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Abstract. We discuss two different types of Cellular Automata (CA): lattice-gas-
based cellular automata (LGCA) and the cellular Potts model (CPM), and describe
their applications in biological modeling.

LGCA were originally developed for modeling ideal gases and fluids. We describe
several extensions of the classical LGCA model to self-driven biological cells. In partic-
ular, we review recent models for rippling in myxobacteria, cell aggregation, swarming,
and limb bud formation. These LGCA-based models show the versatility of CA in
modeling and their utility in addressing basic biological questions.

The CPM is a more sophisticated CA, which describes individual cells as extended
objects of variable shape. We review various extensions to the original Potts model and
describe their application to morphogenesis; the development of a complex spatial struc-
ture by a collection of cells. We focus on three phenomena: cell sorting in aggregates
of embryonic chicken cells, morphological development of the slime mold Dictyostelium
discoideum and avascular tumor growth. These models include intercellular and extra-
cellular interactions, as well as cell growth and death.

1. Introduction. Cellular automata (CA) consist of discrete agents
or particles, which occupy some or all sites of a regular lattice. These par-
ticles have one or more internal state variables (which may be discrete or
continuous) and a set of rules describing the evolution of their state and
position (in older models, particles usually occupied all lattice sites, one
particle per node, and did not move). Both the movement and change of
state of particles depend on the current state of the particle and those of
neighboring particles. Again, these rules may either be discrete or contin-
uous (in the form of ordinary differential equations (ODEs)), deterministic
or probabilistic. Often the evolution rules apply in steps, e.g., a motion or
transport step followed by a state change or interaction step. Updating can
be synchronous or stochastic (Monte-Carlo). At one extreme the rules may
approximate well known continuous partial differential equations (PDEs),
at the other they may resemble the discrete logical interactions of simple

∗Department of Mathematics and Interdisciplinary Center for the Study of Bio-
complexity, University of Notre Dame, Notre Dame, IN 46556-5670 (malber@nd.edu).
Research partially supported by grant NSF IBN-0083653.

†Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-5670
(mkiskows@nd.edu). Research partially supported by the Center for Applied Mathemat-
ics and the Interdisciplinary Center for the Study of Biocomplexity, University of Notre
Dame, and by DOE under contract W-7405-ENG-36.

‡Department of Physics and Biocomplexity Institute, Indiana University, Blooming-
ton, IN 47405-7105 (glazier@indiana.edu). Research partially supported by grants NSF
IBN-0083653, NSF INT98-02417, DOE DE-FGO299ER45785 and NASA NAG3-2366.

§Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
(jiang @lanl.gov). Research supported by DOE under contract W-7405-ENG-36.

1



2 MARK S. ALBER ET AL.

Boolean computers [34]. Sophisticated flock models are an intermediate
case of great current interest (e.g. [86, 136]).

CA may produce very sophisticated self-organized structures. Von
Neumann showed that a CA with a finite number of states and short-
range interactions could build a universal computer [154] and Conway in
‘Life’ demonstrated that even a simple two-state CA with purely local
interactions could generate arbitrarily complex spatio-temporal patterns
[50]. More recently, Wolfram has investigated the theory of CA and made
a strong case for their utility in addressing complex problems [163–165].

This review illustrates CA approaches to biological complexity by de-
scribing specific biological models using two different types of cellular au-
tomata: lattice-gas-based cellular automata (LGCA-based) and the cellular
Potts model (CPM).

One motivation for using cellular automata is the enormous range
of length scales of typical biological phenomena. Organisms may contain
dozens of organs composed of tissues containing tens of billions of cells.
Cells in turn contain structures with length scales from Angstroms to sev-
eral microns. To attempt to describe a cell in terms of individual molecular
dynamics is hopeless. However, the natural mesoscopic length scale of a
tissue is the cell, an autonomous agent with certain properties and cer-
tain responses to and effects on its surroundings. Since using the extreme
simplification of a CA approach, which treats cells as simple interacting
agents, we can simulate the interactions of tens of thousands to millions
of cells, we have within reach the smaller-scale structures of tissues and
organs that would be out of reach of more sophisticated (e.g., finite ele-
ment) descriptions [26, 37]. Nevertheless CA can be sophisticated enough
that they can reproduce almost all commonly observed types of cell behav-
ior. Ultimately, we hope to be able to unify, or at least cross-validate, the
results of molecular dynamics, mesoscopic and continuum models.

Philosophically, CA are attractive because their large-scale behaviors
are completely self-organized rather than arising from responses to exter-
nally imposed signals [9, 133]. An individual cell has no sense of direction
or position, nor can it carry a road map that tells it where to go (e.g., “one
micron distal and two microns lateral”). It can only respond to signals
in its local environment. Thus the traditional Wolpertian view of devel-
opment via “Positional Coding” is untenable. Local environmental cues
that can provide direction and location information may be self-organized
or externally generated, with the cells responding passively to the signal.
CA models favor self-organization while continuum PDE models generally
(though not always) take a Wolpertian point of view. An added advantage
of CA models is that they need not privilege any single cell as pacemaker
or director - all cells are fundamentally equivalent.

We may view CA as discrete-time interacting ensembles of particles
[34]. LGCA are relatively simple CA models, in which the particles select
from a finite number of discrete allowed velocities (channels). During the
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interaction step particles appear, disappear or change their velocity state.
During the transport step all particles simultaneously move in the direction
of their velocity. LGCA can model a wide range of phenomena including
the diffusion of ideal gases and fluids [70], reaction-diffusion processes [18]
and population dynamics [111]. Dormann provides a wonderful introduc-
tion to CA [34]. For details about CA models in physics see Chopard and
Droz [19] and specifically for lattice-gas models see Wolf-Gladrow [162] and
Boon et al. [14]. In their biological applications LGCA treat cells as point-
like objects with an internal state but no spatial structure. The CPM is a
more complex probabilistic CA with Monte-Carlo updating, in which a cell
consists of a domain of lattice sites, thus describing cell volume and shape
more realistically. This spatial realism is important when modeling interac-
tions dependent on cell geometry. The original Potts model dates from 1952
[119] as a generalization of the Ising model to more than two spin states.
It attracted intense research interest in the 1970s and 1980s because it has
a much richer phase structure and critical behavior than the Ising model
[116]. Glazier and Graner [53] generalized the Potts model to the CPM to
study the sorting of biological cells. In the CPM, transition probabilities
between site states depend on both the energies of site-site adhesive and
cell-specific non-local interactions. The CPM represents different tissues as
combinations of cells with different surface interaction energies and other
properties. It describes other materials, like liquid medium, substrates and
extracellular matrix (ECM) as generalized cells.

In this review we focus on modeling morphogenesis, the molding of
living tissues during development, regeneration, wound healing, and var-
ious pathologies. During morphogenesis to produce body plans, organs
and tumors, tissue masses may disperse, condense, fold, invert, lengthen or
shorten. Embryos and tissues seem to obey rules differing from the phys-
ical rules we associate with the ordinary equilibrium statistical mechanics
of materials: their forms seem to result from expression of intrinsic, highly
complex, genetic programs. However, embryos, organs and healing and re-
generating tissues assume many forms resembling those physics produces in
non-living matter, suggesting that modeling based on physical mechanisms
may be appropriate.

Biological cells interact with each other by two major means: local
interaction by cell adhesion between cells in direct contact or between cells
and their surrounding ECM, and longer range interactions such as signal
transmission and reception mediated by a diffusing chemical field.

Cell adhesion is essential to multicellularity. Experimentally, a mix-
ture of cells with different types and quantities of adhesion molecules on
their surfaces will sort out into islands of more cohesive cells within lakes of
their less cohesive neighbors. Eventually, through random cell movement,
the islands coalesce [45]. The final patterns, according to Steinberg’s Dif-
ferential Adhesion Hypothesis (DAH) [142], correspond to the minimum
of interfacial and surface energy. The DAH assumes that cell sorting re-
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sults entirely from random cell motility and quantitative differences in the
adhesiveness of cells and that an aggregate of cells behaves like a mix-
ture of immiscible fluids. In vitro [11, 46, 47] and in vivo experiments
[54, 56] have confirmed the soundness of the analogy. Moreover, cell adhe-
sion molecules, e.g., cadherins (controlling cell-cell adhesion) and integrins
(controlling cell-ECM adhesion), often serve as receptors to relay informa-
tion to the cell [104] to control multiple cell-signaling pathways, including
those of cell growth factors. Their expression and modification relate inti-
mately to cell differentiation, cell mobility, cell growth and cell death (for
reviews see [51, 97, 143]).

Chemotaxis is the motile response of cells or organisms to a gradient of
a diffusible substance, either an external field or a field produced by the cells
themselves. The latter is called chemotaxis signaling. Such non-local com-
munication enables each cell to obtain information about its environment
and to respond to the state of the cell community as a whole. In starved
populations of Dictyostelium amoebae, some cells produce a communica-
tion chemical (cAMP), other active cells receive, produce and secrete the
same chemical. The movement of Dictyostelium cells also changes from a
random walk to a directed walk up the cAMP gradient. For sufficient den-
sities of amoebae the signal induces cell aggregation to form a multi-cellular
organism. Some bacteria broadcast a relayed stress signal that repels other
mobile bacteria, which execute a biased random walk down the chemical
gradient. In both cases the result protects the whole community from star-
vation. Unlike in differential adhesion, chemotactic cell motion is highly
organized over a length scale significantly larger than the size of a single
cell.

Both these interactions are essential to the biological phenomena de-
scribed below. We demonstrate how LGCA and the CPM treat these inter-
actions. Implementation of a CA model on a computer is straightforward.
CA computations are numerically stable and are easy to modify by adding
and removing local rules for state and position evolution. Ermentrout and
Edelstein-Keshet [42] and Deutsch and Dormann [33] review some of the
CA models that arise in simulations of excitable and oscillatory media, in
developmental biology, in neurobiology and in population biology. We fo-
cus here on modeling aggregation and migration of biological cells. Both
migration and aggregation occur in almost all organisms over a range of
scales from sub-cellular molecular populations (e.g., actin filaments or col-
lagen structures) to cellular populations (e.g., fibroblasts or myxobacteria
to communities of organisms (e.g., animal herds or schools of fish) (see,
amongst others [10, 21, 63, 99, 118]).

Advantages of CA include their simplicity, their ease of implementa-
tion, the ability to verify the relevance of physical mechanisms and the
possibility of including relationships and behaviors which are difficult to
formulate as continuum equations. In addition CA reflect the intrinsic
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individuality of cells. Limitations of CA include their lack of biological
sophistication in aggregating subcellular behaviors, the difficulty of going
from qualitative to quantitative simulations, the artificial constraints of
lattice discretization and the lack of a simple mechanism for rigid body
motion. In addition, interpreting simulation outcomes is not always as
easy as for continuum equations.

2. LGCA models. This section illustrates several biological appli-
cations of LGCA models. We demonstrate the process of building LGCA
models starting from a detailed description of a biological phenomenon and
ending with a description of the results of numerical simulations.

2.1. Background of the LGCA model. In 1973 Hardy, de Passis
and Pomeau [58] introduced models to describe the molecular dynamics of
a classical lattice gas (hence “Hardy, Passis and Pomeau” (HPP) models).
They designed these models to study ergodicity-related problems and to
describe ideal fluids and gases in terms of abstract particles. Their model
involved particles of only one type which moved on a square lattice and had
four velocity states. Later models extended the HPP in various ways and
became known as lattice gas cellular automata (LGCA). LGCA proved
well suited to problems treating large numbers of uniformly interacting
particles.

Like all CA, LGCA employ a regular, finite lattice and include a finite
set of particle states, an interaction neighborhood and local rules which
determine the particles’ movements and transitions between states [34].
LGCA differ from traditional CA by assuming particle motion and an ex-
clusion principle. The connectivity of the lattice fixes the number of allowed
velocities for each particle. For example, a nearest-neighbor square lattice
has four non-zero allowed velocities. The velocity specifies the direction
and magnitude of movement, which may include zero velocity (rest). In a
simple exclusion rule, only one particle may have each allowed velocity at
each lattice site. Thus, a set of Boolean variables describes the occupation
of each allowed particle state: occupied (1) or empty (0). Each lattice site
can then contain from zero to five particles.

The transition rule of an LGCA has two steps. An interaction step
updates the state of each particle at each lattice site. Particles may change
velocity state and appear or disappear in any number of ways as long as
they do not violate the exclusion principle. For example, the velocities of
colliding particles may be deterministically updated, or the assignment may
be random. In the transport step, cells move synchronously in the direction
and by the distance specified by their velocity state. Synchronous trans-
port prevents particle collisions which would violate the exclusion principle
(other models define a collision resolution algorithm). LGCA models are
specially constructed to allow parallel synchronous movement and updating
of a large number of particles [34].



6 MARK S. ALBER ET AL.

2.2. Applications of LGCA-based models in biology. Large
groups of living elements often exhibit coordinated polarized movement.
This polarization usually occurs via alignment, where individuals demo-
cratically align their direction and velocity with those of neighbors of the
same type, rather than by aligning under the control of a single leader or
pacemaker cell or in response to externally supplied cues [89, 90]. This self-
organized local alignment admits multiple descriptions: for example, as an
integro-differential equation as in Mogilner and Edelstein-Keshet [99, 100].
For an LGCA caricature of a simplified integro-differential model see Cook
et al. [22]. Othmer et al. [112] describes a non-LGCA CA model for cell
dispersion based on reaction and transport.

Many models of biological phenomena have employed PDEs to com-
bine elements of random diffusive motion with biologically motivated rules
that generate more ordered motion. These models, however, treat only
local average densities of cells and do not include terms capturing the non-
local interactions inherent in a population that moves as a collective unit.
Nor do they include the discrete nature of cells and their non-trivial geom-
etry and orientation. Mogilner and Edelstein-Keshet [99] and Mogilner et

al. [100] realized that they could model such phenomena more realistically
using integro-differential partial differential equations to account for the
effects of “neighbor” interactions on each member of the population. In
1997, Cook et al. [22] described spatio-angular self-organization (the ten-
dency of polarized cells to align to form chains or sheets) using an LGCA
model based on a simplified integro-differential model.

Other manifestations of collective cell behavior are the several types of
aggregation (see [34, 157] for details). For example, in differential growth,
cells appear at points adjacent to the existing aggregate as described in [40]
and [125]. In diffusion-limited aggregation (DLA) growing aggregates are
adhesive and trap diffusing particles. Witten and Sanders [161] introduced
DLA to model dendritic clustering in non-living materials, and Ben-Jacob
and Shapiro [133, 134] have shown that DLA has extensive applications
to bacterial colony growth in gels where nutrient or waste diffusion is slow
(for more details see [8, 20, 43, 55, 135].

Deutsch showed that although LGCA models like [16] and [29] which
involve particles constantly moving with fixed velocities can model swarm-
ing, modeling aggregation requires resting channels.

A third mechanism for aggregation is chemotaxis by cells, either to
a pacemaker or to a self-organized common center. If the cells secrete a
chemoattractant, then a random fluctuation which increases local cell den-
sity will cause local chemoattractant concentration to increase, drawing in
more cells and again increasing chemoattractant concentration in a positive
feedback loop. Eventually the cells will all move into one or more compact
clusters (depending on the range of diffusion of the chemoattractant and
the response and sensitivity of the cells).
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Fig. 1. Electron microscope image of fruiting body development in M. xanthus by
J. Kuner. Development was initiated at 0 hours by replacing nutrient medium with a
buffer devoid of a usable carbon or nitrogen source (from Kuner and Kaiser [80] with
permission).

2.3. Rippling in myxobacteria. In many cases, changes in cell
shape or cell-cell interactions appear to induce cell differentiation. For ex-
ample, an ingrowing epithelial bud of the Wolfian duct triggers the forma-
tion of secretory tubules in the kidneys of mice [155] and in Dictyostelium

pre-stalk cells sort and form a tip due to chemotaxis and differential ad-
hesion [68]. The relationship between interactions and differentiation has
motivated study of the collective motion of bacteria, which provides a con-
venient model for cell organization which precedes differentiation [9, 133].
A prime example is the formation of fruiting bodies in myxobacteria. Fig-
ure 1 illustrates fruiting body development in Myxococcus xanthus, which
starts from starvation and undergoes a complex multi-step process of glid-
ing, rippling and aggregation that culminates in the formation of a fruit-
ing body with differentiation of highly polarized, motile cells into round,
compact spores. A successful model exists for the more complex fruiting
body formation of the eukaryotic Dictyostelium discoideum (see [68, 93]).
Understanding the formation of fruiting bodies in myxobacteria, however,
would provide additional insight since collective myxobacteria motion de-
pends not on chemotaxis as in Dictyostelium but on mechanical, cell-cell
interactions [39].

Rippling is a transient pattern that often occurs during the myxobacte-
rial gliding phase before and during aggregation into fruiting bodies. Dur-
ing the gliding phase myxobacteria cells are very elongated, with a 10:1
length to width ratio, and glide over surfaces on slime tracks (see [166]
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Fig. 2. (A) A reflection model for the interaction between individual cells in two
counter-migrating ripple waves. Laterally aligned cells in counter-migrating ripples (la-
beled R1 and R2) reverse upon end to end contact. Arrows represent the directions of
cell movement. Relative cell positions are preserved. (B) Morphology of ripple waves af-
ter collision. Thick and thin lines represent rightward and leftward moving wave fronts,
respectively. Arrows show direction of wave movement. (C) Reflection of the waves
shown in B, with the ripple cell lineages modified to illustrate the effect of reversal.
(From Sager and Kaiser [129] with permission.)

amongst others). The mechanism of cell motion is still not clear. Rippling
myxobacteria form a pattern of equidistant ridges of high cell density that
appear to travel periodically through the population. Tracking individual
bacteria within a ripple has shown that cells oscillate back and forth and
that each travels about one wavelength between reversals [129]. Cell move-
ment in a ripple is approximately one-dimensional since the majority of
cells move in parallel lines with or against the axis of wave propagation
[129]. The ripple waves propagate with no net transport of cells and wave
overlap causes neither constructive nor destructive interference [129].

Sager and Kaiser [129] have presented a model for myxobacterial rip-
pling in which precise reflection explains the lack of interference between
wave-fronts. Oriented collisions between cells initiate C-signaling which
causes cell reversals. C-signaling occurs via the direct cell-cell transfer of a
membrane-associated signaling protein (C-signal) when two elongated cells
collide head to head. According to Sager and Kaiser’s hypothesis of precise
reflection, when two wave-fronts collide, the cells reflect one another, pair
by pair, in a precise way that preserves the wave structure in mirror image.
Figure 2 shows a schematic diagram of this reflection.

Current models for rippling (see [15, 63, 90]) assume precise reflection.
Key differences among these models include their biological assumptions
regarding the existence of an internal cell timer and the existence and
duration of a refractory period during which the cell does not respond to
external signals.

An internal timer is a hypothetical molecular cell clock which regulates
the interval between reversals. The clock may speed up or slow down
depending upon collisions, but each cell eventually will turn even without
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any collisions. An isolated cell oscillates spontaneously every 5–10 minutes
with a variance in the period much smaller than the mean [63]. Also,
observation of rippling bacteria reveals that cells oscillate even in ripple
troughs where the density is too low for frequent collisions [160]. These
observations both support an internal cell timer.

The refractory period is a period of time immediately following cell
reversal during which cells are insensitive to C-factor. The addition of
exogenous C-factor up to a threshold value triples the reversal frequency
of rippling cells [129]. Cells do not reverse more frequently at still higher
levels of C-factor, however, suggesting the existence of a refractory period
that sets a lower bound on the reversal period of a cell [129].

Although some evidence supports the role of both a refractory period
and an internal cell timer in myxobacterial rippling, the question is still
open. Igoshin et al. [63] describe a continuum model with both a refractory
period and an internal cell timer which reproduces experimental rippling
in detail. Börner et al. [15] reproduce ripples that resemble experiments,
assuming a refractory period but no internal timer. Finally, Lutscher and
Stevens [90] propose a one-dimensional continuum model which produces
patterns that resemble ripples without invoking a refractory period or an
internal timer.

We designed a fourth model for rippling to independently test both
of these assumptions by including them separately in a simulation and
comparing the simulations to experiments. Our LGCA model illustrates
both the versatility of CA and their use to validate hypotheses concerning
biological mechanisms.

Börner et al. [15] used an LGCA to model rippling assuming precise
reflection and a cell refractory period, but no internal timer. Their tempo-
rally and spatially discrete model employs a fixed, nearest-neighbor square
grid in the x-y-plane and an additional z-coordinate describing the num-
ber of cells that stack at a given lattice site. Particles have an orientation
variable φ equal either to -1 or 1 corresponding to their gliding direction
along the x-axis. Cells have a small probability p of resting. Cells move
along linear paths in the x-direction, so coupling in the y-direction is solely
due to C-signal interaction.

At each time-step, particles selected at random move asynchronously
one lattice site in the direction of their velocity vector. Each time-step
of the model consists of one migration of all the particles and an inter-
action step. When a particle at height z0 would move into a site that is
already occupied at the same height, it has a 50% chance of slipping below
or above the occupied position, adding another stochastic element to the
model. A collision occurs for an oriented particle whenever it finds at least
one oppositely oriented particle within a 5-node interaction neighborhood.
The collision neighborhood extends the intrinsically one-dimensional cell
movement to allow 2D rippling since the interaction neighborhood extends
in the y-direction.
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If the cell is non-refractory, a single collision causes it to reverse. A
cell reverses by changing the sign of its orientation variable.

Börner et al. [15] model the refractory period with a clock variable
ν which is either 1 for a non-refractory cell or which counts 2, ..., r for r
refractory time-steps. A particle with a clock value 1 will remain in a non-
refractory state with value 1 until a velocity reversal, at which time the
particle clock variable becomes 2. During the refractory period, the clock
variable increases by one unit per time-step until the clock variable is r. At
the next time-step, the refractory period ends and the clock variable resets
to 1.

Starting from random initial conditions the model produces ripples
which closely resemble experiment (compare [15], Figures 1(a) and 3(a)).
The duration of the refractory period determines the ripple wavelength
and reversal period. A refractory period of 5 minutes in the simulations
reproduces experimental values for wavelength and reversal frequency. In
the simulations, ripple wavelength increases with refractory period as in
experiment [129]. Thus, the model shows that experiments are compatible
with the hypotheses of precise reflection, a refractory period and no internal
timer.

The LGCA we presented in [4] assumes precise reflection and investi-
gates the roles of a cell refractory period and an internal cell timer indepen-
dently. We model cell size and shape in an efficient way that conveniently
extends to changing cell dimensions and the more complex interactions of
fruiting body formation.

In experiments, cells do not reflect by exactly 180◦ degrees. However,
since most cells move roughly parallel to each other, models based on re-
flection are reasonable approximations. Modeling the experimental range
of cell orientations would require a more sophisticated CA since LGCA
require a regular lattice which does not permit many angles. Tracking of
rippling cells (e.g., [128], Figure 6) seems to indicate that cells most often
turn about 150◦ degrees rather than 180◦ degrees, which may be modeled
using a triangular lattice (see Alber et al. [4]).

Our model employs a nearest-neighbor square lattice with three al-
lowed velocities including unit velocities in the positive and negative x
directions and zero velocity. At each time-step cells move synchronously
one node in the direction of their velocity. Separate velocity states at each
node ensure that more than one cell never occupies a single channel.

We represent cells in our model as (1) a single node which corresponds
to the position of the cell’s center of mass in the xy plane, (2) the choice
of occupied channel at the cell’s position designating the cell’s orientation
and (3) an interaction neighborhood determined by the physical size of
the cell. We define the interaction neighborhood as an elongated rectan-
gle to reflect the typical 1x10 proportions of rippling myxobacteria cells
[129]. Oblique cells would also need an angle to designate their angle from
horizontal. Representing a cell as an oriented point with an associated in-
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teraction neighborhood is computationally efficient, yet approximates con-
tinuum dynamics more closely than assuming point-like cells, since cell
interaction neighborhoods may overlap in a number of ways. Several over-
lapping interaction neighborhoods correspond to several cells stacked on
top of each other.

In our model, collisions occur between oppositely-oriented cells. A
cell collides with all oppositely-oriented cells whose interaction neighbor-
hoods overlap its own interaction neighborhood. Thus, a cell may collide
simultaneously with multiple cells.

We model the refractory period and internal cell timer with three
parameters; R, t and τ . R is the number of refractory time-steps, t is
the minimum number of time-steps until a reversal and τ is the maximum
number of time-steps until a reversal. Setting the refractory period equal to
one time-step is the off-switch for the refractory-period and setting τ (the
maximum number of time-steps until a reversal) greater than the number
of time-steps of the simulation is the off-switch for the internal cell timer.

Our internal timer extends the timer in Igoshin et al. [63]. We borrow
a phase variable φ to model an oscillating cycle of movement in one direc-
tion followed by a reversal and movement in the opposite direction. Thus,
reversals are triggered by the evolution of this timer rather than directly
by collisions as in the model of Börner et al. [15]. 0 ≤ φ(t) ≤ τ specifies
the state of the internal timer. φ progresses at a fixed rate of one unit per
time-step for R refractory time-steps, and then progresses at a rate, ω, that
depends non-linearly on the number of collisions n∓ to the power p:

ω±(x, φ, n, q) = 1 +

(

τ − t

t−R

)

∗

(

[min(n∓, q)]p

qp

)

∗ F (φ),(2.1)

where,

F (φ) =











0, for 0 ≤ φ ≤ R;

0, for π ≤ φ ≤ (π + R);

1, otherwise.

(2.2)

This equation is the simplest which produces an oscillation period of τ
when no collisions occur, a refractory period of R time-steps in which the
phase velocity is one, and a minimum oscillation period of t when a thresh-
old (quorum) number q of collisions, nc, occurs at every time-step. We
assume quorum sensing such that the clock velocity is maximal whenever
the number of collisions at a time-step exceeds the quorum value q. A
particle will oscillate with the minimum oscillation period only if it reaches
a threshold number of collisions during each non-refractory time-step (for
t − R time-steps). If the collision rate is below the threshold, the clock
phase velocity slows. As the number of collisions increases from 0 to q, the
phase velocity increases non-linearly as q to the power p.
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Fig. 3. Typical ripple pattern for myxobacteria simulations including both a cell
clock and a refractory period. (Cell length=5, δ = 2, R = 10, t = 15, τ = 25.) Figure
shows the density of cells (darker gray indicates higher density) on a 50x200 lattice
after 1000 timesteps. (From Alber et al. [4].)

Results of numerical simulations. Our model forms a stable ripple pat-
tern from a homogeneous initial distribution for a wide range of parameters,
with the ripples apparently differing only in length scale (see Figure 3).
Currently we are working to establish criteria for quantitative comparison
of ripple patterns.

In our simulations the refractory period is only critical at high densi-
ties. Ripples form without an internal timer over the full range of ripple
densities. Our model is most sensitive to the minimum oscillation time t, as
ripples form only when t is about 1 to 1.5 times larger than the refractory
period.

The wavelength of the ripples depends on both the duration of the
refractory period and the density of signaling cells. The wavelength in-
creases with increasing refractory period (see Figure 4) and decreases with
increasing density (see Figure 5).

Effect of dilution with non-signaling cells. Sager and Kaiser [129] di-
luted C-signaling (wild-type) cells with non-signaling (csgA minus) cells
that were able to respond to C-signal but not produce it themselves. When
a collision occurs between a signaling and a non-signaling cell, the non-
signaling cell perceives C-signal (and the collision), whereas the C-signaling
cell does not receive C-signal and behaves as though it had not collided.
The ripple wavelength increases with increasing dilution by non-C-signaling
cells. Simulations of this experiment with and without the internal timer
give very different results, see Figure 6. The dependence of wavelength on
the fraction of wild type cells resembles the experimental curve (see [129],
Figure 7G) only with the internal timer turned off.

Since the wavelength decreases with increasing density, we ask if the
wavelength of ripples in a population of wild type cells diluted with non-
signaling cells is the same as for the identical subpopulation of wild type
cells in the absence of the mutant cells. Figure 7 shows the wavelength
dependence on the density of signaling cells when only signaling cells are
present (dotted line) and for a mixed population of signaling cells of the
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Fig. 4. Average wavelength in micrometers versus refractory period in minutes for
myxobacteria simulations. Cell length=4, δ=1 with the internal timer adjusted for each
value of the refractory period R so that the fraction of clock time spent in the refractory
period is constant for each simulation: t = 3R/2 and τ = 5 ∗ R/2. (From Alber et
al. [4].)
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Fig. 5. Average wavelength in micrometers versus density for myxobacteria sim-
ulations (total cell area over total lattice area). Cell length=4 with an internal timer
given by R = 8, t = 12, τ = 20. (From Alber et al. [4].)

same density with non-signaling cells (solid line). Apparently, the decrease
in C-signal explains the increase in wavelength. The non-signaling mutants
do not affect the pattern at all.

2.4. Cell alignment. Cook et al. [22] implemented an LGCA and
reproduced the basic types of spatio-angular self-organization of a simpli-
fied version of the integro-differential models of Mogilner et al. [100]. In
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Fig. 6. Wavelength in micrometers versus the fraction of wild-type cells,
in the presence (dotted line, τ = 20) and absence (solid line, τ = 2000) of an
internal cell timer for myxobacteria simulations. Cell length=4, R = 8, t = 12.
(From Alber et al. [4].)

0 0.5 1 1.5
0

50

100

150

200

250

Density

W
av

el
en

gt
h 

In
 M

ic
ro

m
et

er
s

Fig. 7. Wavelength versus density with no internal timer (τ = 2000) for myxobac-
teria simulations. Density is total cell area over total lattice area. The dotted line is
the wavelength in micrometers versus the density of wild-type cells with no csgA-minus
cells present. The solid line is the wavelength in micrometers versus the density of wild
type cells when the density of csgA-minus cells is increased so that the total cell density
remains 1.6. Cell length=4, R = 8, t = 12, τ = 2000. (From Alber et al. [4].)

their model each particle corresponds to one cell, the number of cells is
fixed and automaton rules model the non-local character of the integro-
differential equations.

Deutch [30, 31] generalized this model by introducing different types
of operators defined on orientation vectors at each lattice site and local
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orientation fields (see below for details). He showed that a simple dot
product favors cell alignment. In these single cell-type models, clusters of
cells with one preferred orientation grow and multiple clusters with the
same orientation merge into a single large cluster.

Alber and Kiskowski [3] modeled the spatio-angular movement and
interaction of n types of cell. In this model cell behavior results from com-
petition between two types of aggregation. In accordance with transitional
probabilities, a cell can either align with the directional field of its neigh-
bors or with other cells of its own alignment with a probability weighted
by the neighborhood density of its own cell type. In the CA model we
describe below, the clusters formed are confluent collections of particles of
the same type moving in the same direction.

We describe in detail below a CA model for aggregation of aligned
particles of k different types. Consider m square (n x n) lattices with nodes
~r and with periodic boundary conditions. Define state space stochastic
Boolean variables,

S(k) = (s
(k)
1 , s

(k)
2 , s

(k)
3 , s

(k)
4 ), k = 1, . . . , m ,

where s
(k)
i = 1(0) indicate one of the four directions in the lattice and

η(k)(~r) = (η
(k)
1 (~r), η

(k)
2 (~r), η

(k)
3 (~r), η

(k)
4 (~r)), k = 1, . . . , m ,

denote configurations at node ~r in the m lattices. We impose an exclusion
principle by limiting the sum of a node’s densities to 4:

ρ(~r) =

m
∑

k=1

ρ(k)(~r) =

m
∑

k=1

4
∑

i=1

η
(k)
i (~r) ≤ 4.

By applying a template, we can describe the nearest neighbors to the node
~r of type k as:

N (k)(~r) = (r + c1, r + c2, r + c3, r + c4)

where:

c1 = (1, 0), c2 = (0, 1), c3 = (−1, 0), c4 = (0,−1).

Then the local orientation fields are:

O
(k)
N(r) =

4
∑

i=1

η(k)(r + ci), k = 1, . . . , m.

We can also calculate local densities of particles of particular type k simply
by summing up the number of particles of this type which are nearest
neighbors to a given node ~r:

D
(k)
N(~r) =

4
∑

i=1

ρ(k)(r + ci) .
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Initially particles are randomly distributed on the lattice. Then we apply
interaction and transport steps to every node in the lattice simultaneously.

The interaction obeys the following transition probabilities:

As,s′(O
(k)
N(~r)) =







M(s′)

Z(s)
if ρ(s′) = ρ(s)

0 else

,(2.3)

where

M(s′) = e
∑

k=1,2

(

βk(O
(k)

N(~r)

⊗

s′)+γkρ(k)(~r)(D
(k)

N(~r)

)

,

the normalization factor Z(s) is chosen such that

∑

s′,ρ(s′)=ρ(s)

As,s′(O
(k)
N(r)) = 1

and

O
(k)
N(r)

⊗

s′ : N5
0 → N0

is a bilinear functional. Choosing O
(k)
N(~r)

⊗

s′ :≡< O
(k)
N(~r), s

′ > favors par-

allel orientation. For details about different functionals see [30, 31]. If

O
(k)
N(r) = 0 a random discrete walk results.

We implement transport as follows: Particles move along their direc-
tions to their nearest neighbors:

η
(k)
i (~r) → (η

(k)
i (~r))T := η

(k)
i (r − ci).

2.5. Gliding and aggregation in myxobacteria. During the ag-
gregation phase of Myxococcus xanthus, cells stream towards aggregation
centers to produce mounds of 105 to 106 cells. Highly elongated cells form
chains or streams which spiral in to the aggregation centers [109]. The ag-
gregation centers begin as small, asymmetric mounds which may diffuse or
coalesce with other aggregation centers. As an aggregation center matures
into a fruiting body, cells differentiate into non-motile round spores. The
organization of cells within a fruiting body may reveal clues about aggrega-
tion center formation. Cells outside the periphery of a fruiting body form
a spiral [38]; cells at the periphery pack tightly with their long axes parallel
to the mound circumference, while cells in the mound center are less dense
and less organized in arrangement [128].

C-signal, a membrane-associated signaling protein, induces aggrega-
tion [65] and is required for normal aggregate formation [71]. Levels of C-
signal are much higher than during rippling. Repeated efforts have failed
to find a diffusing chemoattractant which could explain aggregation though
chemotaxis. Observations of streams of cells passing a nearby aggregation
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center towards a center further away also discourage any chemotaxis-based
aggregation model [65]. The passing cells do not displace towards the
nearby mound as they would if they moved up a gradient of a diffusing
chemical. Instead, they continue as if the second aggregation center were
not present. Thus, aggregation appears to organize solely through cell-
contact interactions.

Stevens’ stochastic CA model of gliding and aggregation in myxobac-
teria employs self-attracting reinforced random walks and chemotaxis [144]
to model bacteria, slime and a diffusing chemoattractant on a 100x100
nearest-neighbor square lattice with periodic boundary conditions. Her
results provide an excellent example of how CA models can be used ex-
perimentally to test the validity and necessity of different parameters and
assumptions.

Model bacteria are rod-shaped objects of eight nodes with one labeled
pole node indicating the front of the cell. The cells are initially randomly
distributed in the lattice and glide by moving their labeled front pole node
into one of the three adjacent neighbors not already occupied by the cell’s
body. Cells glide preferentially on slime trails, glide faster on slime trails,
glide preferentially towards the diffusing chemoattractant and keep their
direction of motion without turning for about one cell length when nei-
ther slime nor chemoattractant influences their direction. The interaction
neighborhood of a cell is the four nearest neighbors of the cell pole. A cell
crossing a slime trail at an angle will reorient to follow the trail.

Bacteria deposit slime underneath their bodies at a rate κS . Slime de-
cays at a rate λS . When cell density exceeds a critical value at a point under
the area of a cell, cells produce chemoattractant at a rate λC . Chemoat-
tractant decays at a rate κC .

Stevens used her cellular automata to test the hypothesis that a self-
attracting reinforced random walk alone could account for aggregation in
myxobacteria and tested the effects of several parameters: increasing the
preference for gliding straight ahead, increasing slime production, and in-
creasing the gliding velocity of cells traveling on slime trails. Additionally,
she added cell-cell adhesion to the model to test the effect of cells preferring
to glide parallel to their neighbors. She modeled adhesion as an envelop-
ing, oriented structure to which adjacent bacteria have a high probability
of aligning. Cell adhesion is uniform over the cell surfaces but the cell
elongation encourages alignment.

Stevens found that self-attracting reinforced random walkers alone
(with cells depositing slime, gliding preferentially on slime tracks and glid-
ing faster on slime tracks) could not form stable aggregation centers. Un-
stable pre-aggregation patterns did form, however, that resembled experi-
mental observations. Aggregates would form, diffuse away and reappear in
other regions. Stable centers required an extra factor. For example, adding
a diffusing chemoattractant stabilized the centers. Stevens speculated that
a membrane-bound chemoattractant might also function as an attractive
signal.
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Experimentally, cells glide faster on slime trails. Stevens modeled an
increase in gliding speed on slime trails which produced larger aggregates
in the model. Cell-cell adhesion caused cells to assemble in long chains.

2.6. Swarming. Swarming and flocking are a class of collective self-
organization that emerges from a multitude of simultaneous local actions
rather than following a global guide [9]. Swarming occurs in a wide variety
of fields, including animal aggregation [114], traffic patterns [120], bacteria
colonies [27], social amoebae cell migration [86], fish or bird flocking [9, 115]
and insect swarming [138]. Swarming patterns all share one feature: the
apparent haphazard autonomous activities of a large number of “particles”
(organisms or cells), on a larger scale, reveal a remarkable unity of organi-
zation, usually including synchronized non-colliding, aligned and aggregate
motion. Most models, however, only measure the density distribution, i.e.

they look for nearly constant density in the center of the swarm and an
abrupt density drop to zero at the edge [86, 100].

Many artificial-life simulations produce strikingly similar “emergent”
characteristics, e.g., [13]. One such example is boids [124], simulated bird-
like agents, where simple local rules such as 1) Collision Avoidance: avoid
collisions with nearby flockmates, 2) Velocity Matching: attempt to match
velocity with nearby flockmates, and 3) Flock Centering: attempt to stay
close to nearby flockmates; give rise to complex global behaviors.

Most swarming models are of molecular dynamics type, with all par-
ticles obeying the same equations of motion and residing in a continuum
rather than a lattice [27, 86]. Multiple species may be present (e.g., [3])
but the properties of all members of a single species are identical. Parti-
cles have no “memory” of their behavior except for their current velocity
and orientation. Particles are “self-propelled” [24, 153] since they move
spontaneously without external forces, unlike non-living classical particles
whose motions results from external forces. Some models require a non-
local interaction, e.g., in the continuum model of Mogilner et al. [100],
where integro-differential partial differential equations represent the effects
of “neighbor” interactions, and in the particle model of Ben-Jacob et al.

[7], in which a rotational chemotaxis field guides the particles. Recently
Levine et al. [86] coarse-grained their particle model, which has only lo-
cal interactions, to produce a continuum model and showed that the two
models agree well with each other.

Unfortunately, either because we do not understand the interactions
between particles well enough, or because their actions may depend in a
complex way on the internal states and history of the particles, we can-
not always describe particle interactions by an interaction potential or
force. Phenomenological rules are then more appropriate. In such cases CA
models are perfect for studying swarming as a collective behavior arising
from individual local rules.
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Deutsch [29, 32] modeled examples of social pattern formation as
LGCA based on the concept of “direct information exchange.” Particles
(cells, organisms) have some orientation, and can evaluate the orientations
of resting particles within a given “region of perception.” Simulations ex-
hibit transitions from random movement to collective motion and from
swarming to aggregation. Adamatzky and Holland [2] modeled swarming
with excitable mobile cells on a lattice. By varying the duration of cell ex-
citation and the distances over which cells interact and excite one another,
they established many parallels with phenomena in excitable media.

2.7. Cluster formation by limb bud mesenchymal cells. Over
36-72 hours in a controlled experiment, a homogeneously distributed pop-
ulation of undifferentiated limb bud mesenchymal cells cluster into dense
islands, or “condensations,” of aggregated cells [83]. The condensations de-
velop concurrently with increases in extracellular concentrations of a cell-
secreted protein, fibronectin, a non-diffusing extracellular matrix macro-
molecule which binds adhesively to cell surface molecules, including recep-
tors known as integrins, which can transduce signals intracellularly. The
limb cells also produce the diffusible protein TGF–β, which positively reg-
ulates its own production as well as that of fibronectin [79].

The roughly equally spaced patches of approximately uniform size
are reminiscent of the patterns produced by the classical Turing reaction-
diffusion mechanism. A Turing pattern is the spatially heterogeneous pat-
tern of chemical concentrations created by the coupling of a reaction pro-
cess with diffusion. In 1952, Alan Turing showed that chemical peaks
will occur in a system with both an autocatalytic component (an ac-
tivator) and a faster-diffusing inhibiting component (an inhibitor) [148].
Fluctuations of concentration of a particular wavelength grow while other
wavelengths die out. The diffusion coefficients of the two components and
their reaction kinetics, and not the domain size, determine the maximally
growing wavelength [34]. For details about Turing pattern formation, see
[34, 35, 41, 91, 105]. For details about the suggested role of reaction diffu-
sion in the development of the vertebrate limb, see [107, 108].

Kiskowski et al. [79] model the production of fibronectin and subse-
quent limb bud patch formation using an LGCA-based reaction–diffusion
process having TGF-β as the activator but with an unknown inhibitor. In
their model, cells are points that diffuse in a random walk on a nearest-
neighbor square lattice. At each time-step, cells choose either one of four
direction vectors with equal probability, p, or a resting state with proba-
bility 1 − 4p. A higher probability of resting models slower diffusion. A
cell-driven reaction-diffusion occurs between two chemicals (an activator,
the morphogen A, and a faster diffusing inhibitor, the morphogen B) which
diffuse and decay on the lattice. The production of activator and inhibitor
occurs at lattice sites occupied by cells, while inhibition and diffusion occur
throughout the lattice. The binding of cells to fibronectin results in slower
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diffusion, which we model by increasing the probability of assigning cells
to resting states. When local levels of activator exceed a threshold, cells
respond by secreting fibronectin to which they bind, reducing p and causing
clustering. All cells have fibronectin receptors and cells do not adhere to
each other, but only to fibronectin molecules.

During each time-step, we model activation and inhibition as follows:
Cells secrete a small basal amount of activator, increasing activator levels.
Activator levels stimulate cells to produce more activator and inhibitor.
Inhibitor levels decrease activator levels without requiring the presence
of cells.

This relation between reaction and diffusion produces sharp peaks in
concentration of both chemicals for specific parameter values by the clas-
sical Turing mechanism. The key parameters are δA and δB , the diffusion
rates of morphogens A and B, the activation rates of activator and inhibitor
αA and αB , the inhibition rate of activator βA and the maximum rates at
which a cell can produce morphogens A and B, Amax and Bmax. Increas-
ing the diffusion rate of morphogen A widens the peaks and increasing αB

increases the distance between peaks. Adjusting these parameters allows
us to reproduce patch formation qualitatively similar to experiments [79].

Although this model makes many simplifications (cells are points, pa-
rameter values are arbitrarily chosen) it does show that cell-driven reaction-
diffusion may create strong chemical peaks in morphogen levels and that
for rather simple assumptions, fibronectin clusters can be expected to colo-
calize with morphogen peaks in the form of islands [79]. The model may
also yield insight into the causes of variations in condensation (e.g., along
the proximo-distal axis of the limb or between forelimb and hindlimb) since
simulation results have shown that increasing αB increases the distance be-
tween peaks and increasing the diffusion rate of morphogen A broadens the
peaks.

3. The cellular Potts model. LGCA models are convenient and
efficient for reproducing qualitative patterning in bacteria colonies, where
cells retain simple shapes during migration. Eukaryotic cells such as amoe-
bae, on the other hand, move by changing their shapes dramatically using
their cytoskeleton. In many circumstances, we can treat cells as points on
a lattice despite their complex shapes. In other cases, such as the sporu-
lation of myxobacteria, where the cells differentiate from rod-shaped into
round spore cells, shape change may be responsible for the patterning,
hence requiring a model that includes cell shape. The CPM is a flexible
and powerful way to model cellular patterns that result from competition
between a minimization of some generalized functional of configuration,
e.g., surface minimization, and global geometric constraints [52, 67].

We review recent work that seeks to explain how cells migrate and
sort by studying these interactions in a few examples: in order of increas-
ing complexity: chick embryo cells, slime mold amoebae Dictyostelium dis-
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Fig. 8. Schematic of a two-dimensional cellular pattern represented in the large-
Q Potts model. Numbers show different index values. Heavy black lines indicate cell
boundaries [67].

coideum, and tumor growth. We introduce the Potts model in the context
of grain growth where it was first developed as a cellular model, and extend
it to describe morphogenesis.

3.1. Background of the Q-state Potts model. In the early 1980s,
Anderson, Grest, Sahni and Srolovitz used the Q-state Potts model to
study cellular pattern coarsening in metallic grains [130]. They treated
the interior of a grain as containing “atoms” (each with a single index σ,
describing the atom’s crystalline orientation) distributed on a fixed lattice
and the grain boundaries as the interfaces between different types of atoms
or different crystal orientations. The total number of allowed states is Q.
Figure 8 shows a schematic of a two-dimensional cellular pattern in the
large-Q Potts model.

The model starts from a free energy, the Potts Hamiltonian H. In
grain growth, the interface energy of domain boundaries is the only energy
in the material, so the free energy is proportional to the boundary area of
the domains, which is the number of mismatched links (i.e. neighboring
lattice sites with different indices) [130]:

H =
∑

~i,~j

[

1− δσ(~i),σ(~j)

]

,(3.1)

where σ has Q different values, typically integers from 1 to Q; J is the
coupling energy between two unlike indices, thus corresponding to energy
per unit area of the domain interface. The summation is over neighboring
lattice sites~i and~j. When the number of connected subdomains of different
indices is comparable to Q we say the model is “Large Q.” If the number of
connected subdomains is large compared to Q then the model is “Small Q.”
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Monte Carlo simulations of Q-state Potts models have traditionally
employed local algorithms such as that of Metropolis et al. [98]. A lattice
site is chosen at random and a new trial index is also chosen at random
from one of the other Q− 1 spins. The choice of the trial index is a some-
what delicate statistical mechanics problem (See [169]). The probability of
changing the index at the chosen lattice site to the new index is:

P =

{

1 ∆H ≤ 0

exp(−∆H/T ) ∆H > 0 ,
(3.2)

where ∆H = Hafter−Hbefore denotes the difference between the total energy
before and after the index reassignment, and T is the temperature. A Potts
model simulation measures time in Monte Carlo Steps (MCS): one MCS is
defined as as many trial substitutions as the number of lattice sites. Over
time, these spin reassignments minimize the total domain interface energy.

Lattice simulations of surface energy run into difficulties when lattice
discretization results in strong lattice anisotropy. In low temperature Potts
model simulations, boundaries tend to align preferentially along low-energy
orientations. In addition, boundaries can lock in position because the en-
ergy required to misalign a boundary in order to shorten it becomes too
high. As a result, the pattern unrealistically traps in metastable higher
energy states. Holm et al. [61] studied the effects of lattice anisotropy
and temperature on coarsening in the large-Q Potts model. Although by
very different mechanisms, increasing temperature or using a longer-range
interaction, e.g., fourth-nearest-neighbors on a square lattice, can both
overcome the anisotropy inherent in discrete lattice simulations.

3.2. Extensions of the Potts model to biological applications.

Over the last decade, extensions of the large-Q Potts model have incorpo-
rated different aspects of biological cells [53, 60, 68, 93, 122].

In these applications, the domains of lattice sites with the same index
describe cells, while links between lattice sites with different indices corre-
spond to cell surfaces. The extensions fall into the following categories:

• Coupling between spins.
• Coupling to external fields.

• Constraints.

We review how to implement these extensions.

3.2.1. Coupling between spins. Cells adhere to each other using
cell adhesion molecules (CAMs) present in the cell membrane [5]. Usually
cells of the same type have the same CAMs and adhere to each other more
strongly than to different types of cells (though certain CAMs adhere more
strongly to molecules of different types). Glazier and Graner [53] incor-
porated this type-dependent adhesion into the Potts model by assigning
“types” to indices, and assigning different coupling energies to different
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pairs of types. Smaller values of this energy correspond to stronger bind-
ing. To model an aggregate consisting of two randomly mixed cell types
floating in a fluid medium, they simulated three types of cells: dark cells
(d), light cells (l) and a fluid medium (M) that they treated as a generalized
cell. The surface energy becomes [53]:

H1 =
∑

~i,~j

Jτ(σ(~i)),τ(σ(~j))

(

1− δσ(~i),σ(~j)

)

,(3.3)

where τ(σ) is the type of cell σ. The summation is always over all neighbor-
ing sites in the lattice. We can transform the cell-type dependent coupling
constants into surface tensions [53], and the total energy then corresponds
to the appropriate surface tensions times the interface areas between the
respective types.

A constant Jτ,τ ′ assumes that the cells are isotropic, which is only true
for mesenchyme. Other tissues, such as epithelia, myocytes, or neurons, are
polar, i.e. their cytoskeletons have established a direction, distinguishing
top, bottom and side surfaces of the cells. An angular dependent coupling
Jτ,τ ′ , such as that in [168] can model cell polarity.

Cell-cell interactions are adhesive, thus the coupling energy is nega-
tive. While the change from positive to negative J does not affect ∆H ,
it does affect the hierarchy of energies with respect to the zero energy of
an absent bond. Thus, simulations employing positive energies produce in-
correct hierarchies of diffusion constants: more cohesive cells diffuse faster
than less cohesive cells, contradicting common sense and experiments [149].
However, if we use a negative coupling strength, J < 0, for the surface en-
ergy, the membrane breaks up to try to maximize its surface area (and
hence minimize its energy). To recover the correct behavior we need to
recognize that biological cells have a fixed amount of membrane which con-
strains their surface areas and at the same time reorganize to minimize
their contact energy per unit surface. If we add an area constraint term
resembling the volume constraint to the total energy and employ negative
contact energies we recover the experimental diffusion behaviors [149].

3.2.2. Coupling to an external field. We can model directed cell
motion, e.g., a cell’s chemotactic motion where external chemical gradients
guide cell movement in the direction of higher or lower chemical concen-
tration, by coupling the index to an external field [68, 131]. The coupling
pushes the cell boundaries, causing boundary migration and cell motion.
The modification to the energy is:

H2 = H1 +
∑

sites

µC~i,(3.4)

where µ is the chemical potential, C~i is the chemical concentration at site
~i, and the summation is over lattice sites experiencing chemotaxis. ∆H′ =
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∆H + µ(C~i′
− C~i). For a positive µ, if C > C ′ then ∆H′ < ∆H and the

probability of accepting the reassignment increases. Over time, boundaries
move more often into sites with higher concentrations, and the cell migrates
up the chemical gradient. We can change the direction of chemotaxis by
simply changing the sign of µ. This simple choice for the chemical potential
energy means that the cell velocity is proportional to the gradient of the
chemical potential, i.e. the chemical concentration behaves like a potential
energy. More complicated response function to chemical concentration are
also possible.

3.2.3. Constraints. Biological cells generally have a fixed range of
sizes (exceptions include the enucleate cells of the cornea and syncytal
algae, myocytes, etc.). They do not grow or shrink greatly in response
to their surface energy, though a small change in cell volume results from
osmotic pressure. In the CPM, non-local forces such as those depending on
cell volume or substrate curvature have the form of a Lagrangian constraint.
Such a constraint term exacts an energy penalty for constraint violation.
Glazier and Graner [53] described a cell volume constraint as an elastic
term with cell rigidity Γ, and a fixed target size for the cell V . The total
energy becomes:

H3 = H1 +
∑

σ

Γ(τ(σ))[v(σ) − V (τ(σ))]2 ,(3.5)

where v(σ) is the volume of cell σ and V (τ(σ)) is the type-dependent target
volume. Deviation from the target volume increases the total energy and
therefore exacts a penalty. If we allow the target volumes to change in time,
V = V (t), we can model a variety of growth dynamics, such as cell growth
as a function of nutrient supply (e.g., cancerous cell growth [117, 145]).
Section 3.5 discusses the tumor growth model in more detail.

3.2.4. Extensions to Boltzmann evolution dynamics. The for-
mation and breakage of CAM bonds is dissipative. Therefore we must
modify the classical Boltzmann index evolution dynamics to include an ex-
plicit dissipation. Hogeweg et al. changed the probability for accepting
index reassignments to reflect this dissipation [59]:

P =

{

1 ∆H ≤ Hdiss

exp(−∆H/T ) ∆H > Hdiss ,
(3.6)

where Hdiss represents the dissipation costs involved in deforming a
boundary.

3.2.5. The complete cellular Potts model. With all these exten-
sions, the CPM becomes a powerful cell level model for morphogenesis.

Savill et al. [131] and Jiang et al. [68] have independently developed
CPMs that include differential adhesion and chemotaxis as the major inter-
cellular interactions. The total energy is:
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H =
∑

~i

∑

~j

Jτ(σ~i
),τ(σ~j

)(1− δσ~i
,σ~j

) + Γ
∑

σ

[vσ − Vσ ]2 +
∑

i

µC(i, t) .(3.7)

The first term in the energy is the cell-type dependent adhesion energy.
The second term encodes all bulk properties of the cell, such as membrane
elasticity, cytoskeletal properties and osmotic pressure. The third term
corresponds to chemotaxis, where the chemical potential determines if cells
move towards or away from higher chemical concentrations. Varying the
surface energies J and the chemical potential µ tunes the relative strength
between differential adhesion and chemotaxis [68].

3.3. Chicken cell sorting. The gist of Steinberg’s Differential Ad-
hesion Hypothesis (DAH) [142, 143] is that cells behave like immiscible
fluids. Adhesive and cohesive interactions between cells generate surface
and interfacial tensions. The analogy between cell sorting and the sepa-
ration of immiscible fluids provides important quantitative information on
the effective binding energy between cell adhesion molecules in situ under
near-physiological conditions [11].

In chicken embryo cell-aggregate experiments a random mixture of
two cell types sorts to form homotypic domains, as the upper panel in
Figure 9 shows [102]. The simulations, with only differential adhesion and
no chemotaxis, agree quantitatively with the experiment (Figure 9, lower
panel) [102], validating the model.

In a liquid mixture, interfacial tension between the two phases, λ,
drives hydrodynamic coalescence. When the volume fraction of the minor-
ity phase exceeds a “critical” value, its domains interconnect. The mean
size of an interconnected domain, L, increases linearly in time [137]. Bey-
sens et al. [11] found that in cellular aggregates, such as those shown in the
top panels of Figure 9, the size of the interconnected domains also grows
linearly in time [11], confirming the analogy between cells and immiscible
fluids. Beysens et al. [11] also compared the coalescence dynamics of fluid
mixtures to cell motion during sorting to define the membrane fluctuation
energy in terms of the thermal energy kBT . The numerical values of the
membrane fluctuation energy translate into the binding energy between
the adhesion molecules residing on the cell surfaces. Further experiments
in quantifying these interactions will calibrate the cellular model and allow
realistic choice of simulation temperatures.

3.4. Dictyostelium aggregation and culmination. One of the
most widely used organisms in the study of morphogenesis is the slime mold
Dictyostelium discoideum. It exhibits many general developmental pro-
cesses including chemotaxis, complex behavior through self-organization,
cell sorting and pattern formation. It has become a standard test for cel-
lular models [68, 94, 131].

Unicellular amoebae, Dictyostelium, inhabit soil and eat bacteria.
When starved, some pacemaker cells spontaneously emit pulses of the dif-
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Fig. 9. Comparing the Cellular Potts Model simulation to a cell sorting experiment
using chick retinal cells. The top panels show experimental images from chicken embryo
cells in culture: light cells are neural retinal cells and dark cells are pigmented retinal
cells. An initial random mixture of light and dark cells (a) forms dark clusters after
around 10 hours (b), and eventually sorts to produce a dark cell core surrounded by light
cells after around 72 hours. The bottom panels show the corresponding images from a
simulation with three cells types: light cells, dark cells and medium [102].

fusing chemical signal cyclic adenosine monophosphate (cAMP), thereby
initiating an excitation wave which propagates outward as a concentric
ring or a spiral wave [17]. A neighboring cell responds to such a signal by
elongating, moving a few micrometers up the gradient towards the source
of cAMP, and synthesizing and releasing its own pulse of cAMP, attract-
ing neighboring cells. This relaying results in cell-to-cell propagation of
the cAMP signal [17]. Cells also release phosphodiesterase, which degrades
cAMP to a null-signal, preventing the extracellular cAMP from building
up to a level that swamps any gradients. The amoebae form streams when
they touch each other and then form a multicellular mound, a hemispher-
ical structure consisting of about 105 − 106 cells, surrounded by a layer
of slimy sheath. The cells in the mound then differentiate into two ma-
jor types, pre-stalk (PST) cells (about 20% of the cells) and pre-spore
(PSP) cells (about 80%) [88, 158]. Subsequently, the initially randomly
distributed PST cells move to the top of the mound and form a protruding
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Fig. 10. Life cycle of Dictyostelium starting from a cell aggregate. The individual
cells are about 10 µm in diameter. The final fruiting body is about 3 mm tall. The whole
cycle from starvation to culmination takes about 24 hours (courtesy of W. Loomis).

tip. This tip controls all morphogenetic movements during later multicel-
lular development [127]. The elongated mound bends over and migrates
as a multicellular slug. When the slug stops, the tip (the anterior part of
the slug) sits on a somewhat flattened mound consisting of PSP cells. The
tip then retracts and the stalk (formerly PST) cells elongate and vacuolate,
pushing down through the mass of spore (formerly PSP) cells. This motion
hoists the mass of spore cells up along the stalk. The mature fruiting body
consists of a sphere of spore cells sitting atop a slender tapering stalk. The
whole life cycle, from starvation to formation of the fruiting body, shown
in Figure 10, normally takes about 24 hours.

Various stages of the Dictyostelium life cycle have been modeled us-
ing continuum approaches. Classical two-dimensional models for aggre-
gation date back to early 1970s [75, 106]. Othmer et al. recently pro-
posed “Chemotaxis equations” as the diffusion approximation of trans-
port equations [113], which use external biases imposed on cell motion to
modify cell velocity or turning rate and describe chemotaxis aggregation
phenomenologically for both myxobacteria and Dictyostelium. Odell and
Bonner modeled slug movement [110] using a mechanical description where
cells respond to cAMP chemotactically and the active component of the
propulsive force enters as a contribution to the stress tensor. Vasiev et al.

[152] also included cAMP dynamics in a continuum model of Dictyostelium

cell movement. Their model adds forces corresponding to chemotaxis to
the Navier-Stokes equations. Although they can produce solutions that
resemble aggregation, their equations do not include an elastic response,
making it difficult to connect the forces postulated with experimentally
measurable quantities.
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As chemotaxis is an important aspect of Dictyostelium development,
the cellular model requires an additional field to describe the local concen-
tration C of cAMP diffusing in extracellular space. The equation for the
field is:

∂C(~x)

∂t
= D∇2C − γC + Sc(S, ~x, t).(3.8)

where D is the diffusion constant of cAMP; γ is its decay rate; the source
term Sc describes cAMP being secreted or absorbed at the surface of cells,
whose specific form requires experimental measurement of the cAMP con-
centrations in the tissue.

Using the cellular model coupled to the reaction-diffusion equation for
a general chemo-attractant, Marée et al. [93] were able to simulate the
entire life-cycle of Dictyostelium. Features they have added to the cellular
model include:

• treating chemotaxis as periodic cell movement during aggregation,
slug migration, and culmination,

• describing cAMP dynamics inside the cells by an ODE, the two
variable FitzHugh-Nagumo equation [92],

• assuming that contact between the cell types determines cell dif-
ferentiation and modeling an irreversible conversion of cell types during
culmination: PstO cells differentiate into PstA cells, and PstA cells into
stalk cells,

• biasing the index transition probability p, with a high Hdiss to rep-
resent the stiffness of the stalk tube.

They also assumed that a special group of pathfinder cells occupies the
tip region of the elongating stalk, guiding the stalk downwards. Figure 11
shows the full cycle of culmination from a mound of cells into a fruiting
body.

Hogeweg et al. [59] further extended the cellular model to allow cells
internal degrees of freedom to represent genetic information, which then
controls cell differentiation under the influence of cell shape and contacts.
Open questions include how cells polarize in response to the chemotactic
signal, how they translate this information into directed motion, how cells
move in a multicellular tissue, and the role of differential cell adhesion
during chemotactic cell sorting. We may be able to answer these questions
using the CPM since we can control the relative importance of differential
adhesion and chemotaxis (e.g., as in [68]) and include cell polarity models
(e.g., as in [168]).

A two-dimensional experiment on Dictyostelium aggregation (by trap-
ping the cells between agar plates) by Levine et al. [85] found that the cells
organize into pancake-like vortices. Rappel et al. used a two-dimensional
extension of the CPM to model such aggregation [122]: aggregation and
vortex motion occur without a diffusing chemoattractant provided the ini-
tial cell density is sufficiently high. In addition to the generic CPM with cell
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Fig. 11. Simulation of the culmination of Dictyostelium using the CPM cou-
pled to reaction-diffusion dynamics for diffusing cAMP. Gray scales encode dif-
ferent cell types. Over time, the stalk cells push down through the mass of spore
cells and hoist the sphere of spore cells up along the stalk [94] (courtesy of S.
Marée).

adhesion and a volume constraint, their model includes a cell-generated mo-
tive force to model the cell’s cytoskeleton-generated front protrusions and
back retractions, using a local potential energy. They also assume that
each cell changes the direction of its cytoskeletal force to match those of
neighboring cells. With these assumptions, cells self-organize into a roughly
circular, rotating, confluent vortex. The model reproduces the experimen-
tal observations that confluent cells move faster than isolated cells and that
cells slip past each other in a rotating aggregate. The angular velocity of
cells as a function of radial location in the aggregate agrees with exper-
iment ([122]). The implication of this paper, however, is not clear. The
simulation seems to suggest that the vortex arises from local cell interac-
tions without chemotaxis, as seen in many swarm models, whereas most
researchers believe that chemotaxis is present during aggregation and is
responsible for the collective motion of Dictyostelium.

3.5. Tumor growth. Another example that illustrates the capabili-
ties of the CPM is modeling tumor growth. Exposure to ultra-violet radi-
ation, toxic chemicals, and byproducts of normal metabolism can all cause
genetic damage [76]. Some abnormal cells grow at a rate exceeding the
growth rate of normal surrounding tissue and do not respond to signals to
stop cell division [5]. During cell division, these changes can accumulate
and multiply. In some cases cells can become cancerous. The cancer be-
comes malignant if the cells detach from the parent tumor (metastasize)
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and migrate to a distant location and form secondary tumors. Thus cancers
involve both a failure of cell differentiation and of cell migration [76].

Even though the basic processes of tumor growth are understood, pre-
dicting the evolution of a tumor in vivo is beyond current numerical tools.
A large number of factors influence tumor growth, e.g., the type of the
cancerous cells, local nutrient and waste concentrations, the anatomy and
location of the tumor, etc. The secretion by the tumor of endothelial growth
factors which induce the growth of new blood vessels which supply nutrients
to the tumor (angiogenesis) is particularly complex. Even in in vitro exper-
iments with well controlled microenvironments, stochastic effects that are
always present make prediction difficult. The first step of tumor growth, an
avascular tumor that grows into a spherical, layered structure consisting of
necrotic, quiescent and proliferating cells, is more tractable. Multicellular
tumor spheroid (MTS) experiments as an in vitro tumor model can provide
data on the duration of the cell cycle, growth rate, chemical diffusion, etc.

[48, 49].
Tumor growth requires the transport of nutrients (e.g., oxygen and

glucose) from and waste products to the surrounding tissue. These chem-
icals regulate cell mitosis, cell death, and potentially cell mutation. MTS
experiments have the great advantage of precisely controlling the external
environment while maintaining the cells in the spheroid microenvironment
[48, 49]. Suspended in culture, tumor cells grow into a spheroid, in a pro-
cess that closely mimics the growth characteristics of early stage tumors.
MTS exhibit three distinct phases of growth: 1) an initial phase during
which individual cells form small clumps that subsequently grow quasi-
exponentially; 2) a layering phase during which the cell-cycle distribution
within the spheroid changes, leading to formation of a necrotic core, accu-
mulation of quiescent cells around the core, and sequestering of proliferating
cells at the periphery; and 3) a plateau phase during which the growth rate
begins to decrease and the tumor ultimately attains a maximum diame-
ter. Freyer et al. [48, 49] use EMT6/R0 mouse mammary tumor spheroids
and provide high-precision measurements for controlled glucose and oxygen
supply, as well as various inhibition factors and growth factors. Abundant
data are also available in the literature on the kinetics of tumor growth
under radiation treatment or genetic alteration [76].

Numerous models have analyzed the evolution of cell clusters as a
simplified tumor [1]. Approaches include:

1. Continuum models including those using classical growth models
such as the von Bertalanffy, logistic or Gompertz models [95, 96]. Among
them, the Gompertz model best fits experimental data. None of these
rate models (empirical ordinary differential equations) can simulate the
evolution of tumor structure, or predict the effect of chemicals on tumor
morphology.

2. CA models that treat cells as single points on a lattice, e.g., the
LGCA model of Dormann and Deutsch [36]. They adopt local rules speci-
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fying adhesion, pressure (cells are pushed towards regions of low cell den-
sity) and couple the LGCA to a continuum chemical dynamics. Their
two-dimensional simulations produce a layered structure that resembles a
cross-section of an MTS.

3. Biomechanical models using finite-element methods (e.g., [81]),
mostly applied to brain and bone tumors. These models emphasize the
soft-tissue deformations induced by tumor growth.

We now describe how the CPM can model tumor growth. Any model
of tumor growth must consider cell-cell adhesion, chemotaxis, cell dynam-
ics including cell growth, cell division and cell mutation, as well as the
reaction-diffusion of chemicals: nutrients and waste products, and eventu-
ally, angiogenesis factors and hormones. In additional to differential adhe-
sion and chemotaxis, Jiang et al. [117] include in their cellular model the
reaction-diffusion dynamics for relevant chemicals:

∂Co

∂t
= Do∇

2Co − a(~x),(3.9)

∂Cn

∂t
= Dn∇

2Cn − b(~x),(3.10)

∂Cw

∂t
= Dw∇

2Cw + c(~x).(3.11)

where Co, Cn and Cw are the concentrations of oxygen, nutrients (e.g., glu-
cose) and metabolic wastes (e.g., lactate), do, dn and dw are their respective
diffusion constants; a and b are the metabolic rates of the cell located at
~x; and c is the coefficient of metabolic waste production, which depends
on a and b. Each cell follows its own cell cycle, which depends sensitively
on its local chemical environment. The target volumes are twice the initial
volumes. The volume constraint in the total energy allows cell volumes to
stay close to the target volume, thus describing cell growth. If the nutrient
concentration falls below a threshold or the waste concentration exceeds
its threshold, the cell stops growing and become quiescent: alive but not
growing. When the nutrient concentration drops lower or waste increases
further, the quiescent cell may become necrotic. Only when the cell reaches
the end of its cell cycle and its volume reaches a target volume will the cell
divide. The mature cell then splits along its longest axis into two daughter
cells, which may inherit all the properties of the mother cell or undergo
mutation with a defined probability.

The simulation data show that the early exponential stage of tumor
growth slows down when quiescent cells appear [117]. Other measurements
also qualitatively reproduce experimental data from multicellular spheroids
grown in vitro. These simulations model a monoclonal cell population in
accordance with MTS experiments. However, including cellular hetero-
geneity as e.g., in the model of Kansal et al. [73] is straightforward. Model
extensions will incorporate genetic and epigenetic cell heterogeneity. The
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CPM allows easy implementation of cell differentiation as well as additional
signal molecules.

4. Summary. Physical parameters such as energy, temperature and
compressibility combined with processes such as energy minimization and
reaction-diffusion of chemicals control the evolution and properties of both
living and nonliving materials. We can describe surprisingly complex liv-
ing organisms simply by combining these classical physical concepts. Why
are living structures often so elaborate? The complexity arises in two
ways: first as an emergent property of the interaction of a large number
of autonomously motile cells that can self-organize. Cells need not form
thermodynamically equilibrated structures. Second, cells have a complex
feedback interaction with their environment. Cells can modify their sur-
roundings by e.g., secreting diffusible or non-diffusible chemicals. Their
environment in turn causes changes in cell properties (differentiation) by
changing the levels of gene expression within the cell.

Cellular automaton models describe cell-cell and cell-environment in-
teractions by phenomenological local rules, allowing simulation of a huge
range of biological examples ranging from bacteria and slime model amoe-
bae, to chicken embryonic tissues and tumors.
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