatic MLCM equations for mul-
tilayer internal waves, we make a series of Boussinesqg-like approximations for
weakly nonlinear waves that allows comparison with previous work and which
eventually results in a minimal description, EPDiff (1). We then discuss some
of the geometrical properties and singular solutions of EPDiff. Finally, we
describe our numerical approach and present a large suite of 2d and 3d sim-
ulation results for EPDiff.

5 Nonhydrostatic multilayer columnar mo-
tion (MLCM) equations

Consider a multilayer fluid consisting of N immiscible layers moving under
the constant vertical acceleration of gravity. Regard the top layer (whose
rest position is z = 0) as first and the bottom layer as last (Nth), so that s
increases with the depth of the layer. The i—th layer has constant density p;,
horizontal velocity u;(z,y, z,t), vertical velocity w;(z,y, z,t), upper surface
at z = h;(z,y,t) and lower surface at z = h;,1(z,y,t), so the layer thicknesses
are D; = h; — h;y1, with ¢ = 1,..., N. The Nth layer (on the bottom) has
density py, horizontal velocity uy, upper surface at z = hy(z,y,t) and

lower surface at z = hyy1 = —b(z,y), the fixed bottom topography. We
shall assume the multilayer fluid is stably stratified, so that p; < p;,1, for
i=1,..., N (density increases downward).

5.1 Implications of the columnar motion ansatz

The Lagrangian in Hamilton’s principle for a multilayer fluid is the difference
of its kinetic and potential energies,

Yk 1
(= /dxdy Zpl/ [§|ui|2 + wa - gz] dz. (7)
i=1 hit1

One may also include the effects of Coriolis force due to rotation by adding
the term Zf\il D;R(z,y) -u; + D;S(z,y)w; to the Lagrangian density, where
2Q = curl (R(z,y) + S(z,y) 2) is twice the rotation vector.
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We note that incompressibility V - u; = —0,w; relates the horizontal
and vertical velocities in each layer. When one also assumes the columnar
motion ansatz, namely,

8ui
0z

then incompressibility also implies linear dependence of the vertical velocity
on the vertical coordinate in each layer, as

=0, (8)

w; = —2V - u; + 8thi_|_1 + V- (hi+1ui) ) (9)

for h;11 < 2z < h;. The thickness D; = h; — h;11 of the :—th layer obeys a
continuity equation,

Hence, the volume of each constant density layer is conserved and the layer
thicknesses remain positive. We also note that h;; = —b(z,y) + Z;V:z 1Dy,
as the sums of differences D; cancel in pairs and hyi1 = — b(z,y). The total

depth is Zjvzl D; = h(z,y,t) + b(z,y).

As a result of these relations, the vertical velocity in the i—th layer for
hiy1 < z < h; may be expressed in terms of the horizontal velocities, the
layer thicknesses, and the prescribed bathymetry, b(z,y), as [1]

N

j=it+1

We shall substitute this expression obtained from columnarity into the
Lagrangian (7), then perform the vertical integrals and use the FEuler-
Poincaré theory to obtain the motion equation in each layer, as the EP
equation [23],

0 o 0l

aéui T V(Suz

Y4 Y4 Y4

+ Vu! -

This procedure will produce the multilayer columnar motion (MLCM)
equations (20), which are completed by the corresponding continuity equa-
tion (10) in each layer.
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5.2 Variational derivatives of the Lagrangian

Columnarity (8) and its implied formula (11) for w; allow the vertical inte-
grals in the Lagrangian (7) to be performed as,

N
e=3f ;m[mu#— o(h? = 12,,) (13

D.
+ # (Bf + (D;A; + B;)? + (D A; + 2Bi)2):| dzdy .

Perhaps not unexpectedly, the integrated kinetic energy is a layer-thickness-
weighted sum of squares of the horizontal velocities and their divergences.
The additional notation is defined as A; = V - u;, so that

D;A; = — (6/6t+ui . V)Di = — Di=h;i1 —h;,

and

N
j=i+1
0 .

= - (& +u;- V) hi+1 = wi|z:hi+1 = _hi+1 . (14)
Thus, D;A; is the rate of expansion of the i—th layer, and B; is the vertical
velocity at its lower interface. Moreover, the vertical velocity at its upper
interface is D;A; + B; = —Hh;. The differences of squares in the potential
energy of (13) may also be written in terms of the layer thicknesses upon
substituting for h;,q, as

1 1
§(hf—h§+1) = 5D?+ Dihin (15)

N
_ 1D?+Dz‘(_ bz,u)+ 3 Dj).

2 =
j=i+1

Thus, columnarity (8) allows the Lagrangian (7) to be expressed solely in
terms of the horizontal velocities {u}, their (weighted) divergences, and
the layer thicknesses {D}. The potential energy of each layer is coupled
hydrostatically to all the layers beneath it by the last term in (15). We
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leave the top layer free. For a rigid lid [2] one would add the constraint
hy = —b(z,y) + Y.n, D; = 0, imposed by a Lagrange multiplier p, (the
surface pressure) determined by preservation of h; = 0.

We rearrange the sums by using the following identity, which holds for

arbitrary quantities ); and R;, with:=1,2,... N,
N N
> <Qi > Rj> Z <R Z@) - (16)
i=1 j=i+1 i=1

Consequently, we find that the variational derivatives of the Lagrangian (7)
under columnarity (8) are given by [3]

i—1
o = /dl‘dy sz{( |uz —gh; — pgzijj)éD
i 5

_ i—1
1

j=1 =1
i—1

+ |:D1111 — V(DEE) — Cthi—l—l — D,V Z CJ:| - 5111}
j=1

where we have introduced notation for two more linear combinations of the
interface velocities,

1
F, gDA + B = —6(2h + Rit1) (18)
and C; = D;G;, with average interface velocity,

1

5.3 Euler-Poincaré motion equation for MLCM

Substituting the variational derivatives from the formula for 6/ in (17) into
the Euler-Poincaré equation (12) yields the desired multilayer columnar mo-
tion (MLCM) system of equations, which may be manipulated into the simple
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form,
du; 1 dF,\  dG;
: H;=—=—V(D? ) - — 2
g +IVH= 5 (DEG) - T by (20)
i—1 N
oG, dG;
D.—/L . X vy D .
+vjz_; (G +wVGs) + = j;l ;

The top line of equation (20) recovers the 1ILCM equation of Su-Gardner [50]
or Green-Naghdi [18] in each layer. The new terms involve sums on j # i,
which couple the layers. The nonhydrostatic contributions on the right side
are dynamical, with d/dt = (0/0t + u; - V). The hydrostatic pressure in the
i—th layer is given by p; = p;gH; , with H; as in 6¢ (17),

i—1 N
Pi 3 j=i
The quantities F; and G; in (20) are defined in terms of the layer thicknesses
and velocities by equations (18,19). The resulting MLCM equations (20) are
closed by the layer continuity relations (10) for D;.

The MLCM motion equations (20) reduce to the standard 1ILCM equa-
tions [50, 18] in the single layer case, in which there are no sums on j # i.
In one dimension, the MLCM equations generalize equations (3.19-3.22) of
Choi and Camassa [11] for the interfacial motion between two layers with
fixed horizontal upper and lower boundaries, to allow for waves at the top
free surface, to include an arbitrary number of fluid layers and to account for
variable bottom topography. One recovers the CC equations of [11, 38, 39|
by specializing to two layers with fixed upper and lower boundaries in one
dimension. This amounts to setting N = 2 and neglecting terms involving
B;, G; and G in equations (17-20).

Nonhydrostatic contributions to momentum and pressure. In the
variational formula for §¢ (17), we see that the horizontal momentum in the
columnar motion equation for the ¢—th layer involves horizontal gradients,

I T
m; = o => L;({D},b)u; (22)
j=1
1 i—1
) (ui - 5 V(DIE) = GiVhi - VZDjGj) .

Jj=1
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The last equality defines the symmetric, positive definite operator in m; =

> =1 Lij({D},b)u;, which depends on the set of layer thicknesses {D} and
the bottom topography b. In terms of this operator, the multilayer fluid
Lagrangian (7) under columnarity (8) becomes

N
L = %/ Z (mi ‘u; — g(h’? - h?ﬂ))dﬂ?dy- (23)
i=1

Because the multilayer Lagrangian (23) depends on the horizontal spatial
coordinate through the bathymetry b(z,y), the spatial integral of the total
momentum (22) is not conserved, except in translation-invariant directions
of b(z,y). The total pressure in the i—th layer, 6¢/6D;, also contains non-
hydrostatic contributions arising from the vertical columnar oscillations and
velocity differences among the layers, in addition to its hydrostatic compo-
nent. All of these additional nonhydrostatic contributions to the momentum
and the pressure gradient arise from the kinetic energy of vertical motion
and are proportional to the velocities of the interfaces [4].

Kelvin circulation theorem and potential vorticity. Although the
layer motions are strongly coupled, each layer has its own Kelvin circulation

theorem,
d i
24 Digx=o, (24)
where the closed loop ¢(u;) moves with the horizontal velocity u; in the i—th

layer. In addition, each layer also locally conserves its own potential vorticity
(PV), ie.,

0 i 1 N 7

635 +u,-V¢g =0 where ¢ = D Z - curl I;Z . (25)
Consequently, one has an infinite set of conservation laws,

Cp = /Di ®(g;) dzdy, for any function &. (26)

The Cs are Casimirs of the Lie-Poisson Hamiltonian operator for the MLCM
system and they play a role in classifying the MLCM equilibrium solutions,
as in [20, 24].
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Both the Kelvin circulation theorem and its associated local conservation
of potential vorticity follow from the invariance properties of the EP vari-
ational principle. Namely, the EP variational principle is invariant under
fluid parcel relabeling that preserves Eulerian quantities. For full details of
the Kelvin-Noether theorem, see [23]. The implications of PV conservation
for multilayer internal waves remain to be investigated. PV conservation is
a new element of the MLCM equations, which differs fundamentally from
the standard Charney-Drazin non-acceleration theorem approach for purely
potential waves [8], in allowing solutions representing waves, bores and cir-
culations to coexist and interact nonlinearly.

Lie-Poisson Hamiltonian structure of MLCM. The Euler-Poincaré
variational formulation implies the Lie-Poisson Hamiltonian structure of
MLCM, upon Legendre transforming the multilayer Lagrangian ¢ in (23),
as shown in [23]. Hence, the conserved Hamiltonian for the MLCM equa-
tions is Hyrom = foil m; - u;drdy — ¢. Thus, the MLCM equations
of motion are expressible in Lie-Poisson Hamiltonian form using the stan-
dard Lie-Poisson bracket in terms of the momenta {m} and the layer
depths {D}, as in [23, 20, 24]. As expected, the Casimirs for this Lie-Poisson
bracket are the potential vorticity functionals Ce = [ D;®(g;) dzdy, which
satisfy {H,Cs} = 0 for any Hamiltonian H. The corresponding treatment
of the Lie-Poisson Hamiltonian structure for the single layer GN equations
is given in [20, 7].

Comparison with alternative 2d averaged shallow water equations.
In addition to possessing conservation properties for energy, circulation and
potential vorticity, the EP motion equation (20) takes a simpler form than
many other depth-integrated motion equations discussed in the literature,
such as in [41, 17, 42]. Whether MLCM will be as successful in simulating
internal wave interactions remains to be seen. As in all columnar motion
equations, a key feature of MLCM is the elliptic operator in (22) relating
velocity and momentum. Our numerical simulations in section 9 show that a
weakly nonlinear approximation of the elliptic inversion in the MLCM model
does capture the characteristic aspects of the internal wave-front collisions
and reconnections which were observed in the South China Sea by Liu et al.
[40].
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6 Weakly nonlinear limit equations

6.1 EP derivation of Boussinesq-like equations

One may rewrite the total Lagrangian (13) without approximation as

N
1
¢ = 5/;’)"[1)"'“"'2‘ o (1 = 1)
D; 9
+ §<(D,~Ai) +3B,-_1B,-> dzdy . (27)
The two-dimensional CC equations arise as EP equations from this La-
grangian upon neglecting its final term, % i Zf\il piD;B;_1B; dxdy. We in-

troduce an alternative approximation of the last term, by approximating it
in the weakly nonlinear limit, as

N
C= o Rolpe ol -t
=1
+ % ((div Dyu;)? + 3Bi_1Bi>] dzdy, (28)

where {d; : i =1,2,..., N} are a set of N constants, differing only slightly
from the corresponding D;. In this alternative approximation, the La-
grangian (28) has the following variational derivatives

Y4 d; 1 6B;
Su p (u 3 V(div D;u;) + D 5ui) (29)
for the momentum density, where B; = (d;/2)B; 1B;, and
= — Zlul? — oH: — 2V(div D:us) &+ ——%
5.3D, 2|uz| 9Hi — 35 V(div D;u;) + 5D, (30)

for the Bernoulli potential.
From these variational derivatives, the multilayer EP equations (12) pro-
duce

d; _ 82D,

§v ot?

1 6B; 1 6B, oB;
— v( )

= u; 1 — —_—u; — —
i X eur Dz (5ui Diu 5ui (51)z

0
aui + u; - Vu; + gVHi +

(31)
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We call these the “Boussinesg-like” multilayer equations, because the ap-
proximation D;A; = D;divu; ~ div D;u; = —9D;/0t in the Lagrangian (28)
replaces the strongly nonlinear dispersive term in the MLCM equations with
Boussinesqg-like linear dispersion, as

d(D;A;) d; _ 0°D;

il 2 S\ _ug D) = 2 .
3Div(alz dt ) =g g ViV D) = 2V g

(32)

This term is linear, by virtue of the continuity equation for each layer thick-
ness. The completion of this approximation depends on the treatment of the
B; terms in equation (31), which are neglected in the CC equations. In the
approximation that one neglects the B; terms, the multilayer Boussinesqg-like
equations become
2
%ui +u; - Vui + gVHi + %Vaagz

These equations are still coupled by the multilayer hydrostatic pressure gra-
dient, where hydrostatic pressure head H; is given in equation (21).

The contributions of the B; = (d;/2)B; 1B;, terms to the EP equations
(29-31) may be obtained by computing the required variational derivatives,
as follows.

=0. (33)

N d: N d:
5/2,0@'5131'131'0190@ = /Zpié(Bil + Biy1)6B;
=1 i=1
N d:
=1
N i—1 d
— Z(u, (51)Z + DZ (5uz) -V ijé(Bjil + Bj+1) .
i=1 =1

In the first line, we have used the definition of B; in equation (14). In the last
line, we have dropped boundary terms when integrating by parts and used
the summation identity (16). These formulas determine the contributions
of the B; terms to the EP equations (29-31). In particular, they couple the
horizontal motion of the i—th layer to the vertical interface velocity of its
next nearest layer below, since B;_; + B;11 = —h; — R;i;2. Thus, ignoring
the contributions of the B; terms corresponds to ignoring interactions among
next nearest layers in the weakly nonlinear limit.
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6.2 Other weakly nonlinear EP equations

38

We invoke the weakly nonlinear limit to make a further approximation in the
multilayer Lagrangian (27), by representing its kinetic energy due to vertical

motion as

2

1 [ d2D; 2
(= i/zzzlpZ [Di|ui|2 - g(h? — h?+1) + ’Tz(divui) ]dxdy.

Consequently, its variational derivatives become

Y4 d? .
m; = 5Ui = pzDz (ui — 3D1V(Dzdlv u,)) R

for the momentum density, and

2

1 &/ 1 d;
= §|ui|2 — gHZ + Fl (le 'L'li)2 )

p: 6D;

for the Bernoulli potential. The corresponding EP equations are,

%ui —+ u; Vu,-l— QVI{z
_ D& G pdivey) + u x curl S (Didivay)
9% 3D, ;divy;) +u; X cu 3D, ;div u;
> _ /1, o, 1 .
- —gv(5 (divu;)? + Eui-V(Didlvui)).

In the weakly nonlinear limit, one neglects terms in VD; to find

2

0 d; .
5% (ui -3 V(div uz)> +u;-Vu; + gVH,
d?

— 3 (% (divu;)? + u; - V(div u,)) +O0(VD;).

(35)

(36)

(37)

(39)

Upon neglecting terms of order O(V D;), choosing the center of volume frame
of reference with 21111 D;u; = 0 for N = 2, and specializing to one dimension,
one recovers the weakly nonlinear limit of the CC equations in [11]. These
weakly nonlinear limit equations were shown in [11] to recover all of the
various Boussinesq approximations for one dimensional shallow water theory.
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Remark on inversion of the second order elliptic operator. As with
all the equations in the GN family, the evolution equation (39) requires inver-
sion of a second order operator in solving for fluid velocity u; from momentum
density m; at each time step. A simplification occurs in the weakly nonlin-
ear approximation, because the operator (1 — % Vdiv) appearing in this
approximation is independent of the layer thicknesses, D;, which do enter
at the fully nonlinear level as in equations (22), (29) and (36). The nonlo-
cality and smoothing associated with inversion of such elliptic operators is a
characteristic feature of the entire family of GN equations.

The remainder of this paper is devoted to using the EP theory in char-
acterizing the two-dimensional effects of this elliptic operator inversion on
the solutions of equations in the GN family of shallow water equations. To
focus our attention on this aspect of the investigation, we shall not require
the effects of potential energy.

7 Kinetic energy Lagrangians and the EPDiff
geodesic equation

7.1 Kinetic energy Lagrangians

Neglecting potential energy entirely in the weakly nonlinear limit multilayer
Lagrangian (35), by setting D; — d;, gives

1N 72 ,
_ 2 @ (.
(= 5/;:1: pid; {|uz| + 3 (div ;) ]dmdy. (40)

The corresponding momentum density involves the second order elliptic op-
erator,

ol 2

dz_
m; = §ui = IOZd2 (u,’ - ?V(dlv 111)) . (41)

Without potential energy, the layers decouple and the EP equation (12) takes
the same form in every layer, so we may drop the layer index ¢ and write the
EP equation for the kinetic energy Lagrangian (40) as

2

%m + Vu’ -m+m(divu) =0, with m=u— %V(div u). (42)
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By design, this equation has no contribution from potential energy. In addi-
tion, its evolution conserves the kinetic energy,

1 2
= 5/ [|u|2 + %(divu)Z dzdy . (43)

Evolution by kinetic energy in Hamilton’s principle results in geodesic mo-
tion, with respect to the velocity norm provided by the kinetic energy La-
grangian.

Reduction to the Camassa-Holm (CH) equation in 1d. In one di-
mension, equation (42) simplifies to

2

%—?-I—%(mu)—i—m%zo, with m:u—a2%. (44)
This is the dispersionless limit of the Camassa-Holm (CH) equation [6], which
is known to be the equation at quadratic order in the shallow water asymp-
totic expansion, one full order beyond KdV, whereas KdV appears at linear
order in this expansion [13, 14, 15]. (The dispersionless limit of the CH
equation appears because we are ignoring potential energy in this part of our
investigation.)

Strengthening the kinetic energy norm to H!. The kinetic energy
(43) is only part of the H} norm of the velocity, defined as

lullf = / [|u|2 + o?(div u)2 + o*(curl u)Q} dzdy
= / [|u|2 + a2|Vu|2] dxdy . (45)

Here we assume u is tangential on the boundaries upon integrating by parts
in Cartesian geometry. We have also simplified the notation slightly by re-
placing d2/3 with a2, where « is a length scale. In anticipation that mathe-
matical analysis will be facilitated by controlling the entire H! norm of the
velocity, we shall choose our kinetic energy Lagrangian to be

1 1
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The corresponding EP equation (12) is EPDiff, which involves the familiar
Helmholtz operator in the relation between fluid velocity and momentum
density,

0 Y4
&m+u-Vm—|—VuT-m+m(div u)=0, with m= Sa u—a’Au. (47)
u
We shall assume periodic boundary conditions for the remainder of our inves-
tigations in this paper. An alternative way of writing EPDiff (47) is

0

Fpm— ux curlm + grad(u - m) + m(divu) =0, (48)
which involves the three differential operators curl, gradient and divergence
in two dimensions. This is the EPDiff equation whose solution behavior for

the initial value problem is studied in the remainder of the paper.

7.2 Momentum maps for singular solutions of EPDiff

Substituting the singular momentum solution formula (3) for s € R! and
its corresponding velocity (4) into EPDIff, then integrating against a smooth
test function, implies the following Lagrangian wave front equations,

%Qa(s,t) _ Z / Py(s',t) G(Qu(s, 1), Qu(s, £) )ds' (49)

%Pa(s,t) = —Z/ (s,t)-Py(s', 1)) OQ%(S,QG(Q“(SJ)’QI’(SIJ)) ds'

in which summation is explicit on b € 1,2,... N, and there is no sum on
a. The dot product P, - P, denotes the inner, or scalar, product of the two
vectors P, and Pj in R?. Thus, the momentum solution formula (3) yields a
closed set of integro-partial-differential equations (IPDEs) given by (49) for
the vector parameters Q,(s,t) and P,(s,t) withi=1,2... N.

Canonical Hamiltonian dynamics of wave fronts in R2. The singular
momentum solution formula (3) is shown to be a momentum map in [22].
This fact guarantees the following result,
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Theorem. The Lagrangian wave front equations (49) are canonical Hamil-
tonian equations,

8  GHy 9  OHy
51 Quls:t) = 5P, giLa(s:t) = 6Q,

(50)

The corresponding Hamiltonian function Hy is,

=3 ] D (Pl ) Puls,0) G(Qulost) Quls' ) dsd- (51

Because the solution formula (3) is a momentum map the singular solution
dynamics is collective. That is, the Hamiltonian Hy arises by substituting the
singular momentum solution formula (3) into the H! kinetic energy norm (46)
and using the delta functions to perform the integrals. Thus, the evolutionary
IPDE system (49) represents canonically Hamiltonian motion on the space
of curves in R2. Moreover, this Hamiltonian motion is geodesic with respect
to the co-metric given on these curves in (51) by the Green’s function G.
The Hamiltonian Hy = ||P|?> in (51) for this motion defines the norm
|IP|| in terms of this co-metric. This momentum map result helps organize
the theory and provides new avenues of exploration, as suggested in [22].
The remainder of this paper, however, will deal with numerical simulations
which capture the momentum exchange properties of these singular EPDiff
solutions.

8 Numerical approach

Our numerical studies of EPDiff were performed on uniform, logically rectan-
gular Eulerian grids in 2d and 3d, using the compatible differencing algorithm
(CDA) described in [31] and sketched in Figure 16. In contrast to our experi-
ence with Lagrangian methods, our numerics using this CDA have captured
the elastic bounce expected in head-on collisions with only small distortions
observed in the recreated contact curves. Future investigations may allow
us to improve CDAs by developing related variational integrators based on
additional ideas from discrete exterior calculus (DEC) [19, 35].

In this CDA, scalar and vector quantities are defined at locations that are
naturally appropriate for the domains and ranges of the discrete divergence,
gradient, and curl operators. Eight spaces, or grid centerings, include a node
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Vo Vo
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Figure 16: This schematic illustrates a particular compatible differencing al-
gorithm for quantities defined on uniform, logically rectangular grids. Read-
ing left to right, we have nodes, edges, faces, and cells. Nodes and cells
support scalar-valued functions, while edges and faces support vector-valued
functions. Divergence, gradient, and curl operators map between nodes,
edges, faces, and cells.
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space, at left, which supports scalar functions. An edge space, consisting of
z-direction edges, y-direction edges, and z-direction edges, supports vector
functions; = components of vectors exists on z-direction edges, etc. A face
space, consisting of faces perpendicular to the z, y, and z directions, also
supports vectors. Finally, a cell space supports scalars.

The set of spaces shown in the figure supports two versions each of diver-
gence, gradient, and curl, as described in [31]. Divergence maps vectors to
scalars, gradient maps scalars to vectors, and curl maps vectors to vectors.
Lines between particular spaces in Figure 16 illustrate how the quantities
defined on different spaces contribute to one another through the various
operators.

Node-space scalars map to edge-space vectors through the z, y, and 2
components of the discrete gradient operator, while cell-space scalars map
to face-space vectors through the x, y, and z components of another discrete
gradient. The z, y, and z components of edge-space vectors each contribute a
term (Qu/0x, Ou/dy, or Ou/0z) to a discrete divergence defined on the nodes,
while the z, y, and z components of face-space vectors each contribute a term
to the cell-based divergence. Finally, the discrete curl operators map between
edges and faces in the manner one expects: y and z inputs contribute to z
outputs, x and z inputs to y outputs, and z and y inputs to z outputs.

Different components of the same vectors have different numbers of dis-
crete points in this CDA. If the number of nodes is N X M x P, then the
number of z-direction edges is N — 1 x M x P, the number of y-direction
edges is N x M —1 x P, and the number of z-direction edges is N x M x P—1.
The different numbers of discrete points and their slightly different locations
must be managed appropriately in any code that uses this scheme.

At present, our numerics are limited to uniform, logically rectangular Eu-
lerian grids with periodic boundary conditions. Our results are promising,
but future work will be needed to continue investigating numerical methods
and identifying the best candidates for capturing contact behavior on non-
uniform or unstructured grids and on non-rectangular domains with bound-
ary conditions other than periodic. For example, when studying the relation
of EPDiff to internal waves, one might examine the behavior of contact seg-
ments as they interact with islands or atolls placed into the domain.

For our 2d and 3d numerical simulations, we advanced the momentum
m in (48) with an explicit, variable time step Runge-Kutta type predictor-
corrector. We selected the time step for numerical stability by trial and error,
while our code selected the time step for numerical accuracy (not to exceed
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the time step for numerical stability) according to the following well-known

formula,
hi, 1/p
hi = Yhi_ <M) , (52)

||t — |

which is used in the following way. At step ¢ of the calculation, we know
the predicted solution ;, the corrected solution ;, and the previous time
step h; 1. The predictor’s order of accuracy is p, while the corrector’s order
of accuracy is p + 1. For our 2d simulations we used p = 4, while we used
p = 3 for our 3d simulations because this reduced the number of large, 3d
temporary arrays needed for the calculations, and thereby allowed us to have
a higher resolution while still using a reasonably accurate time integration
scheme.

A new time step h; is chosen from (52) based on the old time step h;_q
and the norm of the difference between the current predicted and corrected
solutions. For both 2d and 3d, we used a relative error tolerance per time
step of ¢ = 1078 a safety factor v = 0.9, and the Ly norm, || - 5.

Divergence, gradient, and curl were computed at second order accuracy
according to the CDA outlined above, with the vectors m and u defined
on the edges (shown as the red, green, and blue spaces in Figure 16). We
observed that the quality of our numerics did not improve markedly with
fourth or sixth order operators, and as expected, the higher-order operators
were somewhat slower to compute. Note that our second order operators,
in addition to mimicking important properties of their continuum analogs,
also have greater accuracy than one might expect at second order. This is
because the staggered nature of the grid allows for a smaller “Az” in the
difference computations. For example, Ou/0z mapping nodes to z-direction
edges uses the stencil du/dz(i + 3,7,k) = (u(i + 1,5, k) — u(i, j, k))/ Az,
whereas the analogous computation on a strictly nodal grid is 0u/0x(i, j, k) =
(w(i+1,75,k) —u(i —1,5,k))/(2Az).

In two dimensions, one must regard the individual spaces in the schematic
of Figure 16 as compressed vertically, so that they are flat. This corresponds
to having no z component. In this case, z-direction edges (red) are identical
to y-direction faces (yellow), y-direction edges (green) are identical to z-
direction faces (purple), z-direction edges (dark blue) are identical to nodes
(brown), and z-direction faces (light blue) are identical to cells (gray). (This
is not generally true on nonuniform grids.) Even so, the proper treatment of
quantities defined on the different spaces requires that we regard the different
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spaces as distinct in 2d.

In our formulation, the curl operator appearing in (48) is still meaningful
in 2d. In particular, curl(m) takes the 2d function m, defined on the z-
direction edges (red) and y-direction edges (green), and maps it to a face-
space quantity with z and y components of 0 (which are not stored in a
computer code, of course), and a nonzero z component (light blue in Figure
16), which is regarded as a vector that is normal to the plane.

For our 2d simulations, we used a resolution of 1024% zones, or 10252
nodes. For our 3d simulations, we used 2563 zones (257% nodes). To invert
the Helmholtz operator in transforming between m and u, we convolved
m(z,t) with the Green function in Fourier space. No artificial viscosity or
other numerical tricks proved to be necessary for our simulations.

9 Numerical results for EPDiff in 2d

Upcoming sections describe 2d simulations of evolution under EPDiff for each
of nine initial velocity distributions. For each simulation we have figures for
a=o0,a=0/2 a=0c/4, and a = 0/8. Each figure contains six frames,
showing the initial magnitude (speed) of velocity, |ul, in the upper left frame,
followed by plots of |u| at future times, reading across and then down. For
each simulation, the domain is [—1,1] x [—1, 1], z is toward the right, and y
is toward the top.

Colors in each frame indicate the magnitude of the velocity, beginning
with gray for |[u| = 0 and ending with white for the maximum value of |u|, as
shown in the color bar in Figure 17. Maximum values of |u| are determined
for each frame individually, not over all frames in a figure, so that the colors
in frames with smaller maximum values of |u| are not washed out. Notice
how the use of the color black for small |u|, just above gray for |u| = 0 in the
color scheme, allows us to etch the outlines of the spatially confined velocity
distributions.

The transverse profile of the velocity distribution along the horizontal
midline of each frame is shown as the black (solid) graph in the lower panel
of each frame, while the red (dotted) graph shows the vertical midline. The
profiles along the northeast and southeast diagonals are plotted in green
(solid) and blue (dotted), as sketched in 18. Unlike the colors in the full
2d plots, which are scaled according to the maximum of |u| in each frame,
the vertical axis of the profiles in the lower panels are set between 0 and the
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Figure 17: Color scheme for the magnitude of velocity, |u|, in the upcoming
figures.
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Figure 18: Locations of 1d profiles of |u| shown in the bottom panels in the
upcoming 2d figures.

maximum over all frames (in each figure) of the black, red, green, and blue
profiles. So, for example, in the profiles of Figure 19, |u| as seen in the lower
panels is seen to decrease as the evolution proceeds, even though the colors
in the 2d plots always vary between gray (minimum) and white (maximum)
in order to show maximum detail.

9.1 Plate

Each figure we shall discuss compares evolution under EPDiftf with various
values of alpha, starting from the same standard initial velocity distribution,
which for Figures 19-22 we call “plate.” The velocity in these four 2d plate
flows is initially rightward. The initial speed in each of these cases is dis-
tributed along a line segment in 2d, which in 3d will be a disc, or plate.
Hence, the term plate flow. This initial speed is constant along most of the
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segment’s length, then falls off as a Gaussian at either end. It falls off expo-
nentially in the transverse directions. The width o of the initial exponential
profile e~1#/ is the same in each figure. We start the EPDiff evolution in
each figure with this profile, and we vary the parameter «, in the relation
m = u — o?Au, from problem to problem in fractions of the standard initial
profile’s exponential width o.

In Figures 19-19, the values of « are, respectively, o, 0/2, /4, and /8.
In Figure 19, the initially straight velocity segment evolves to “‘balloon” out-
ward, while maintaining its transverse peakon profile. In Figures 20-21, the
initially straight velocity segment in each case evolves into a series of curved
peakon strips of width o with transverse peakon profiles. The lower panels in
each case confirm that the velocity profiles in every transverse direction have
the characteristic exponential peakon shape, e~1#l/¢. The first strip to emerge
travels fastest and each subsequent strip moves slower. Consequently, the dis-
tances between the strips increases. These peakon strips are curved because
their endpoints are nearly fixed, while their middle regions are still moving.
They stretch during their evolution and increase their lengths. Because of
their peakon cross-sections in velocity profile, each peakon strip corresponds
to a singular momentum density supported on a curve through the center
of the strip. The speed varies along each strip according to its height at
the peak at a given point along the curve. Consequently, the “hotspots”
appearing in the velocity color scheme as red inhomogeneities along the strip
are moving faster than the adjoining yellow regions. The extension of these
hotspots along the peakon strips also indicates order O(1) stretching,.

One sees kinks near the endpoints of the curved peakon strips that first
arise at a distance of order o, the matching length in the initial velocity
profile. Thus, the connection along the segment to the zero speed background
influences the stretching of the peakon segments over a finite length scale.
These kinks near the endpoints are more pronounced for the larger values of
a than for the smaller values, indicating that the length scale o plays a role
in the stretching process, as well as in the shape of the transverse profile.
These peakon segments also rotate around their nearly fixed endpoints as
their expansion and stretching proceeds.

The black (horizontal) transverse profiles in the lower panels of the fig-
ures show a steady rightward progression of peakon profiles. The green and
blue profiles show a similar progression of peakon profiles along the diago-
nals. However, the red (vertical) profiles show a symmetric progression, both
upward and downward. This means the peakon strips are stretching as they
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balloon out from the initial rightward motion. Being roughly circular at late
times, this stretching of the strip length is comparable to the distance they
propagate horizontally. Therefore, their stretching is an order O(1) effect.

Stability and an open problem. For a = ¢ in Figure 19, the peakon
curve segment is stable and it retains its integrity. The other cases, for o < o,
are unstable and they break into narrower curved peakon segments each of
width «, as the evolution tends toward the peakon profile e 1®I/*. In fact,
any smooth confined initial velocity distribution tends eventually to a set of
peakon strips. These are contact curves, along which the discontinuity in
slope moves with the fluid velocity. Hence, the momentum density tends to
a set of moving curves on the plane, with each curve embedded in the flow.
The latter claim is proved by the isospectral problem in 1d, but for now
is only an observation in 2d and 3d. The proof of this observed tendency
remains an open problem from the analytical viewpoint.

As a < o decreases in Figures 20-22, the number of emerging contact
curves increases. We emphasize that, at sufficiently late times, only these
contact curves are observed emerging from a confined initial velocity distri-
bution with width greater than a. However, the process occurs does require
a certain amount of time to reach completion, as the peakons are successively
formed at definite intervals. In the cases 20 and 21 of @ = ¢/2 and a = 0 /4
at the times shown, some vestiges of the initial conditions still remain as
ramps. As time progresses further, these ramps will eventually decay into
a sequence of successively slower moving (lower amplitude) peakon contact
curves. No such vestiges remain in the case when a = ¢. This behavior is
in accord with the 1d steepening lemma of [6], which states that an initial
velocity profile possessing an inflection points of negative slope will develop
a vertical slope in finite time. The formation of the vertical slope is part of
the nonlinear steepening mechanism which creates the train of peakons from
the ramp velocity configuration.

Time reversal. Starting from the final velocity distribution for each value
of a, we integrate back to the starting time in the EPDiff evolution numer-
ics. This procedure tests the reversibility of the numerical algorithm. (The
EPDiff equation itself is reversible.) Each case reverses accurately to its ini-
tial condition, as is evident visually in Figure 23, and as measured in the
L', L2, and L* norms shown in Table 1. For the simple plate evolutions,
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Figure 19: Evolution of the 2d “plate” initial velocity profile with o = o.

without any of the head-on collisions of contact curves that will produce the
more complicated flows seen below, this reversibility affirms the numerical
scheme. It is not a severe test, however, in the sense that reversibility from
the endpoint back to the beginning does not guarantee accuracy over the
entire forward evolution.

9.2 Parallel

In Figures 24-27, two straight segments are initialized moving rightward.
The one behind has twice the speed of the one ahead, and the two segments
are offset in the vertical direction. The segments each break into curved
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Figure 20: Evolution of the 2d “plate” initial velocity profile with a =

a/2.
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Figure 21: Evolution of the 2d “plate” initial velocity profile with a = o /4.
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Figure 22: Evolution of the 2d

“plate” initial velocity profile with o = o/8.
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Figure 23: Reconstituted initial velocity profile after time reversal for the 2d
“plate” case with a = o (upper left), & = o /2 (upper right), a = o /4 (lower
left), & = o/8 (lower right).This initial condition reconstitutes well for all
values of «
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strips of width o and these undergo overtaking collisions. For a = o, the
segments retain their integrity as they expand until the overtaking collision
occurs. Upon overtaking the slower segment, the faster segment transfers
its momentum to the slower one ahead and a remarkable “reconnection”
or “melding” of the segments occurs. This reconnection also shows rapid
transverse stretching in which “hot spots” of velocity arise and then spread
out along the wave front. Also, remarkably, the figures show a low amplitude
“peakon wisp” connecting the endpoint of an earlier reconnection to a point
(usually to a hotspot) on the leading peakon segment. This wisp apparently
provides the “memory” of the previous reconnection, which is required for
the evolution to remain reversible. Its reversibility affirms the nondissipative
nature of the reconnection process. Moreover, this reconnection must be
reversible, because the evolution is Hamiltonian in the continuum limit.

The lower panels of Figures 24-27 for o = o show that the profiles remain
exponential both before and after the overtaking collision. For decreasing
values of @ < o, the evolution develops increasing complexity, with numerous
overtaking collisions and corresponding reconnections. In each case, once sees
the trailing memory wisps arising from these reconnections. These trailing
wisps often connect to kinks at hotspots along the curve, indicating that
their interaction is nontrivial, even though they have small amplitude. (This
may also indicate that the hotspot is the source of the trailing wisp.)

In the time-reversed runs shown in Figure 28, all of the overtaking col-
lisions reconstituted their initial conditions accurately in the various norms
shown in Table 1. This indicates the accurate reversibility of the numerics
for overtaking collisions.

9.3 Skew

Skew flows in Figures 29-32 begin with two peakon segments of the same
width, but oriented so that the one behind, which has twice the amplitude
(speed) of the one in front, overtakes the one ahead by moving along the neg-
ative diagonal. Again, one sees integrity of the @ = ¢ case and reconnection
with hot spots and memory wisps trailing behind kinks in the main peakon
segments after the overtaking peakon segment transfers its momentum to
the one ahead. This locally 1d soliton elastic-collision rule seems to explain
the momentum transfer. Once again the lower panels show that the solution
tends to peakon profiles in each direction.
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Figure 24: Evolution of the 2d “parallel” initial velocity profile with o = o.
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Figure 25: Evolution of the 2d “parallel” initial velocity profile with a = /2.
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Figure 26: Evolution of the 2d “parallel” initial velocity profile with a = o /4.
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Figure 27: Evolution of the 2d “parallel” initial velocity profile with a = /8.
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Figure 28: Reconstituted initial velocity profile after time reversal for the 2d
“parallel” case with @ = o (upper left), « = 0/2 (upper right), a = o/4
(lower left), @ = o/8 (lower right).
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Memory wisps: another open problem. Figures 29-32 raises issues
(such as the production of memory wisps) for the 2d peakon segment in-
teractions which could lead to new research well beyond the scope of the
present work. As before, in the cases of a < o, for skew flows it seems that
each memory wisp is attached to a hot spot along a major peakon segment.
The memory wisps, by the way, are very low in amplitude, but they seem to
also possess the peakon exponential transverse profile. Hence, the stretching
motion along the wisp must considerably faster than across it. This may be
because the hot spots keep contributing to the wisps trailing behind them.
Thus, the wisps may be seen as trailing residuals from the hot spots. The
memory wisp feature of the reconnection remains to be explained in more
detail, both numerically and analytically.

For small a < o, the central regions of the skew flows in Figures 30-
32 become very intricate (partially mixed). Hence, one could expect that
its reversibility is compromised. The case o = ¢/8 is mostly reconstituted
after the time reversal, but some small-amplitude, high-frequency errors do
remain, as observed in Figure 33. For other values of alpha (a = 0,0/2,0/4)
the initial conditions reconstitute quite well.

9.4 Wedge

The wedge flows in Figures 34-37 are variants of skew flows in Figures 29-32,
showing two plates colliding along opposite diagonals in the plane, with re-
flection symmetry about the horizontal axis. The wedge flows are convergent,
and therefore they have some head-on features that emerge on the left-hand
side of the collisions. They also show considerable acceleration along the
midline, in forming jets moving along the horizontal axis in both directions.
This jet formation is due to convergence of momentum which continues to
build up after the initial collision. The multiple wedge collisions occurring
for values of a < o show successive strong accelerations due to convergence.
They also show enhanced stretching of the main peakon segments. These
collisions also produce complex patterns of small-amplitude peakon wisps,
trailing from hotspots at kinks along the main peakon curves.

Again, the lower panels in Figures 29-32 show primarily peakon profiles
and the emergence of peakons from ramp-and-cliff formations with inflection
points of negative slope, in agreement with the steepening lemma for CH in
1d.

The head-on features of the wedge collisions cause noticeable errors in
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Figure 29: Evolution of the 2d “skew” initial velocity profile with a = 0.
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Figure 30: Evolution of the 2d “skew” initial velocity profile with a = /2.
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Figure 31: Evolution of the 2d “skew” initial velocity profile with a = o /4.
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Figure 32: Evolution of the 2d “skew” initial velocity profile with a = /8.
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Figure 33: Reconstituted initial velocity profile after time reversal for the 2d
“skew” case with a = o (upper left), & = /2 (upper right), o = o/4 (lower
left), & = 0 /8 (lower right).
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Figure 34: Evolution of the 2d “wedge” initial velocity profile with o = o.

reversibility, of order 10 to 20 percent for & = ¢/8, as observed in Figure
38. However, these errors decrease for larger alpha. As we will see in other
plots, errors in reversibility tend to arise for smaller values of o < ¢ whenever
head-on collisions occur.

9.5 Head-on

The head-on collisions of two offset peakon segments in Figures 39-42 show
great complexity. Some of this complexity is due to the process of annihila-
tion and recreation known to occur in the purely 1d antisymmetric head-on
collisions of a peakon with its reflection, the antipeakon. At the moment
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Figure 35: Evolution of the 2d “wedge” initial velocity profile with a = /2.
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Figure 36: Evolution of the 2d “wedge” initial velocity profile with a = o /4.
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Figure 37: Evolution of the 2d “wedge” initial velocity profile with a = /8.
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Figure 38: Reconstituted initial velocity profile after time reversal for the
2d “wedge” case with @ = o (upper left), & = 0/2 (upper right), o = o/4
(lower left), @ = o/8 (lower right).
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a head-on collision occurs, one sees the blue profiles in the lower panels of
Figures 39-42 becoming very steep, exactly as seen in 1d peakon-antipeakon
collisions. Thus, the locally 1d collision rules carry over to the 2d case for
head-on collisions.

The case a = o in Figure 39 shows the annihilation and recreation ex-
pected from the 1d rules. Thereafter, a new feature emerges as the recreated
segments disconnect, then eventually reconnect again with segment elements
that did not participate in the head-on part of the collision. The first discon-
nection occurs in the presence of rapid rotation or circulation of the peakon
segments, which causes extreme stretching before the disconnection. The
later reconnection of these segments occurs less violently.

Once again, peakon profiles are ubiquitous in the lower panels of Figures
39-42.

Time reversal of the head-on collisions shows, for & = o, an essentially
complete restoration of the initial condition; see Figure 43. However, the
cases for smaller alpha (oo = 0/4,0/8) show breakup and head-on collisions
occurring simultaneously. These simultaneous processes produce complex
mixed states which tend to reverse less accurately, as one might expect,
because of the plethora of peaked excitations at small scales.

9.6 Star

Star flows in Figures 44-47 form a variant of wedge flows with fivefold sym-
metry, instead of simple reflection antisymmetry. The mutual rotation of the
overtaking-collision evolution in each case preserves the fivefold symmetry
well, and is seen in Figure 48 to be largely reversible. Figures 44-47 each
show many reconnections (mergers), until eventually one peakon filament
ring surrounds all the others. Again, peakon segments are the ubiquitous
feature of the solution. If the evolution were allowed to proceed further,
reconnections would tend to produce additional concentric rings of peakon
filaments.

9.7 Rotate

Figures 49-52 show how angular (azimuthal) motion couples to radial motion
in the plane. Each evolution starts with a circularly symmetric velocity
distribution in a Gaussian (not peakon) ring, or annulus, of width alpha,
which is initially rotating rigidly at constant angular velocity. The angular
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Figure 39: Evolution of the 2d “head-on” initial velocity profile with a = o.
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Figure 40: Evolution of the 2d “head-on” initial velocity profile with a = /2.
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Figure 41: Evolution of the 2d “head-on” initial velocity profile with a = o /4.
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Figure 42: Evolution of the 2d “head-on” initial velocity profile with a = /8.
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Figure 43: Reconstituted initial velocity profile after time reversal for the 2d
“head-on” case with @« = o (upper left), « = 0/2 (upper right), « = o/4
(lower left), @ = o/8 (lower right).
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Figure 44: Evolution of the 2d “star” initial velocity profile with a = o.
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Figure 45: Evolution of the 2d “star” initial velocity profile with a = /2.
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Figure 46: Evolution of the 2d “star” initial velocity profile with a = o /4.
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Figure 47: Evolution of the 2d “star” initial velocity profile with a = /8.
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Figure 48: Reconstituted initial velocity profile after time reversal for the 2d
“star” case with a = o (upper left), @« = 0/2 (upper right), @ = o/4 (lower
left), & = 0 /8 (lower right).
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motion couples to the radial motion by producing a sequence of outward
and inward propagating circular peakons. These circular peakons also rotate
clockwise (in the same sense as the initial condition) because of conservation
of angular momentum. See Holm et al. [25, 26] for more details about circular
peakons.

For a < o, the first inward propagating circular peakon in Figures 50-52
collapses to the center, then reflects outward and overwhelms the formation
of any subsequent inward moving circular peakons. For a = ¢, no inward
moving peakons form during the time of the simulation.

Upon reflection from the center, the circular peakon is influenced by the
finite Cartesian mesh, especially for smaller alpha (narrower peakons). The
reflection interaction with the mesh distorts the outward propagating solu-
tion, as seen in the animations, with greater distortion for smaller alpha. This
is a severe test of the numerics near the center of symmetry. Nonetheless,
time reversal from the final velocity profile reconstitutes the initial condition
to within less than one percent, as seen in Figure 53. This illustrates that
accurate time reversal to the initial condition does not guarantee accuracy of
the solution during the forward evolution. However, it does show that even
in a somewhat distorted solution, dissipation plays little role in the numerical
simulation.

9.8 Right

In the simulations shown in Figures 54-57, the velocity distribution is ini-
tially a Gaussian ring in magnitude, uniformly pointed rightward along the
x axis. The right outer side of the ring produces diverging peakon contact
curves, which slow as they propagate outward. The left inner side of the
ring, however, produces converging peakon contact curves, which accelerate
as they converge, undergo a strong interaction along the axis, then break
again into contact curves still moving rightward, approaching the previous
divergent peakon curves and colliding with them from behind. These over-
taking collisions impart momentum but they do not produce reconnections.

After the collisions, a complex flow remains near the axis, in which one
also sees hot spots at kinks in the contact curves, with trailing memory wisps
behind them.

The lower panels show peakon profiles with high wavenumber oscillations
(possibly noise) in the complex flow region remaining behind near the axis.
Except for the smallest case of & = ¢/8, all of the time-reversed runs re-
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Figure 49: Evolution of the 2d “rotate” initial velocity profile with a = o.
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Figure 50: Evolution of the 2d “rotate” initial velocity profile with a = /2.
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Figure 51: Evolution of the 2d “rotate” initial velocity profile with a = /4.
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Figure 52: Evolution of the 2d “rotate” initial velocity profile with a = /8.
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Figure 53: Reconstituted initial velocity profile after time reversal for the 2d
“rotate” case with a = o (upper left), o = /2 (upper right), a = /4 (lower
left), & = 0 /8 (lower right).



D. D. Holm & M. F. Staley Singular Wave Fronts 89

Figure 54: Evolution of the 2d “right” initial velocity profile with a@ = o.

assemble into the Gaussian ring without significant distortion, as diagnosed
by the black profile in the lower panel of the time reversed runs in Figure 58.

9.9 Inout

In Figures 59-62 we start with an initial Gaussian ring of width alpha in
speed, with an angular distribution of —(sin 6, cos ) exp(—(r — ro)?/0?) for
the direction of the velocity. Consequently, the motion is inward along the
positive diagonal and outward along the negative diagonal. The outward
motion breaks into a sequence of curved peakon segments of width alpha, as
usual. The inward motion also produces peakon segments, which however
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Figure 55: Evolution of the 2d “right” initial velocity profile with a = /2.



D. D. Holm & M. F. Staley Singular Wave Fronts 91

Figure 56: Evolution of the 2d “right” initial velocity profile with a = o /4.
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Figure 57: Evolution of the 2d “right” initial velocity profile with a = /8.
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Figure 58: Reconstituted initial velocity profile after time reversal for the 2d
“right” case with a = o (upper left), & = 0/2 (upper right), o = o/4 (lower
left), & = 0 /8 (lower right).
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Figure 59: Evolution of the 2d “inout” initial velocity profile with @ = o.

undergo head-on collisions, so that they annihilate, recreate and re-emerge
moving along the positive diagonal.

The blue profiles in the lower panels of Figures 59-62 show the breakup
of the outward motion into peakon profiles. The green profiles on the lower
panel show the head-on collisions of the peakon profiles of the inward motion.
The inward moving head-on collisions leave a residue of complex flow.

Time reversal in this case shows severe distortion of the initial condition
for the smaller values @ = ¢/8 and a = ¢/4, but not for the larger values
a=0/2and a = 0. See Figure 63.
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Figure 60: Evolution of the 2d “inout” initial velocity profile with a = /2.
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Figure 61: Evolution of the 2d “inout” initial velocity profile with a = o /4.
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Figure 62: Evolution of the 2d “inout” initial velocity profile with a = /8.
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Figure 63: Reconstituted initial velocity profile after time reversal for the 2d
“inout” case with @ = o (upper left), @« = /2 (upper right), a« = o /4 (lower
left), & = 0 /8 (lower right).
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9.10 Time reversal

Table 1 summarizes how well the initial velocity profiles reconstitute upon
reversing the EPDiff evolution from the final states. Numbers in each table
entry are the L! norm, L? norm, and max norm of the difference between the
initial velocity profile and its reconstituted (time reversed) value. The time
reversed values are typically accurate to within one percent or less except in
cases where head-on collisions occur. See text for further discussion.

10 Numerical results for EPDIiff in 3d

Singular solutions of EPDiff in 3d. In this section, we extend our nu-
merical solutions of EPDiff to 3d and discover that the codimension-one
singular solution behavior of EPDiff persists. Namely, the singular solution
behavior of EPDiff extends from curves in 2d to surfaces in 3d. To our
knowledge, this is the first example of numerical simulations of the nonlinear
interactions of contact discontinuities for fluid velocity in 3d. Of course, the
singular surface solutions of EPDiff in 3d have no interpretation in the the-
ory of internal waves. However, codimension-one singular solutions of EPDiff
in 3d may have applications elsewhere, for example in the physics of liquid
crystals in the inertial regime, as discussed for 1d evolution by Hunter and
Saxton [30]. The 3d evolution of contact surfaces may also be regarded as
“growth” from the viewpoint of imaging science, or evolution of shapes in
3d. The present work focuses on the role of convergence and momentum
exchange in the evolution of contact surfaces.

Upcoming sections describe 3d simulations of evolution under EPDiff for
each of twelve initial velocity distributions. For each simulation we have
figures for & = 0 and a@ = ¢/2. Due to memory and computational limi-
tations, our 3d simulations were run at one-fourth the resolution of our 2d
simulations (256% instead of 1024?), and this lower resolution precluded us
from performing accurate computations at the smaller values o = 0/4 and
a = 0/8 that were simulated in 2d.

Each figure contains six frames, showing the initial magnitude (speed)
of velocity, |ul, in the upper left frame, followed by plots of |u| at future
times, reading across and then down. For each simulation, the domain is
[—1,1] x [-1,1] x [-1,1], and z is toward the right, y toward the back, and z
toward the top. Individual plots contain colored, partially transparent level
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Table 1: L', L?, and max norm of the difference between the initial velocity
profile and its reconstituted (time reversed) value for each 2d simulation.

Simulation | a = o a=0/2 |a=0c/4 |a=0/8
3.62e-05 | 7.03e-05 | 0.000213 | 0.000577
plate 0.000142 | 0.000199 | 0.000624 | 0.00207
0.00296 | 0.00279 | 0.00371 | 0.0147
7.86e-05 | 8.69e-05 | 0.00024 | 0.000844
parallel 0.000204 | 0.000217 | 0.000616 | 0.00236
0.00301 | 0.00283 | 0.00358 | 0.0161
0.00134 | 0.000498 | 0.000719 | 0.00711
skew 0.0029 0.00111 | 0.00139 | 0.0177
0.0199 0.0102 0.00727 | 0.148
0.000532 | 0.00061 | 0.00451 | 0.0567
wedge 0.000705 | 0.00108 | 0.0123 0.111
0.00395 | 0.00539 | 0.148 0.671
0.000179 | 0.00636 | 0.0274 0.0538
head-on 0.000332 | 0.0165 0.0622 0.111
0.00335 | 0.172 0.43 0.665
0.000207 | 0.00023 | 0.000604 | 0.00152
star 0.000419 | 0.000442 | 0.000851 | 0.00237
0.00531 | 0.00476 | 0.00515 | 0.00883
7.21e-05 | 2.54e-05 | 4.81e-05 | 0.000293
rotate 8.17e-05 | 3.95e-05 | 8.23e-05 | 0.00059
0.000301 | 0.000139 | 0.000339 | 0.0027
0.00021 | 0.000292 | 0.000583 | 0.0029
right 0.000372 | 0.000615 | 0.00137 | 0.00696
0.00545 | 0.00422 | 0.0106 0.0892
0.000219 | 0.000245 | 0.0024 0.0348
inout 0.00048 | 0.000431 | 0.0103 0.087
0.00621 | 0.00183 | 0.137 0.594




D. D. Holm & M. F. Staley Singular Wave Fronts 101

I
I
1
4T -
<4

\

- Plot.of

z=0

Figure 64: Locations of 2d slices of |u| shown in the left, back, and bottom
panels in the upcoming 3d figures.

surfaces of |u| at 35% (purple), 25% (red), 15% (green), and 5% (blue) of its
maximum value over all frames in the figure. The number of level surfaces,
and the colors, amount of transparency, and fractions of |u| represented by
each level surface, where chosen after considerable experimentation so that
they reveal maximal information with minimal clutter.

The left, back, and bottom panels of each frame show color contour plots
of 2d slices through the three dimensional data at x =0, y = 0, and 2z = 0,
respectively, as sketched in Figure 64. The same color scheme that was used
for the 2d simulations, as described in Section 9 and illustrated in Figure
17, is used here for the 2d slices of the 3d simulations. Note that the colors
used for the 2d slices do not correspond to the colors used for the 2d level
surfaces. For example, red in the 2d slices does not represent the same value
of |u| as the red level surface.

10.1 Plate

The analog of a segment in 2d is a disc, or plate, in 3d. Figures 65 and 66
show the evolutions at various values of alpha in 3d from a confined initial
velocity distribution in the shape of a plate in speed and moving rightward



D. D. Holm & M. F. Staley Singular Wave Fronts 102

(in the positive z direction). The initial plate distribution is chosen so it
falls off exponentially in the normal x direction and it falls off at the edges
(or rim) of the plate as a Gaussian, as we did in 2d at the endpoints of the
segments. Because the distribution moves with flow, it expands rightward
and outward.

The bottom panels in Figures 65 and 66 show the propagation in a hor-
izontal section (at the midplane) x = 0 of the cube of size 2. This is an
invariant plane, by symmetry, for this initial value problem. The invariant
midplane section essentially reproduces the 2d evolution of the peakon seg-
ments; note the similarity in patterns at late time on the bottom panel in 3d
and the corresponding interactions in 2d.

The bottom panel in Figure 66 with o = 0/2 shows the plate expanding
and decomposing into several peakon contact surfaces. The left panel shows
a vertical section at z = 0. The initial circular disc propagates rightward
through this vertical section and maintains its circular symmetry as it ex-
pands. The back panel shows a vertical section at y = 0. By symmetry, the
results on the vertical section shown on the back panel in this case are the
same as those on the bottom panel (z = 0 horizontal section).

The disc shaped velocity distribution balloons out rightward and expands
cylindrically into one peakon contact surface in Figure 65 for @« = ¢, and into
several peakon contact surfaces of width o = /2 in Figure 66. Again, this is
consistent with the similar evolution restricted to lower spatial dimensions.

10.2 Parallel

Figures 67 and 68 each show two plate-like velocity distributions of the same
diameter, initialized moving rightward so that the one behind, with twice
the speed, will overtake the one ahead. The discs are initially offset at 45
degrees in the y-z plane; so this evolution has no reflection symmetry about
any of the midplanes.

Both plates balloon outward and decompose into peakon contact sur-
faces, and the overtaking collision shows two reconnections of the surfaces.
One reconnection occurs at first contact and the other evolves late in the
simulation, as seen on both the bottom and back panels. The left panel
shows a transverse vertical section of the first reconnection. As the two discs
propagate past the plane z = 0, their peakon contact surfaces develop into a
perimeter that surrounds the interior interactions.
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Figure 65: Evolution of the 3d “plate” initial velocity profile with o = o.
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Figure 66: Evolution of the 3d “plate” initial velocity profile with a = /2.
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Figure 67: Evolution of the 3d “parallel” initial velocity profile with o = o.



D. D. Holm & M. F. Staley Singular Wave Fronts 106

Figure 68: Evolution of the 3d “parallel” initial velocity profile with a = /2.
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10.3 Skew

The skew overtaking collision in Figures 69 and 70 show both the first and
second reconnections as the two initial plate distributions collide and interact.
Again, the sections shown on the bottom and back panels are very reminiscent
of the corresponding skew collisions of peakon segments in 2d. The memory
wisps that appear so clearly in the 2d skew overtaking collisions are less
distinct here, likely because of the coarser resolution (2563, versus 10243 in
2d).

10.4 Wedge

In Figures 71 and 72, two plate distributions of velocity approach the z = 0
horizontal midplane from above and below, each at 45 degrees. Their
“wedge” collision occurs at the horizontal midplane and has reflection sym-
metry about the zz vertical midplane, at y = 0.

The evolution shown on the back panels in these figures is similar to the
2d wedge collision of peakon segments. The bottom panel shows the creation
of peakon contact surfaces which are reminiscent of the peakon contact seg-
ments in the 2d “right” figure. Namely, peakon contact surfaces emerge from
the collision and reconnect to encircle the collision region. Each successive
peakon contact surface (whose intersection with the horizontal midplane is
shown as a curve in the bottom panel) reconnects at the rear and produces a
wavefront that encircles the collision region. The wavefront motion is less in-
tense in the rear because it is moving slower at the rear than in the front. We
see one major collision at the midplane followed by an emission of rightward
moving peakon contact surfaces and their later reconnections in the rear. At
later times, the hot spots show pronounced trailing memory wisps.

10.5 Head-on

Figures 73 and 74 show the head-on collision of two identical plate-like dis-
tributions offset by the same distance at 45 degrees when projected into the
yz plane. Hence, the evolution in the sections shown in the back and bot-
tom panels are identical, and all three panels have reflection and rotation
symmetries.

The back and bottom panels of Figures 73 and 74 have symmetry under
reflection about one diagonal and rotation by 7 about the other. Likewise,
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Figure 69: Evolution of the 3d “skew” initial velocity profile with a = o.
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Figure 70: Evolution of the 3d “skew” initial velocity profile with a = /2.
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Figure 71: Evolution of the 3d “wedge” initial velocity profile with o = o.
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Figure 72: Evolution of the 3d “wedge” initial velocity profile with a = /2.
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the left panels are reflection symmetric about both diagonals. These sym-
metries help diagnose the complex evolution occurring as the two peakon
contact segments balloon outward toward each other and collide head-on.
As expected from earlier animations, the segments annihilate and re-emerge,
leaving behind a complex residual flow where the head-on collision occurred.

The left panels of Figures 73 and 74 show that the reconnection after the
collision occurs results in a peakon contact segment surrounding the central
region.

10.6 Rotate

For the simulations shown in Figures 75 and 76, an initially spherical Gaus-
sian shell is rigidly rotating about its vertical axis, like a planet. This angular
motion couples to radial motion with cylindrical symmetry about the axis
of rotation. The evolution remains cylindrically symmetric about this axis
and shows convergence to it, as seen in the bottom panels of Figures 75 and
76. The left and back panels show identical emergence of peakon contact
segments. This evolution shows the coupling between the angular and radial
motion in the cylindrically symmetric case. The outward velocities expand
essentially like an oblate sphere, and may become less oblate with time. The
midplane z = 0 shown on the bottom panel is an invariant section, because of
up-down symmetry, and it shows the cylindrical convergence and expansion
driven by the initial angular rotation.

10.7 Right

In Figures 77 and 78, a Gaussian shell in speed is initially moving rightward.
The peakon contact surfaces emerging on its outer right side are diverging,
while those emerging on its inner left side are converging. The acceleration
due to this convergence leads to an overtaking collision that imparts right-
ward momentum to the diverging peakon contact segments. By cylindrical
symmetry about the z axis, the bottom and back panels show the same mo-
tion. The left panels show how this cylindrically symmetric motion moves
through the vertical midplane at x = 0. The midplane z = 0 is invariant and
the motion in this plane mimics the motion observed in the corresponding
2d problem.

This shared behavior is one of the main conclusions of this paper: 3d
numerical results have planar slices which show the corresponding 2d mo-
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Figure 73: Evolution of the 3d “head-on” initial velocity profile with oo = o.
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Figure 74: Evolution of the 3d “head-on” initial velocity profile with a = /2.
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Figure 75: Evolution of the 3d “rotate” initial velocity profile with a = o.
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mentum transfer behavior, and 2d numerical results have linear slices which
show the corresponding 1d momentum transfer behavior. This reduction
principle allows the complex interactions of contact wave surfaces to be ana-
lyzed as elastic collisions showing local momentum transfer. This is a feature
of the collective behavior of singular solutions, because such solutions possess
no internal degrees of freedom.

10.8 Inout

In Figures 79 and 80, a 3d Gaussian shell of speed is initially given the
2d “inout” velocity distribution, —(sin @, cos #) exp(—(r — ry)?/0?), on each
horizontal plane, weighted by the cosine of the polar angle, as in the rigid
rotation simulation. Consequently, the bottom panel shows the same “in-
out” 2d motion as before, now at one-fourth the resolution and only for
a = 0/2 and a = 0. The left and back panels show identical motion,
consisting of head-on collisions in the center and a wedge-like collision at the
top and bottom. The bottom panel for o = 0 /2 seems to agree better with
the corresponding 2d case, than for a = o, which has less of a collision that

in the 2d case.

10.9 Wheel

In Figures 81 and 82, the speed is initially distributed as a Gaussian within
a toroidal annulus rotating rigidly about its axis of rotational symmetry, ori-
ented along the x axis. This “wheel” initial distribution has reflection sym-
metry about its axis of rotational symmetry, oriented along the midplane
x = 0. The motion on this invariant symmetry plane z = 0 shows circularly
symmetric collapse and radial expansion, seen in the left panel. (Some dis-
tortion is seen upon reflection from the z axis of cylindrical symmetry, again
due to mesh effects.)

The identical back and bottom panels show a head-on collision occurring
on the horizontal midplane, followed by re-emergence in 3d for o = 0/2 and
the development of a pair of strong hot spots (actually a funnel shape in 3d)
followed by emergence of a perimeter of peakon contact segments surrounding
the interior region.



D. D. Holm & M. F. Staley Singular Wave Fronts 118

Figure 77: Evolution of the 3d “right” initial velocity profile with oo = 0.
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Figure 78: Evolution of the 3d “right” initial velocity profile with a = /2.
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Figure 79: Evolution of the 3d “inout” initial velocity profile with o = o.
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Figure 80: Evolution of the 3d “inout” initial velocity profile with a = /2.
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Figure 81: Evolution of the 3d “wheel” initial velocity profile with oo = o.
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Figure 82: Evolution of the 3d “wheel” initial velocity profile with a = /2.
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10.10 Wheels

Figures 83 and 84 show simulations of the interactions of two coaxial tori
(wheels) of velocity, both rotating about the x axis, but offset from each
other in the z direction. The cylindrically symmetric evolution from this
initial state shows axial convergence, radial expansion and reconnection of
peakon contact surfaces, via a series of head-on collisions. The exchange
of momentum in these interactions is especially dramatic. Eventually, an
outward-expanding peakon contact surface emerges and surrounds the entire
interaction region.

10.11 Torus

In Figures 85 and 86, a torus-shaped Gaussian velocity distribution (wheel)
is initially moving uniformly rightward in the direction of its symmetry axis.
Cylindrically symmetric rightward moving fronts form, then expand, collide,
and reconnect at the axis of symmetry. This is a “cylindrically symmetric
wedge” collision that funnels into the axis, then forms jets that accelerate in
both forward and backward directions along the z axis.

The three dimensional images of peakon contact surfaces are particularly
vivid in the animations to which Figures 85 and 86 belong. Because of the
cylindrical symmetry, the back and bottom panels show the same motion
in different perspectives. The left panel also shows the collapse to the axis
of symmetry. Because of the curvature of the peakon contact surfaces, this
cylindrical collision imparts axial momentum both forward and backward,
which is especially clear in the case o = 0/2.

10.12 Tori

In Figures 87 and 88, two linked tori of speed are started along their axes of
rotational symmetry in orthogonal directions, one rightward and one upward.
They undergo a series of wedge-like collisions leading to many reconnections.
They also undergo overlapping collisions that impart momentum, but do not
reconnect the peakon contact segments. Eventually, a single outward moving
peakon contact segment will surround the interaction region.
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Figure 83: Evolution of the 3d “wheels” initial velocity profile with o = o.
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Figure 84: Evolution of the 3d “wheels” initial velocity profile with a = /2.
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Figure 85: Evolution of the 3d “torus” initial velocity profile with o = 0.
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Figure 86: Evolution of the 3d “torus” initial velocity profile with o = o/2.
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Figure 87: Evolution of the 3d “tori” initial velocity profile with oo = o.
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Figure 88: Evolution of the 3d “tori” initial velocity profile with a = /2.
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10.13 Time reversal

Table 1 summarizes how well the initial velocity profiles reconstitute upon
reversing the EPDiff evolution from the final states. Numbers in each table
entry are the L' norm, L? norm, and max norm of the difference between
the initial velocity profile and its reconstituted (time reversed) value. We
do not show contour plots of the time reversed runs in 3d because they
are all visually indistinguishable at the larger values of o chosen for our 3d
simulations. The time reversed values are typically accurate to within one
percent or less.

11 Conclusions, future directions, and out-
standing problems

By a sequence of approximations applied to the Euler-Poincaré variational
principle for the multilayer columnar motion (MLCM) of an incompressible
fluid, we derived a hierarchy of EP equations. Several new MLCM equa-
tions belong to this hierarchy, as well as the standard Boussinesq equations
for shallow water waves, which are recovered upon specialization to weak
nonlinearity.

The EPDiff equation (1) was derived in the limiting case of a single layer
undergoing strongly nonlinear motion in the absence of linear dispersion. In
1d, the EPDiff equation restricts to the dispersionless case of the CH equation
for nonlinear shallow water waves. The dispersionless CH equation possesses
singular soliton solutions whose velocity possesses a sharp peak (jump in
slope) moving at a speed equal to its height. The corresponding momentum
for a train of such peakons is a set of delta functions at the locations of
the peaks in velocity. Thus, this momentum density is distributed as points
on the line which evolve under the action (by Ad*) of the diffeomorphisms
(smooth invertible maps).

A geometrical version of the soliton paradigm. The local description
of the Ad* action of the smooth invertible maps is the EPDiff ad* equation
(1), which holds in any number of dimensions. Hence, EPDiff allows compar-
ison of the behavior of its singular solutions in 1d, 2d and 3d. Numerically,
the singular solutions of EPDIff of codimension one (points on the line, curves
on the plane, surfaces in a volume) are found to be stable. Moreover, they
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Table 2: L', L?, and max norm of the difference between the initial velocity
profile and its reconstituted (time reversed) value for each 3d simulation.

Simulation | a = o a=0/2
0.000105 | 9.26e-05
plate 0.000595 | 0.000553
0.0109 0.01
0.000165 | 0.000146
parallel 0.000686 | 0.00064
0.0109 0.01
9.81e-05 | 8.68e-05
skew 0.000435 | 0.000411
0.00793 | 0.00753
0.00029 | 0.000135
wedge 0.000513 | 0.000398
0.00545 | 0.00522
0.000193 | 0.000178
head-on 0.000772 | 0.000738
0.00885 | 0.00829
9.36e-05 | 6.13e-05
rotate 0.000151 | 0.000102
0.000625 | 0.000433
6.08e-05 | 4.01e-05
right 0.000128 | 8.88e-05
0.00131 | 0.00103
9.4e-05 | 6.19e-05
inout 0.000151 | 0.000103
0.00063 | 0.000436
5.87e-05 | 3.98e-05
wheel 0.000176 | 0.000124
0.0019 0.00138
0.000123 | 8.51e-05
wheels 0.000259 | 0.000184
0.00193 | 0.0014
7.92e-05 | 5.45e-05
torus 0.000109 | 7.87e-05
0.000523 | 0.000391
0.00011 | 7.48e-05
tori 0.000248 | 0.000173
0.0019 0.00137
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are found to dominate the intial value problem, essentially by following the
soliton paradigm. Namely, the “singular solution content” of a given initially
continuous distribution of velocity emerges under the evolution of EPDiff and
retains its integrity under collision interactions. In 1d, these singular solu-
tions are true solitons (the peakons) for the dispersionless CH shallow water
equation. In this case, the inverse scattering transform for CH determines
its soliton content for an arbitrary initial condition and also gives the soliton
collision rules. In 2d and 3d, the theory for determining how these singular
solutions will emerge and how they will survive their collisions has not yet
been developed. This is the major open problem for EPDiff. One clue for
approaching it is to keep in mind that the singular solutions in (3) form an
inwvariant manifold for the EPDiff equations.

Our numerical findings. We studied the initial value problem for EPDiff
in various scenarios in 2d and 3d. We found that the key solution behavior
of the IVP for EPDiff is the breakup of an initially smooth confined veloc-
ity distribution into singular solutions supported on codimension-one delta
function densities moving with the velocity of the flow. We extended the so-
lution ansatz for peakon momentum density supported on points on the line
to the case of singular momentum density supported on smoothly embedded
sets, e.g. curves in the plane, or surfaces in three dimensional space. We
showed that this singular solution ansatz for EPDiff reduces to Hamilton’s
canonical equations for the vector parameters defining these surfaces. The
underlying geometrical reason why this reduction occurs was explained in
Holm & Marsden [22] by recognizing that the singular solution ansatz (2) is
a momentum map for the (right) action of diffeomorphisms on distributions
defined as smoothly embedded subspaces of a manifold. Thus, the singular
solutions evolve by Ad* action on embedded subspaces along a curve ¢(t) in
the diffeomorphisms which is a geodesic path. As we explained, such a curve
is a geodesic if and only if the corresponding momentum satisfies the EPDiff
equation (1).

Remarkably, our numerical results showed that only the codimension-
one singular solutions emerge in the IVP. Being defined on delta functions,
these solutions have no internal degrees of freedom. Consequently, their local
interactions may be characterized as elastic collisions of contact surfaces in
which momentum is exchanged. Across these contact surfaces, the slope of
the velocity has a jump which moves with the flow. The collision rules for
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these interactions in 2d and 3d may be built up from the soliton collision
rules in 1d. That is, a linear section transverse to a 2d solution shows 1d
elastic momentum exchange behavior, and a planar section transverse to a
3d solution shows the corresponding 2d behavior. This reduction to lower
dimensional behavior holds especially well on reflection-invariant sections.
For example, the midplane z = 0 is invariant in Figure 78 and the motion
in this plane projected on the bottom panel of Figure 78 mimics the motion
observed in the corresponding 2d problem in Figure 55.

Thus, 3d numerical results have planar slices which show the correspond-
ing 2d momentum transfer behavior. Likewise, 2d numerical results have
linear slices which show the corresponding 1d momentum transfer behavior.
Such a reduction principle allows the complex interactions of contact wave
surfaces to be analyzed as elastic collisions showing local momentum transfer.
This principle for collective behavior based on simple momentum exchange in
collision interactions arises for the singular solutions, because such solutions
possess no internal degrees of freedom.

Two new numerical features emerge in 2d and 3d. These are the re-
connections of the wavefronts, which occur due to momentum exchange in
these nonlinear collisions, and the remarkable “memory wisps” that arise to
guarantee reversibility of those collisions. (These memory wisps are a bit
reminiscent of the emission of neutrinos, which preserve detailed balance in
beta decay.) The memory wisp feature of the reconnections remains to be
explained in more detail, both numerically and analytically.

EPDiff applications: solitons, turbulence and medical images.
From the viewpoint of nonlinear PDE analysis, the EPDiff equation, be-
ing nonlinear and nonlocal, escapes classification. Its nonlocality requires
solving an elliptic problem for determining its velocity from its momentum
at each time step. It’s worth repeating that the EPDiff nonlinearity is ge-
ometric, because this is the key to understanding its motion. Namely, it is
reversible geodesic motion in the diffeomorphisms acting on smoothly embed-
ded subspaces. Physically, the singular solutions are contact surfaces (jumps
in the velocity derivative that move with the flow). The corresponding EPDiff
equation on the volume-preserving diffeomorphisms is the Lagrangian Aver-
aged Euler (LAE-a) equation derived first in [23], which was first derived
as a geometrical extension of the CH equation. Upon adding Navier-Stokes
viscosity, this became the LANS-a model for incompressible turbulence in
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[9]. For a review of the properties of LANS-a solutions and their relation to
Navier-Stokes analysis, see [16] and [44].

By a remarkable coincidence, L. Younes derived the EPDiff equation (1)
as the evolution for the template matching approach in medical imaging in
[52]. See also D. Mumford’s discussion of the same problem in [48]. Thus, the
singular solutions we discuss here, and their momentum exchange paradigm,
should be expected to develop increasing interest in medical imaging science.
Medical imaging must solve an optimization problem rather than the IVP.
However, our solution of the IVP may help guide intuition in medical imaging,
especially the idea of encoding information in an image by its momentum,
rather than just by the positions of its outlines and their associated intensi-
ties. Thus, EPDiff represents a crossroads of endeavor in mathematics where
methods of fluid dynamics and imaging science may transfer technologies.
See [27] for more discussions of this new paradigm in image processing.

Many open questions remain. Many open problems and other future
applications remain for the EPDiff equation. For example, its analysis re-
quires additional developments of PDE methods. In particular, while its
smooth solutions satisfy a local existence theorem analogous to the Ebin-
Marsden theorem for the FEuler fluid equations, its IVP inevitably develops
singular solutions. The implications of this observation are mentioned in
[22] as perhaps indicating an incompleteness of the geodesic flows on the
diffeomorphisms, which opens many future opportunities for analysis of the
emergence of measure values solutions from smooth initial conditions in non-
linear nonlocal PDEs.

In addition, many open questions remain for the practical problem of in-
ternal wavefronts emerging in shallow water dynamics. For example, there re-
mains the issues of boundary and topography interactions, including diffrac-
tion and refraction. Moreover, for the applications in turbulence modeling
there remains a variety of open questions about singular vortex interactions,
which are responsible for the famous vortex stretching that drives the cas-
cade of energy and vorticity in turbulence. A host of other problems also
remains for the applications of EPDiff in medical imaging, particularly for
the statistical treatment of the information encoded in the linear space of
their momenta. Finally, the development of numerical approaches that are
fully capable of tracking the singular solutions of EPDiff, perhaps by using
geometrical methods which incorporate discrete exterior calculus and varia-



D. D. Holm & M. F. Staley Singular Wave Fronts 136

tional multisymplectic integration methods. See [12] and [36] for descriptions
of these promising methods, which seem to lie on the horizon for the next
applications of singular solutions.
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