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Abstract

We have enhanced a computational tumor model developed at the Los
Alamos National Laboratory (LANL). We have modified portions of the
model in order to accommodate the inclusion of vasculature (a blood-vessel
system). Other modifications were made which allow chemotherapy treat-
ments which are not cell cycle specific to be simulated. We have worked to
increase the efficiency of the model code, reducing its computational mem-
ory requirements are less severe and allowing simulations to run more ef-
ficiently.

These improvements in accuracy and efficiency have allowed us to study
the effects of chemotherapy treatments on tumor spheroid growth. We
report the results of simulated experiments using two different dose lev-
els, both within normal treatment levels for cyclophosphamide, which is a
commonly-used non-cell cycle specific chemotherapy drug.
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Chapter 1

Introduction

Cancer is the second leading cause of death among Americans and is re-
sponsible for one of every four deaths in the United States (ACS [2006]).
Chemotherapy is one of the most commonly used methods of cancer treat-
ment, but most forms of chemotherapy are extremely toxic and take a heavy
toll on the health of the patient. This is because many standard forms of
chemotherapy target and kill cells in the process of division, an approach
that destroys healthy, non-cancerous cells as well as cancerous cells. Cancer
patients undergoing chemotherapy suffer from hair-loss and compromised
immune systems because both involve rapidly dividing cells. Still, the full
effects of chemotherapy are not completely understood. By creating a bet-
ter model of tumors, tumor growth, and the effects of chemotherapy upon
such tumors, new knowledge about tumors may be uncovered to improve
treatments for patients with cancer.

Our Mathematics Clinic team has been provided with a computer pro-
gram developed by Dr. Yi Jiang and her team at Los Alamos National
Laboratory (LANL) that simulates 3-dimensional spheroid tumor growth.
LANL was established in Los Alamos, New Mexico in 1943 to conduct re-
search for the Manhattan Project. LANL conducts research in many fields,
including basic scientific research projects such as ours.

We have modified Dr. Jiang’s computational model to include support
for a blood-vessel structure, or vasculature. Our modified model simulates
vascular tumor growth dynamics. Chemotherapy treatments using cyclo-
phosphamide, a non-cell cycle specific anti-cancer drug, have also been
simulated. Section 3.3 of this paper contains a summary of how the simu-
lated cyclophosphamide chemotherapy treatment has been implemented.

The original LANL model simulates avascular tumor spheroid growth
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in a laboratory setting. It is a multistage model that captures tumor be-
havior at the molecular level through chemical diffusion, at the subcellular
level through protein expression, and at the cellular level through cellular
division, growth, and death. This model does not contain vasculature. Nu-
merous changes were required to include vasculature. Some of the changes
were minor, while others were extensive. We also streamlined the existing
code to reduce execution time.

In this paper, we detail the work completed over two academic semesters.
In Chapter 2, we provide a description of the original avascular growth
code provided by LANL. The first section describes the model of protein
expression used to simulate a cell’s passage through the cell cycle. The sec-
ond section describes the Monte Carlo approach used to model cell move-
ment and growth. The chapter concludes with a discussion of how diffu-
sion of chemicals to and from the cells is modeled. Chapter 3 enumerates
general code improvements as well as changes made to include vascula-
ture and chemotherapy treatments. The results of these improvements are
described in Chapter 4. Chapter 5 describes continuing and future work.
Our conclusions are given in Chapter 6.

In order to better understand the nature of our project, and to clarify
the relationship of this project with other research in the field, we have
obtained and read many papers by researchers in the field. As a result, we
offer our consideration of the importance of the project in terms of other
past and current research.

The growth of tumors can be divided into three stages. According to
Alarcon et al. [2005], these stages are described as avascular growth, angio-
genesis, and vascular growth. During the avascular stage, there is no blood
supply to the tumor, and the tumor reaches a maximum size limited by the
amount of oxygen and nutrients the tumor can receive through its surface,
Then, some of the tumor cells produce substances known as tumor angio-
genic factors (TAFs). When TAFs diffuse to the surrounding vasculature
of noncancerous tissue, angiogenesis occurs. In this stage, the vasculature
grows toward and into the tumor. Once blood vessels have reached the
tumor, the third stage begins: the tumor receives a vast amount of nutri-
ents and can grow larger than was possible during the avascular growth
stage. Furthermore, the vasculature now serves as an avenue for metasta-
sis. Once a tumor enters the vascular growth stage, its potential lethality
greatly increases (Alarcon et al. [2005]).

Cancer modeling has seen contributions scientists of many backgrounds.
For this project, we focused primarily upon research dealing with vascu-
larized tumors and less on papers about avascular tumor growth and an-
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giogenesis. Tumor modelling has greatly increased in sophistication over
recent decades. Initial models considered avascular tumors that grow ex-
ponentially, which is only a good approximation for initial tumor growth.
Some current tumor models make use of cellular automata (CAs) which
describe cell interactions in space and time. See, for example, de Pillis and
Mallet [2006], Qi et al. [1993], and Ferreira et al. [2003].

Cancer modeling has advanced in two distinct ways. Some projects
have aimed to produce a model that describes all three stages of tumor
growth, including intricate details of the linkage between stages. One ex-
ample of this is a model created by Alarcon et al. [2005]. Other projects
have studied individual stages in great depth and considered variations
in the tumor environment, as done by Alarcon et al. [2004]. Some models
have taken into account extremely complex fluid dynamics in blood flow
modeling, e.g. McDougall et al. [2004]. Our project has aimed to address
the effectiveness and efficiency of chemotherapy, an area that can benefit
greatly from further study.





Chapter 2

Model Overview

We summarize the model provided by our liaison at LANL, and highlight
areas where we have extended or improved the program. In this paper,
computational elements of the code are denoted by a distinctive font (e.g.,
CELLS) while real, biological elements will remain in plain text (e.g., cells).
The model used a three-level approach to modeling spheroid development.
On the subcellular level, chemical concentrations within and between cells
are adjusted in time through chemical diffusion. The chemical concentra-
tions within each cell can cause the cell to change its biological state. CELLs
can be in one of three biological states: proliferating, quiescent, or necrotic.
These states are governed by a cellular model. At the cellular level, the cell
cycle is modeled though a simulated protein regulatory network. At the
extracellular level, cells grow, shrink, and divide, as well as interact with
one another through a Monte Carlo algorithm. Together, these three levels
of simulation capture the fundamental processes that govern tumor devel-
opment. All three levels interact within the framework of a 3 dimensional
space, referred to as the computational GRID. The GRID comprises a series
of SITEs, which are single computational units of space. A computational
CELLs can grow in the GRID and will occupy a number of SITEs.
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Figure 2.1: The four main phases of the cell cycle (Pennsylvania State Uni-
versity [2005]).
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Figure 2.2: The protein regulatory network used in the simulation. Proteins
are either be expressed or not expressed. A protein’s state of expression
may change depending on other proteins’ expression state. The pointed
arrows in the figure signify a stimulatory link while the flat arrows signify
an inhibitory link. For example, the expression of SMAD stimulates the
epxression of P15 and the expression of P15 inhibits the expression of CyCD
and CDK4 (Jiang et al. [2005]). See Section 2.2.2 for further explaination.
(Jiang et al. [2005]).
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2.1 Chemical Diffusion: Subcellular Model

2.1.1 Introduction

A standard non-homogeneous diffusion equation is used to model the dif-
fusion of chemicals throughout the computational domain:

∂u(~x, t)
∂t

= κ∇2u(~x, t) + a(~x) (2.1)

where t is time, ~x is the position in the domain, u(~x, t) is the concentra-
tion of a chemical at ~x and time t, κ is a diffusion constant, and a(~x) is a
source/sink term. A numerical PDE solver was designed at LANL for this
code. In Chapter 3, we present the numerical solver we implemented to
allow for general boundary conditions.

2.1.2 Chemical Diffusion Details

The subcellular model currently considers five chemicals: oxygen, nutri-
ents (such as glucose), waste products, growth factors, and inhibition fac-
tors. These five concentrations of chemicals in a grid site are allowed to
change through the diffusion equation given above. The diffusion con-
stant κ determines how quickly or slowly the chemicals diffuse, allowing
smaller, more neutral chemicals to diffuse faster than larger chemicals. The
a(~x) term allows chemicals to be used or produced within the cells them-
selves. For example, this occurs when a cell consumes oxygen and pro-
duces waste, which then diffuse to and from the cells.

After cells have been allowed to move, grow, and divide as determined
by the protein network and Monte Carlo algorithm, the diffusion algorithm
is applied to all of the cell sites. Using finite difference approximations, the
simulation obtains a linear system of equations which is then solved using
a custom iterative solver. Each CELL determines its own concentration after
this diffusion process by averaging chemical concentrations over all SITEs
it occupies. These average concentrations of chemicals are used later in the
CELL reaction within the cellular model (see Figure 2.2).

2.2 Protein Expression: The Cellular Model

2.2.1 Introduction

This section is included in order to explain how the cell cycle is simulated
in the program. We have not modified the behavior of this code, although
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we have optimized its use of memory as explained further in Chapter 3.
CELLs progress according to the cell cycle shown in Figure 2.1 wherein

they divide through mitosis in the M phase, move through the first growth
stage G1 and a recombinant DNA phase S, and then prepare to divide again
in phase G2. Once a cell develops past the G2 phase, it undergoes mitosis,
spawning a daughter cell, and returns to the beginning of the cell cycle
in phase G1. However, not all cells complete the entire cell cycle. Some
become quiescent, essentially getting “stuck” in the cell cycle. It has been
found that 85% of quiescent cells are stuck in the transition between the G1
and S phase [Jiang et al., 2005]. As a simplifying assumption, cells within
the model can only become quiescent when they attempt to transition from
G1 to S.

In order to model the cell cycle, the model’s CELL contains a simpli-
fied protein regulatory network based on the Kyoto Encyclopedia of Genes
and Genomes [Kyoto, 2005]. The protein regulatory network is outlined
in Figure 2.2. This network is controlled by the CELL’s environment and
will govern its progression through the cell cycle. The combination of this
protein network, its interaction with the growth and inhibition factors in
the environment surrounding the CELL, and probabilistic transitioning be-
tween cell phases provides a surprisingly accurate computational model of
the biological cell cycle.

2.2.2 Protein Expression Details

The protein regulatory network, which handles the phase progression of
the cell cycle, only considers quiescent and proliferating cells because they
are the only ones that can move through the cell cycle. A cell that has be-
come necrotic is dead for the rest of the simulation and will not actively re-
enter the cell cycle. For a live cell, if the concentrations of oxygen, nutrients,
and waste in the environment of the cell are above or below the necessary
thresholds for normal cell development, a proliferating cell becomes qui-
escent and a quiescent cell becomes necrotic. If the chemicals are within
given thresholds, the algorithm then calculates the cell metabolic rates and
a “factor level” that describes the ratio of growth factor to inhibition factor
the cell is receiving. Cellular metabolic rates are used for a number of pur-
poses. In order for normal cell division and growth to occur, a cell must
have the correct metabolic rate. In relation to the chemical diffusion model,
metabolic rates define the production and consumption rates of chemicals:
they are used to define the source and sink terms ~a(~x) for each chemical
within the diffusion equation described in Section 2.1.
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The protein regulatory network used to model protein interdependen-
cies is a system of levels in which proteins are set to either ON or OFF and
are either stimulatory or inhibitory for proteins in the next level. In the
protein regulatory network, if a protein is stimulatory, the next level pro-
tein will be turned ON if that original protein is ON, and OFF otherwise. If
any number of proteins pointing to another protein are inhibitory, the next
level will be turned OFF if any of the inhibitory proteins are ON, and on
only if all of the inhibitory proteins are OFF (see Figure2.2).

The factor level is calculated as

Factor level =

(

1 + exp
(

−α

(

gF − ihF
initGF

− θ

)))−1

,

where gF and ihF are current local concentrations of growth and inhibitory
factors, respectively. Both are outputs of the extracellular chemical equa-
tions. initGF is the concentration of growth factors in the medium sur-
rounding the aggregate, while θ is a factor level threshold, and α is a free
parameter (Jiang et al. [2005]). The factor level describes a transition prob-
ability that is used in conjunction with the protein regulatory network to
determine the expression of each protein. A protein may be either ON or
OFF. In order for a protein to make a transition between these states, the
protein network must first allow for the transition. This is accomplished
when all proteins which inhibit the expression of the protein of interest are
in the OFF state and at least one protein which stimulates its expression is
turned ON. When these conditions are met, the factor level is used as a
probability for transition of the protein expression state.

Note that a higher growth factor concentration and a lower inhibitory
factor concentration result in a higher factor level, which in turn results in
a higher probability that a protein in the network will actually make a state
transition provided that the regulatory network conditions are satisfied.

In the code, two conditions must therefore be met in order for a certain
protein to turn ON - either a stimulatory link must be ON or all inhibitory
links must be OFF, and a random number generated by the code is less than
the factor level previously calculated, effectively making the factor level the
probability of transition.

If the cell makes it through the entire protein regulatory network and
meets a target level of growth, it will move onto the S phase. Once in the S
phase, if the factor level is high enough and the cell is “on track” to continue
growing at the desired rate, it will move into the G2 phase. Once it is within
the G2 phase, it will become quiescent if it has not grown enough within a
specified interval of time. If at any point, the cell does not move onto the
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next phase or the necessary protein links are not turned on or off, a cell will
become quiescent.

2.3 Monte Carlo Algorithm: Extracellular Model

2.3.1 Introduction

This section describes the algorithm used to model cellular growth over
the GRID. We have not changed this algorithm, though we have extended
it to handle the intercellular interactions of the CELL types that we incorpo-
rated, such as the VASCULARCELL. We include the description to provide
a more complete explication of the simulation.

Monte Carlo algorithms describe a broad range of numerical methods
that use function of random numbers and whose accuracies are bounded
statistically. Monte Carlo algorithms are used in many diverse fields, from
multi-variable integration to high-energy physics and game simulation. In
contrast to numerical discretization of partial differential equations mod-
eling the underlying physic of a system, Monte Carlo methods simulate
the physical system directly. Thus, there is no need to develop equations
describing the evolution of the system. Instead, Monte Carlo algorithms
proceed through random sampling of a probability density function to di-
rect the behavior of the system.

Our Monte Carlo algorithm provides cells with a mechanism for cell
growth and movement. This algorithm, dubbed the Metropolis algorithm,
is a stochastic algorithm. It proposes a random change in a system and then
determines whether to accept or reject this change based on the system’s re-
sponse. The change in “energy” of the system is used as to determine the
probability of acceptance of a proposed change. Here, “energy” can be any
intrinsic function of the system which one desires to minimize. In our cel-
lular model, energy is determined from the cells’ volumes and predefined
coupling energies with bordering cells. Natural systems tend toward lower
energy, but are subject to stochastic variation, allowing temporary and ran-
dom fluctuations. The Monte Carlo algorithm incorporates these realities
of nature.

In general, a physical system is modeled with the Metropolis algorithm
by first finding the current system’s energy (determined from the intrin-
sic energies of the bodies being simulated and the energy of interactions
between these bodies) and compares this to the energy of the system af-
ter a small change. If this change causes the total energy of the system
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to decrease, the change is immediately accepted. Otherwise, if the change
results in a higher energy, the modification is accepted with a probability
determined from the Boltzmann factor, a probability density function de-
scribing many physical systems. In Chapter 3, we describe our changes to
the Monte Carlo algorithm to include support for the vasculature.

2.3.2 The Monte Carlo Algorithms

We explain how the Monte Carlo program allows for CELLs to move and
grow. First a random SITE is chosen within the GRID. The neighbors of
this SITE are tested to determine whether it is contained entirely within a
CELL or on a CELL border. If none of this SITE’s neighbors are owned by
another CELL, the SITE is known to be internal and another random SITE is
chosen until a border SITE is found. Once a border SITE is found, a random
neighbor SITE owned by another CELL is chosen. This results in an original
grid SITE and a neighbor SITE, owned by a different CELL. The energy of
the original configuration is calculated as a function of the volume of each
CELL and its target volume, as well as on a matrix J describing the coupling
energy between two CELLs:

Es = ∑
i

γi(Vi − Vtarget,i)
2 + ∑

j∈{neighbors}
J[s][j] (2.2)

In Equation 2.2 , s is the SITE for which the energy is being calculated, i
iterates over the two cells of interest at the border, γ is some constant pre-
factor, and J[s][j] describes the interaction energy between the type of cell
at s and the type of cell at j.

After this calculation, the algorithm assigns the original SITE’s owner-
ship to that of the neighboring cell. The same energy calculation is made on
this modified configuration. If the energy is lower than that of the original
configuration, the change is immediately accepted. If the energy is higher,
the Boltzmann factor is used:

f actor = e−∆E/kBT (2.3)

where ∆E is the change in energy between the initial configuration and the
final configuration after the proposed change, kB is the Boltzmann constant
relating temperature to energy, and T is the temperature of the system.

The result, f actor, is the Boltzmann factor and represents a probabil-
ity of acceptance. A random number is then generated from the uniform
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distribution between 0 and 1, and the change is accepted if this random
number is lower than the Boltzmann factor. Note that the Boltzmann factor
depends on the two energies as well as the temperature, so a high change
in energy would result in a lower Boltzmann factor and, therefore, a lower
probability of acceptance. A lower temperature results in a larger Boltz-
mann factor and therefore a higher probability of acceptance. If the change
is rejected, the ownership of the SITE in question reverts back to the original
cell, and if the change is accepted, ownership of the SITE is unchanged.

Stochastic energy fluctuations are allowed in Monte Carlo algorithms
as is allowed by statistical mechanics and observed in all finite temperature
systems.





Chapter 3

New Developments:
Streamlining, Vascularizing,
and Adding Chemotherapy

The team has extensively revised the avascular tumor model described in
Chapter 2. Support for simple vascular systems have been completely in-
tegrated into the code. We have created three different vasculature geome-
tries, and the code can be extended to support any three-dimensional vas-
culature. Additionally, these vasculatures may be inserted after the simu-
lation has been running for a pre-specified amount of time. This automat-
ically creates new Dirichlet boundary conditions at SITES designated to be
part of the vasculature.

3.1 General Code Improvements

Before implementing model changes, it was necessary to streamline the
preexisting avascular code in order to improve the run-time, make more
efficient use of memory, and fix computational errors. The team changed
the CELL identification numbers to pointers, created new global constants,
streamlined memory usage, and corrected miscalculations.

3.1.1 CELL IDs to CELL Pointers

We changed how CELLs are mapped to particular GRID SITEs. The origi-
nal model generated a list of CELLs, each one with a unique identification
number, or ID. Each Site on the GRID held the ID of the CELL in which it
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was contained. There were disadvantages to using this method. In order to
find the CELL corresponding to a given GRID SITE, the entire list of CELLs
needed to be searched. This was inefficient because the simulation would
search through many unrelated CELLs every time one of them needed to be
accessed. Additionally, extra memory was required to handle a variable-
length array such as this list of CELLs as well as more time since the CELLs
were being constructed on the stack, copied into the array, then deleted
from the stack. The team modified the entire code so that each Site in the
GRID stores a pointer to the CELL to which it belongs. This method requires
no additional memory overhead or additional CPU time. Also, this change
makes the code easier to understand without removing functionality. For
one, “magic numbers” or special CELL IDs were removed from the code.
For example, the C++ code below is a common operation which finds a cell
from a GRID SITE by extracting the CELL ID, searches the CELL array for
the ID to determine the CELL Index, and, if not in the array, sets this index
to zero, which is understood to be a dead cell.

int ID = grid(i,j,k).ID;

int cellIndex = getCellIndex(grid(i,j,k).ID);

if (ID > 0 && cellIndex < 0) cellIndex = 0;

By changing the data structure so that the grid contains CELL pointers, this
code translates to the following

Cell* cell = grid(i,j,k).getCell();

which has the same functionality since one may easily determine whether
the cell is necrotic, ask for its chemical concentrations, and modify it through
this handle.

Such modifications make the code easier to read and cause the simula-
tion to run slightly faster when run on a single computer. However, these
changes may need to be undone to parallelize the code so it can run concur-
rently on multiple computers. When these modifications were made, ease
of future parallelization had not yet become one of the goals of our project.

3.1.2 Constant Definitions

We modified the code to eliminate constants that were not used without
being predefined, thus enhancing the readability and usability of the model
code. Whenever these constants need to be changed, it is now possible to
do so only once at the beginning of the code. Previously, it was necessary to
search through every line to find and modify all instances of the constant.
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3.1.3 Boolean Storage

A limitation of the original code is the amount of memory it uses. For large
GRID sizes, the amount of memory is larger than the amount of RAM.
When this occurs, the operating system will write the excess data to the
swap space on the hard drive. When swapped data are needed, they are
moved back into RAM, and another chunk of the data is moved to the hard
drive. However, accessing the hard drive is several orders of magnitude
slower than any other operation of the program. When this occurs, the pro-
gram consequently spends the vast majority of its run-time simply reading
and writing to the hard disk. This is known as “thrashing,” and should be
avoided if possible. In its original form, the simulation would thrash on
any GRID size larger than about 220 sites on any computer with less than
a gigabyte of RAM. This is the reason that the program would take several
weeks to run on large GRID sizes, but slightly smaller simulations would
finish in a matter of hours.

The team worked to alleviate this problem by optimizing the code to
use less memory. The space required to represent protein expression in
CELLs has been reduced. In any given cell, a protein can either be expressed
or not expressed. In the CELL class, each protein was originally stored as an
integer, which requires 8 bytes of space. If the integer was a 1, the protein
was expressed in that cell. If it was a 0, the protein was not expressed. As
an example, the following code relates the expression of the TGFB protein
and the levels of growth and inhibition factor to the SMAD protein:

if (TGFB == 1 && drand48() < factorLevel) {

SMAD = 1;

} else {

SMAD = 0;

}

To conserve memory, the code now stores all proteins as booleans, which
each require only one byte of space. The above code has been changed to
the following:

if (TGFB && drand48() < factorLevel) {

SMAD = true;

} else {

SMAD = false;

}
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With our modification, the CELL code is now 87% more memory effi-
cient than the original code. Moreover, the code is now syntactically easier
to read. If more memory efficiency is necessary, it is possible to store each
protein in a single bit, resulting in another 87% savings in memory. How-
ever, this will result in code that is slightly (though insignificantly) slower
and syntactically more convoluted. These and other changes to optimize
the program’s memory usage enables the simulation to run more quickly
on larger data sets.

3.1.4 Incorrect Code

The team also made a small but important change in the code so that the
simulation matches what is described in [Jiang et al., 2005]. In the CELL
class, there is a function called calculateMetabolicRates, which calcu-
lates the rates of production/consumption of each of the five chemicals
used in the simulation. Originally, this function calculated the rate of waste
production as the average of the rate of oxygen consumption and the rate
of glucose consumption, as shown here:

double perw = (perO2+pern)/2;

However, in the Parameters section on page 9 of [Jiang et al., 2005], it
is stated that the rate of waste production should be 1.5 times the rate of
glucose (nutrient) consumption. Moreover, it makes little sense to define
the waste production rate as the average: this will break if the model is
extended to include other metabolic pathways that consume oxygen. The
code has been changed to be consistent with the paper. It now reads as
follows:

double perw = 1.5 * pern;

3.2 Addition of Vasculature

Our main task this year was to incorporate vasculature into the model. This
was a significant step towards accurate tumor modeling because we can
then simulate the tumor’s response to chemotherapy interacting with the
tumor through the vasculature. In order to add vasculature, we needed to
extend the CELL class and create a new VASCULARCELL class. It was also
necessary to improve the diffusion solver so that it supports boundary con-
ditions at the edges of the vasculature. Lastly, we needed to create a way to
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insert the vasculature into the tumor after it had been growing avascularly
for several timesteps. (Recall that the initial growth of a biological tumor is
typically avascular).

The incorporation of vasculature required modifications to multiple seg-
ments of the code. The simplest change involved inclusion of new global
constants to describe the concentrations of chemicals in the vasculature.
These are defined in the definitions file at run-time. We also implemented
a new class of tissue and a new PDE solver. The current implementation
of the vasculature inserts itself into the GRID after a delay in which the tu-
mor grows avascularly. The following sections describe how these changes
were made. The Appendix includes further examples of altered source
code.

3.2.1 TISSUE Class Addition

The preexisting CELL class supported necrotic, quiescent, and proliferating
cells. In order to create the vasculature, the team created a class of objects
similar to the CELL class. In order to create these behaviors, a superclass,
TISSUE, was created, and CELL was changed to inherit from TISSUE. The
TISSUE class fulfills all of the generic functions of a cell on the GRID, such
as supporting functions involving the center of mass of a cell, the storage
of chemical concentrations, and so forth. The CELL class handles behavior
particular to CELLs. It implements the react() function that governs pro-
tein expression, as well as the functions to make cells quiescent, necrotic,
and proliferating.

We created the VASCULARCELL class, which also inherits from the TIS-
SUE class. This has allowed us to keep the vasculature as a kind of TISSUE
that can occupy SITES on the GRID, yet change some aspects of the class
to give the desired functionality. For instance, protein synthesis does not
occur in the bloodstream, so the protein expression portion of the model
was modified to not change the proteins expressed in the vasculature. The
functions which change the chemical concentrations in the TISSUE have
also been overwritten to not change the concentrations within the vascula-
ture, which are intended to remain constant.

3.2.2 The Actual Creation of the Vasculature

In order to make the vasculature geometries as versatile as possible, we in-
sert the vasculature into the simulation using the VASCULARMAKER class.
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This class can easily be extended to include more vasculature geometries
than the three we currently provide.

To create a new vasculature geometry, one must create a new function
in the VascularMaker class, using the makeSiteVascular() function to ac-
tually add specific Sites in the GRID to the vasculature. One must then edit
layoutVasculature() to call this new function and create a vasculature
with the new geometry. The function layoutVasculature() creates all of
the different vasculature geometries, and chooses the correct one based on
the value of the global integer VascType, specified in the definitions file
passed into the simulation at run-time. If the value of VascType is not a
valid form of vasculature, no vasculature is inserted. The class currently
supports the creation of a single linear blood vessel, a hexagonal mesh, a
rectangular mesh, or no vasculature. These vasculatures are further speci-
fied using the global parameters VascRadius and VascLayers. VascRadius
specifies the radius, in SITES, of each blood vessel. VascLayers specifies the
number of planar meshes (either hexagonal or rectangular) inserted into
the GRID; these meshes are evenly spaced through out the entire GRID.

3.2.3 Time-Delayed Addition of the Vasculature

Our liaison at LANL requested that we structure the code so that the vascu-
lature could be inserted after the tumor growth simulation has begun. That
is, the model should grow an avascular tumor for a given amount of time
before the vasculature is created. Separate code simulating the angiogene-
sis stage of tumor growth is currently unders development at LANL. It is
anticipated that this angiogenesis code and the code simulating vascular-
ized growth that we have developed will ultimately be combined to allow
for modeling multistage tumor growth.

To facilitate the delayed appearance of vasculature in the tumor, we
added a new parameter to the definitions file, called VascDelay. It specifies
the number of days that the tumor is allowed to grow before insertion of the
vasculature . When vasculature is inserted, the simulation iterates through
each SITE in the GRID where vasculature will be inserted and, if it is already
occupied by a cell, shrinks that cell so that it no longer occupies the SITE.
The vasculature is then inserted into the SITE.

A potential problem with this method is that it is theoretically possible
to cut a CELL into two separate parts by inserting the vasculature through
the middle of the CELL. However, the team believes that this situation is
sufficiently unlikely to occur, and if it does, sufficiently unlikely to cause
problems with the simulation. This may occur if a CELL grows in a barbell
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shape and the vasculature is inserted in the middle of the cell, but we have
not seen any such unusually shaped CELLs.

If the vasculature has a planar geometry, it may slice a CELL into halves,
but such a geometry would be biologically unfounded (though using such
a geometry may still cause this CELL slicing to occur). We suspect that
even if such a CELL is split, this would not make a significant difference: It
would affect the diffusion of chemicals because the concentrations of chem-
icals are averaged over all SITEs within a CELL, but if the CELL is close
enough to the vasculature for it to be cut into two parts the concentrations
of the chemicals within it should all be quite close to the concentrations in
the vasculature itself, and therefore the concentrations should not be sig-
nificantly affected.

There is one more case in which this “tunneling” method of inserting
the vasculature may have an unusual impact on the simulation. If tumor
CELLs are significantly larger than the vasculature, it is possible to “im-
pale” a CELL so that the vasculature goes in one side of it and out the other.
However, this will not actually impact the CELL adversely, because it is still
a single piece. Although this situation is not realistic because it can result
in toroidal CELLs, it should not adversely affect the simulation.

3.2.4 Diffusion Model Modifications

The introduction of the vasculature required a restructuring of the original
diffusion model, as described below. Since blood flow occurs at a much
faster rate than the diffusion modeled in the simulation, changes in the
concentrations of chemicals in the vasculature due to diffusion are over-
whelmed by changes due to the circulation of the blood itself throughout
the rest of the body. The human heart pumps approximately 6 quarts of
blood per minute. This is equivalent to cycling the body’s entire blood
supply once. Therefore in 45 minutes (the real time being modeled within
one diffusion step) the blood in a human body would have been cycled
almost 45 times through the vasculature. Consequently, the team decided
that the best model would be for the vasculature to maintain constant con-
centrations of the 5 chemicals internally.

These constant concentrations are ideally implemented as a Dirichlet
boundary condition in the diffusion equation solver. However, the incor-
poration of such boundary values in a vasculature of arbitrary geometry
into the diffusion equation is difficult because changing the geometry of
the vasculature changes the boundary values of the PDE problem.

Initially, our liaison suggested we approximate the boundary condi-
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tions by solving the diffusion equation without the boundaries, and then
resetting the concentrations of the chemicals on the boundary itself. Un-
fortunately, this method did not produce the desired result. After further
consultation, we then rewrote the entire diffusion solver to handle Dirich-
let boundary conditions in arbitrary geometries. This new solver gives the
correct behavior. The two methods we tried are described below.

The First Method

The team initially attempted to perform an approximation to constant chem-
ical concentrations, instead of actually treating them as boundary condi-
tions. At the end of each diffusion calculation, the concentrations of chem-
icals within the vasculature were reset to their original values. This com-
putational technique allows the model to avoid solving for the computa-
tionally expensive non-symmetric boundary values that would otherwise
arise. This approximation had already been used by our liaison to attempt
to keep the concentration of chemicals in the medium surrounding the tu-
mor constant, and it proved useful in that instance. Although this approx-
imation gave slightly different results than a similar model in which the
concentrations in the vasculature were treated as actual boundary values,
this method made the equations solvable by the original PDE solver that
was already implemented in the code, and could therefore be seamlessly
integrated into the simulation.

Unfortunately, this approximation did not work as well as expected.
The team implemented this method and experimented with different fre-
quencies of resetting the concentrations, but the rates of production and
consumption of chemicals in cells and the rates of diffusion of the chem-
icals overwhelmed this resetting, and the concentrations of the chemicals
within the vasculature were all but governed by the concentrations of the
chemicals in the surrounding TISSUE. Due to this setback, the team decided
to completely re-implement the PDE solver to support arbitrary Dirichlet
conditions.

The New Diffusion Solver

We created a new diffusion solver that uses a backward-Euler finite dif-
ference approximation to iteratively solve the diffusion equation using the
Gauss-Seidel method. We outline the foundation of the technique below.
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Derivation of the Algorithm The general partial differential equation gov-
erning diffusion is given by

∂u(t,~x)

∂t
= κ∇2u(t,~x) + a(~x) (3.1)

where u(t,~x) is concentration at location ~x and time t, κ is a diffusion con-
stant, and a(~x) is a source/sink term.

In order to numerically integrate this equation in time, one must first
discretize the system in time and space. Thus, the spacial domain becomes
a grid of size X × Y × Z and u shall be redefined over this domain:

u(t,~x) 7→ ut
x,y,z a(~x) 7→ ax,y,z (3.2)

where 0 < x < X, 0 < y < Y, 0 < z < Z are integer indices and X, Y, Z
are the dimensions of the grid. Writing t as a superscript is only out of
convenience.

Recall the Second Central Difference Approximation is given by

∂2

∂x2 ut
x,y,z =

ut
x+1,y,z − 2ut

x,y,z + ut
x−1,y,z

4x2 + O(4x2) (3.3)

Substituting this approximation into the PDE yields

∂u(t,~x)

∂t
= κ

(ux+1,y,z − 2ux,y,z + ux−1,y,z

4x2 + · · ·

)

+ ax,y,z (3.4)

and by using a cubic grid where 4x = 4y = 4z, one obtains

∂u(t,~x)

∂t
≈ ax,y,z −

κ

4x2

(

6ut
x,y,z − ∑

x′ ,y′ ,z′
ut

x′ ,y′ ,z′

)

(3.5)

where x′, y′, z′ are taken over the 6 adjacent neighbors of grid site x, y, z.
To achieve stability, the Backward Euler scheme may be applied to yield

ut+4t
x,y,z −4t

(

ax,y,z −
κ

4x2

(

6ut+4t
x,y,z − ∑

x′ ,y′ ,z′
ut+4t

x′ ,y′ ,z′

))

= ut
x,y,z (3.6)

The right hand side of Equation 3.6 can clearly be calculated explicitly. De-
fine

Φt
x,y,z , ut

x,y,z + 4tax,y,z (3.7)
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Then,

ut+4t
x,y,z +

κ4t
4x2

(

6ut+4t
x,y,z − ∑

x′ ,y′ ,z′
ut+4t

x′ ,y′ ,z′

)

= Φt
x,y,z (3.8)

and therefore
(

1 + 6
κ4t
4x2

)

ut+4t
x,y,z −

κ4t
4x2 ∑

x′ ,y′ ,z′
ut+4t

x′ ,y′ ,z′ = Φt
x,y,z (3.9)

which is simply a matrix equation with diagonal terms
(

1 + 6 κ4t
4x2

)

and 6

off-diagonal terms
(

− κ4t
4x2

)

.
The team chose to implement the Gauss-Seidel iterative method to solve

the above sparse linear system. For a general linear system Ax = b, or
∑

n
j=1 aijxj = bi (where the matrix components aij should not be confused

with the forcing term axyz of Equation 3.2), the Gauss-Seidel iteration is
given by

xk+1
i =

1
aii

(

bi −
i−1

∑
j=1

aijxk+1
j −

n

∑
j=i+1

xk
j

)

(3.10)

where xk
i represents the kth iterate of the ith component of the vector x. In

our case, this iteration translates into

ux,y,z =
1

(

1 + 6 κ4t
4x2

)

(

Φx,y,z +
κ4t
4x2 ∑

x′ ,y′ ,z′
ux′ ,y′ ,z′

)

(3.11)

where we are updating the iterate ux,y,z immediately while iterating through
the grid.

Boundary Conditions In the Gauss-Seidel iteration, Dirichlet boundary
conditions may be enforced by setting

uBC
x,y,z = u0 (3.12)

where u0 is a boundary value and uBC
x,y,z is a boundary site. In terms of the

matrix equation, this is equivalent to the row corresponding to site (x, y, z)
consisting of only a one on the diagonal. Thus, by setting all boundary sites
uBC

x,y,z to the boundary value before the Gauss-Seidel iteration and skipping
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the update from Equation 3.11 of the Gauss-Seidel iteration for just these
boundary sites, this constraint will be conserved.

Thus, we are able to treat arbitrary boundary geometries by applying
this strategy on a site-by-site basis. That is, non-boundary sites will obey
Equation 3.11, while boundary sites obey Equation 3.12.

Convergence It is clear that our linear system is strictly diagonally dom-
inant since

|aii| = 1 +
3κ4t
4x2 > ∑

j 6=i
|aji| = 6 ·

κ4t
24x2 =

3κ4t
4x2 (3.13)

Therefore, the spectral radius of our linear system must be less than 1 so the
Gauss-Seidel iteration must converge for any initial condition u(0). (Saad
[1996])

Furthermore, the backward Euler method is unconditionally stable with
error linear in step size. Therefore, the backward Euler method guarantees
convergence to the exact solution as 4t → 0 and the Gauss-Seidel itera-
tion gaurantees convergence to the backward Euler method’s approximate
solution for any given 4t.

In implementation, the Gauss-Seidel method requires a break condition.
We use a vector residual condition given by

||ut+4t − ut|| < ε (3.14)

where || · || is the Euclidean norm and ε is a given tolerance level. Since the
number of components of u (the dimension of u) scales with the total grid
size XYZ, we choose ε ∝ 1

XYZ to achieve error which is proportional only
to the step size 4t, which orginates from the backwards Euler method.

3.2.5 The Monte Carlo Model

Finally, the Monte Carlo code needed to be extended to support vascula-
ture. The J-matrix (described in Section 2.3) which is used by the model
for energy calculations to determine the growth of cells was extended by
one row and one column to contain relational constants for the vasculature.
To calculate these values, an example configuration of cells and cites next
to vasculature was considered. From this configuration, we calculated the
energy, which includes the unknown J-matrix energy for surface binding
energy between the vasculature and other cell type. We then solved this
equation for the previously unknown J-matrix entry. The energy equation
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contains two terms: a volume component, and a configuration component.
The configuration component in this calculation contains the unknown J-
matrix energy, and must be the same order of magnitude as the volume
component. So, a J-matrix value is determined which ensures that this is
the case. This process was repeated for each unknown J-matrix entry.1

Additionally, the team generalized the code to support J-matrices of ar-
bitrary size. This will allow additional CELL types to be quickly and easily
added in the future. Moreover, in our current implementation, vasculature
cells cannot become any other cell type and do not change in size or mul-
tiply. This has been added to the model so that the Monte Carlo algorithm
will not change the vasculature in any way.

3.3 Chemotherapy

One of the most commonly used chemotherapy drugs is cyclophospha-
mide. Cyclophosphamide is a non-cell cycle specific drug, which means
that cylophosphamide treatments can be modeled without modifying the
subcellular component of the model. Cyclophosphamide induces apopto-
sis in rapidly dividing cells by alkylating their DNA. This prevents DNA
replication and ultimately results in cell death. In order to model cyclo-
phosphamide treatments, we made several approximations. Due to the
structure of the model, these approximations were necessary, but may be
relaxed if certain changes are made to the model in the future.

3.3.1 Limitations of the model

Several aspects of the model limit the accuracy of possible chemotherapy
modeling. First, the model contains no mechanism by which necrotic cells
can be removed. Because chemical diffusion and growth dynamics are af-
fected by the presence or absence of cells, this can negatively affect the
accuracy of chemotherapy simulation using this model. Secondly, the toxi-
city responses of patients to particular chemotherapy dose levels are highly
variable (Gurney [2002]) and so a model which does not consider variable
toxicity effects will have limited use. Currently, there is no metric within
this model for measurement of patient toxicity, because the model was de-
signed for in vitro tumor spheroids.

1The team would like to thank Amy Bauer at LANL for her explanation of this method.



Chemotherapy 27

3.3.2 Cyclophosphamide Treatment Implementation

The reduction in tumor size in response to a dose of cyclophosphamide is
governed by

N = No ∗ exp(−KDo), (3.15)

where No is the number of non-necrotic cells present in the tumor prior
to the treatment being administered, N is the number of non-necrotic cells
present in the tumor after the treatment, K is a constant representing the
tumor-killing efficacy of the particular drug (for cyclophosphamide, K ≈
5), and Do is the amount the drug administered, in grams (Osteen et al.
[2001]). A typical initial dose of cyclophosphamide is 1.6 grams (Gurney
[2002]). In practice, further dose amounts will typically be adjusted de-
pending on the patient’s response to the initial and subsequent doses, but
as mentioned above, this is not within the scope of the model. So, Do will
be held constant at 1.6 grams.

A number of computational simplifications are necessary in order to in-
corporate this into the model. It is not clear how long it takes for the tumor
cells to be killed by a particular chemotherapy. As a simplifying assump-
tion, if a chemotherapy dose is to kill X tumor cells, and there are T time
steps between doses, we assign each cell a probability of death such that the
expected number of cells killed during each time step is X/T. During each
time step, we calculate the total amount of cyclophosphamide that is found
in non-necrotic cells, D(nn). Then, we assign to each cell i a probability Pi of
death:

Pi = Di(1 − exp(−8))/(TD(nn)). (3.16)

The coefficient Di/D(nn) assures that the probability of a cell dying is de-
pendant upon the amount of cyclophosphamide it contains. Because the
sum of these coefficients over all cells is identically 1, the expected number
of cells killed is correct.

3.3.3 Implementation

We implemented a stochastic model to simulate the chemotherapy. Che-
motherapy, and in particular cyclophosphamide, has been added as a new
chemical in the model, and it diffuses from the vasculature and medium
into the tumor like all other chemicals. We have added the global con-
stants ChemoPeriod and ChemoDuration to describe doses of chemother-
apy: ChemoPeriod is the time from the beginning of one dose to the begin-
ning of the next, while ChemoDuration is the time from the beginning of a



28 New Developments:
Streamlining, Vascularizing, and Adding Chemotherapy

dose to the end of that dose. The first dose starts when the vasculature is
inserted, and doses begin at regular intervals after that.

The First Implementation

In our original implementation of the chemotherapy model, each CELL has
a probability of being affected by cyclophosphamide based on the global
constant ChemoDeathFactor. This constant holds the value of (1 − e−kD0),
which is the fraction of the tumor that will die each dose. At each step,
every proliferating cell has a probability of dying from chemotherapy. This
probability is proportional to the relative amount of chemotherapy in the
cell, the ChemoDeathFactor, and inversely proportional to the length of the
dose. If a cell is killed, all of the chemotherapy in it is “used up” and the
concentrations of cyclophosphamide within the cell are set to 0. The SITEs
in the CELL then become part of the medium again, which is analogous to
the cell being swept away by the bloodstream or otherwise absorbed into
the body.

This model reflects the empirical behavior of actual tumors (Osteen
et al. [2001]). However, it leads to some counterintuitive results: the frac-
tion of the tumor that dies is equal to the ChemoDeathFactor, but the frac-
tion of it that survives is slightly more than the remaining amount. This
occurs because the cells that are not lysed are still dividing. As a simple
example, it is possible for half the cells to die, half of them to divide, and
the total number of proliferating cells in the tumor to remain the same. Un-
fortunately, this behavior is realistic and is the reason most patients require
multiple doses of chemotherapy.

The Second Implementation

Although this model exhibited the desired properties of chemotherapy, it
did not exhibit this behavior independently. Instead, one of the parame-
ters given to the model was the toxicity of the cyclophosphamide in the
form of the expected porpotion of cells that were to die each step. What
we actually desired was a simulation which exhibited this as an emergent
phenomenon.

Apoptosis Consequently, we created another stochastic model of cyclo-
phosphamide. In this new model, each CELL has a probability Pi of under-
going apoptosis defined as follows:

Pi = 1 − e−C/C0 (3.17)
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where C is the concentration of cyclophosphamide within the CELL, and C0
is a reference concentration (See CHEMOREFCONC in the parameters input
file). Note that when C = C0, the cell has approximately a 63.2% chance of
entering apoptosis.

Additionally, we have implemented a model of cell apoptosis. When a
CELL is affected by cyclophosphamide, it becomes an apoptotic cell, which
has been implemented as a new CELL type. When a CELL becomes apo-
totic, it will remain apoptotic for a time specified by AACTIVATIONTIMER
from the parameters file before undergoing phagocytosis, when the cell’s
constituent SITEs turn back to medium. Apoptotic cells have their own sets
of metabolic rates separate from other CELL types. At this point, we have
set these metabolic values to those of queiscent cells, though this is likely
an overestimate of an actual apototic cell’s metabolic rates. These values
are also easily changable from within the input parmeters file passed to the
program at execution.

Furthermore, CELLs now metabolize cyclophosphamide even when they
are not apoptotic. However, due to time constraints, we could not ob-
tain clinical data concerning rates of cyclophosphamide metabolism. Cur-
rently, we have assigned values for these rates which we believe are of the
correct order of magnitude based on the values given for growth factor
metabolism.

Chemotherapy Schedules Schedules of chemotherapy treatments involve
a number of factors such as the amount of chemotherapy chemicals admin-
istered in a single dose and the amount of time between doses. Both of
these factors have been included as parameters in the input file. CHEMO-
CONC specifies the maxmimum concentration of chemotherapy concentra-
tion within a dose period. CHEMOPERIOD specifies the time from the start
of one dose to the start of another. A chemotherapy dose is composed of a
chemical profile goverened by

C(t) = C0bte(−bt+1) (3.18)

where C(t) is the concentration of chemotherapy chemicals at time t, C0 is
the maximum value of C(t), and b is a time scale parameter calculated from
CHEMODURATION such that C(CHEMODURATION) = .05C0. This yeilds a
chemical profile similar to that which is found in AUC curves (Bardelmeijer
et al. [2000]).



30 New Developments:
Streamlining, Vascularizing, and Adding Chemotherapy

3.4 Matlab Imaging

The imaging code used to view the experimental results was created using
Matlab (Mathworks [2006]). The functions were inspired by code given to
us by Los Alamos, though most of the current imaging routines have been
written mainly from scratch. The following is a description of each type of
image available to the user as well as how the tool might be used. A more
detailed description of how to run each file is included in the Appendix
along with the code.

The first plot type is a simple 2-D slice of the tumor at one instant in
time, made using TumorSlice.m. The user specifies in which plane the
slice is taken (x-y, y-z or x-z) and at which depth. The user can also specify
which chemical (or cell types) to image. The output for this m-file is two
images. The first is a color map of concentrations or cell types.2 It shows
in a simple and direct way the chemical concentrations or cell types in the
tumor as a function of location. The second image is a height map of the
concentrations or cell types over the 2-D slice. This plot has been especially
useful for debugging any changes to the diffusion code but can also be
used to view the effect on chemical concentrations with the addition of the
vasculature.

The second plot type is a movie which shows a series of 2-D slices pass-
ing through the tumor. These are made using TumorPassthrough.m. The
user specifies the axis which he or she wishes to travel through as well
as which chemical (or cell types) to image. This is the best way to get a
complete view of the tumor at one instant in time. This movie, as well as
others, can be saved in MPG format using the MATLAB plug-in MPGWRITE.
Once saved, it is easy for the user to scroll through the tumor using any
MPG viewer. This image type is also useful when determining the effects
of chemotherapy on the tumor. One may look at the layers in the tumor
just above and just below the vasculature in order to see its effects.

The third plot type is a movie that shows a series of 2-D slices as the
tumor grows over time. These are made using TumorGrowth.m. The user
specifies in which plane the slices are to be taken (x-y, y-z or x-z) and at
which depth. The user can also specify which chemical (or cell types) to
image. This image type has to open up a new file to output each frame in
the movie, and consequentially it takes a fair amount of time to completely
render the movie (several minutes for large movies). However, this is the
only way to see how the cells move and divide over time.

2For examples, see Figure 4.1 and Figure 4.2.
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The last plot type is a plot of chemical concentrations along an x, y or z
line in the grid and is created using A2dchemplot.m. This plot shows a ver-
tical cross-section of the height map generated with the file TumorSlice.m.
The user specifies which line of sites to look at by giving the depths of the
other two axes. The user also specifies which chemical should be plotted.
This plot is the best way, other than simply looking at the numbers, to dis-
play chemical concentrations in the grid.
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Experimental Results

We first conducted a run with no vasculature insertion. This provides us
with base-level results for comparison with vasculature insertion and che-
motherapy results. We conducted experiments on three different types of
vasculature in order to demonstrate the adaptability of our section of the
model. The three types of vasculature are: a single line through the tumor
and the grid, a hexagonal lattice throughout the entire grid, and a square
lattice throughout the entire grid. For each of these types of vasculature,
we have implemented two distinct experiments: one in which the vascu-
lature was in place before the tumor was grown and the second in which
the vasculature was tunneled into the tumor at a delay of three days. The
experiments without the delay resemble data collected from histoculture
growth within a laboratory, and the experiments with the delay resemble
data collected from in vivo tumor growth. This delay would approximate
angiogenesis if we were able to grow the tumor to a detectable growth size.

In the experiments with the single line vasculature (Figure 4.3(C),4.3(D)),
we see an interesting difference between the delayed vasculature insertion
and the non-delayed vasculature insertion. It appears that the tumor is
larger in the non-delayed vasculature insertion case, which is what we
would expect as a longer time of growth with vasculature would result
in more nutrients and therefore quicker growth of the tumor as well as a
larger number of healthy, proliferating cells. In the experiments with the
square grid structure (Figure 4.3(E),4.3(F)) and the hexagonal grid struc-
ture (Figure 4.3(G), 4.3(H)), we do not observe as noticeable a difference
between the growth with delay and the growth without delay. However,
we do observe more proliferating cells in the non-delayed vasculature as
expected. It should also be noted that the oxygen levels for each of these
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experiments are plotted in Figure 4.4.
In Figure 4.4(C), the number of quiescent cells vs. time for the line vas-

culature without delay shows an interesting plateau during the beginning
of the second day but then rebounds to a steep increase. The dip in quies-
cent cells in the vasculature with delay (Figure 4.5(C)) occurs at the begin-
ning of day 3 as the vasculature is added, which is as we would expect. The
increase in nutrients to the cells with the added vasculature would slow the
rate of proliferating cells becoming quiescent cells.

The experiments with the square grid structure depict another inter-
esting plateau in quiescent cells growth (Figure 4.6(C)), from early in the
simulation through to the middle of the second day. Once that point is hit,
the growth of quiescent cells grows similarly to that with line vasculature
without delay. The square grid vasculature with delay growth curves (Fig-
ure 4.7(C)) look similar to the line vasculatre with delay growth curves.

Interestingly enough, the hexagonal grid structure with no delay shows
no quiescent cells until somewhat into the second day at which point it
resumes similar growth as the other vasculatures, as seen in Figure 4.8(C).
The growth curves for the vasculature with delay (Figure 4.9(C)) resemble
the square grid vasculature with delay.

In Tables 4.1-4.3 one can note the small amount of variation between
the growth of tumors for delayed or non-delayed vasculature and a non-
vascularized tumor. We would not expect a large difference between these
numbers as a small tumor would receive a large amount of nutrients from
the medium so that the added nutrients from the vasculature only make a
small impact on the growth of the cells.

In the runs with chemotherapy, we ran two experiments that considered
different levels of chemotherapy being administered to the tumor. Each of
these experiments was conducted on delayed line vasculature. The high
dose is 2.0 grams of the chemotherapeutic agent and the low dose is 1.2
grams of the chemotherapeutic agent 1. The chemotherapeutic agent is
added to the vasculature at the same time as the vasculature is added. Once
the chemotherapeutic agent is added, a majority of the proliferating cells
become apoptotic and soon dissolve into the medium. Shortly thereafter,
tumor growth resumes as we would expect. Note the significant differ-
ences in total and proliferating cell counts, displayed in Figures 4.10 and
4.11.

It is apparent from Figure 4.10 as well as Figures 4.11 and 4.12 that the

1For cyclophosphamide, an average dose as calculated by the body-surface area method
is 1.6 grams (Gurney [2002])
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amount of chemotherapy dose makes a significant difference in the growth
of the tumor. The growth curve depicted in Figure 4.11(C) shows a smaller
dip in the proliferating cells than in Figure 4.12(C) with a high dose. The
tumor volume and radius depicted in Figure 4.11(A,B) and Figure 4.12(A,B)
also show significant differences in the size and extremities of the minimum
and maximum but similar patterns of growth.

Tables 4.4 and 4.5 denote cell counts of tumors for the non-chemotherapy
runs at several different time steps. Tables 4.6 and 4.7 show counts for the
high and low doses of chemotherapy, respectively. Note that the number
of proliferating cells at 64 time steps with no chemotherapy ranges from
6196 to 6652 cells and is 3121 with a low dose of chemotherapy and 1204
with a high dose of chemotherapy. Although the chemotherapy runs are
only one experiment at each dose, the variation between the chemotherapy
vs. non-chemotherapy runs is large enough to be deemed significant. Also
note that the quiescent cell counts have an even larger disparity with non-
chemotherapy runs ranging from 6331 cells to 6557 cells and a low dose
chemotherapy count is 1533 and a high dose chemotherapy count is 256.

It is important to keep in mind that these results only reflect the effect
on the tumor and not on the patient, and that these levels of chemotherapy
are not necessarily possible with many patients. Many drugs are known to
have a wide coefficient of variation, and one must couple this knowledge
with the differences in the response of the tumor in the high dose and the
low dose of chemotherapy. With this coupled knowledge, it is clearly nec-
essary to add more features to the model to allow for incorporation of the
demonstrated coefficient of variation.
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Figure 4.1: Cell types of tumor after 64 Monte Carlo steps (5 days 8 hours)
grown with no vasculature (A,B), line vasculature (C,D), square grid vascu-
lature (E,F), hexagonal grid vasculature (G,H). In the delayed vasculature
(B,D,F,H), the line of vasculature was added through the center along the x
axis at the beginning of day 3. Images are an x-y cross section at a z eleva-
tion of 100 GRID SITEs. The length of one SITE is equivalent to 4.2E-4 cm or
4.2 µm. Dark blue represents medium, blue represents proliferating cells,
light blue represents quiescent cells and red represents the vasculature.
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G H

Figure 4.2: Oxygen levels of tumor after 64 Monte Carlo steps (5 days 8
hours) grown with no vasculature (A,B), line vasculature (C,D), square grid
vasculature (E,F), hexagonal grid vasculature (G,H). In the delayed vas-
culature graphs, (B,D,F,H), the vasculature was added through the center
along the x axis at the beginning of day 3. Images are an x-y cross section
at a z elevation of 100 GRID SITEs. The length of one SITE is equivalent
to 4.2E-4 cm or 4.2 µm. The color bar at the right of each image describes
oxygen levels, with high concentrations in red and low concentrations in
blue.
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Figure 4.3: Growth curves for no vasculature. (A) Log plot of tumor vol-
ume (cm3) vs. time (days) of tumor grown. (B) Tumor radius (cm) vs. time
(days). (C) Log plot of number of cells vs. time (days) of a tumor grown.
Red represents total number of cells, green represents number of prolifer-
ating cells, blue represents the number of quiescent cells and there are no
necrotic cells
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Figure 4.4: Growth curves for line vasculature without delay. (A) Log plot
of tumor volume (cm3) vs. time (days) of tumor grown. (B) Tumor radius
(cm) vs. time (days). (C) Log plot of number of cells vs. time (days) of a
tumor grown with a line of vasculature through the center along the x axis
at the beginning. Red represents total number of cells, green represents
number of proliferating cells, blue represents the number of quiescent cells
and there are no necrotic cells.
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Figure 4.5: Growth curves for line vasculature with delay. (A) Log plot of
tumor volume (cm3) vs. time (days) of tumor grown. (B) Tumor radius
(cm) vs. time (days). (C) Log plot of number of cells vs. time (days) of
a tumor grown with a line of vasculature added through the center along
the x axis at the beginning of day 3. Red represents total number of cells,
green represents number of proliferating cells, blue represents the number
of quiescent cells and there are no necrotic cells.
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Figure 4.6: Growth curves for square grid vasculature without delay. (A)
Log plot of tumor volume (cm3) vs. time (days) of tumor grown. (B) Tu-
mor radius (cm) vs. time (days). (C) Log plot of number of cells vs. time
(days) of a tumor grown with a square vasculature through the entire grid
at the beginning. Red represents total number of cells, green represents
number of proliferating cells, blue represents the number of quiescent cells
and there are no necrotic cells.
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Figure 4.7: Growth curves for square grid vasculature with delay. (A) Log
plot of tumor volume (cm3) vs. time (days) of tumor grown. (B) Tumor
radius (cm) vs. time (days). (C) Log plot of number of cells vs. time (days)
of a tumor grown with square vasculature added through the entire grid at
the beginning of day 3. Red represents total number of cells, green repre-
sents number of proliferating cells, blue represents the number of quiescent
cells and there are no necrotic cells.
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Figure 4.8: Growth curves for hexagonal grid vasculature without delay.
(A) Log plot of tumor volume (cm3) vs. time (days) of tumor grown. (B)
Tumor radius (cm) vs. time (days). (C) Log plot of number of cells vs. time
(days) of a tumor grown with a hexagonal grid vasculature added through
the entire grid at the beginning. Red represents total number of cells, green
represents number of proliferating cells, blue represents the number of qui-
escent cells and there are no necrotic cells.
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Figure 4.9: Growth curves for hexagonal grid vasculature with delay. (A)
Log plot of tumor volume (cm3) vs. time (days) of tumor grown. (B) Tumor
radius (cm) vs. time (days). (C) Log plot of number of cells vs. time (days)
of a tumor grown with a hexagonal grid vasculature added through the
entire grid at the beginning of day 3. Red represents total number of cells,
green represents number of proliferating cells, blue represents the number
of quiescent cells and there are no necrotic cells.
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MC No Low High
Step Dose Dose Dose

37

40

50

60

64

Figure 4.10: Cell types of tumor with line vasculature with delay at time
steps 37 (A-C), 40 (D-F), 50 (G-I), 60 (J-L), and 64 (M-O). No chemother-
apy was added for (A,D,G,J,M), a low dose of chemotherapy, 1.2g, was
added for (B,E,H,K,N), and a high dose of chemotherapy, 2.0g, was added
for (C,F,I,L,O). Images are an x-y cross section at a z elevation of 100 GRID
SITEs. The length of one SITE is equivalent to 4.2E-4 cm or 4.2 microns.
Dark blue represents medium, blue represents proliferating cells, light blue
represents quiescent cells, yellow represents apoptotic cells, and red repre-
sents the vasculature.
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Figure 4.11: Growth curves for a delayed linear vasculature with a low
dose of cyclophosphamide (1.2g). (A) Log plot of tumor volume (cm3) vs.
time (days) of tumor grown. (B) Tumor radius (cm) vs. time (days). (C)
Log plot of number of cells vs. time (days) of a tumor grown with a line
vasculature added through the entire grid at the beginning of day 3. The
chemotherapy dose also started at the beginning of day 3. Red represents
total number of cells, green represents number of proliferating cells, blue
represents the number of quiescent cells and there are no necrotic cells.



47

A
0 2 4 6 8 10

102

103

104

105

106

Time [days]

V
ol

um
e 

[µ
m

3 ]

 

 
Spheroid
Necrotic core

B
0 1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

Time [days]

R
ad

iu
s 

[µ
m

]

 

 
Spheroid
Necrotic core
Viable rim

C
0 1 2 3 4 5 6 7 8

100

101

102

103

104

105

Time [days]

N
um

be
r o

f C
el

ls

 

 
All cells
Proliferating
Quiescent
Necrotic

Figure 4.12: Growth curves for a delayed linear vasculature with a high
dose of cyclophosphamide (2.0g). (A) Log plot of tumor volume (cm3) vs.
time (days) of tumor grown. (B) Tumor radius (cm) vs. time (days). (C)
Log plot of number of cells vs. time (days) of a tumor grown with a line
vasculature added through the entire grid at the beginning of day 3. The
chemotherapy dose also started at the beginning of day 3. Red represents
total number of cells, green represents number of proliferating cells, blue
represents the number of quiescent cells and there are no necrotic cells.
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MC No Vascular Delay Delayed Vascular
Step Linear Grid Hex Linear Grid Hex None

37 98815 166586 99179 97834 96828 97760 99019
40 126875 127714 127653 126457 126019 126654 126801
50 269653 273136 271508 273072 272866 273010 268202
60 552392 559235 551658 556439 558100 556730 543727
64 691866 701410 692846 700412 698885 697847 684429

Table 4.1: Volumes of tumors, measured in SITES, plotted at various time
steps of interest. Vasculature is added during time step 36.

MC No Vascular Delay Delayed Vascular
Step Linear Grid Hex Linear Grid Hex None

37 57.35 57.22 57.43 57.16 56.97 57.16 57.39
40 62.34 62.48 62.47 62.27 62.20 62.31 62.33
50 80.15 80.49 80.33 80.49 80.47 80.49 80.01
60 101.80 102.21 101.75 102.04 102.15 102.07 101.26
64 109.73 110.23 109.78 110.18 110.10 110.05 109.33

Table 4.2: Diameters of tumors in millimeters, plotted at various time steps
of interest. Vasculature is added during time step 36.

MC No Vascular Delay Delayed Vascular
Step Linear Grid Hex Linear Grid Hex None

37 1670 1658 1673 1667 1657 1664 1680
40 2282 2286 2293 2266 2275 2273 2259
50 4685 4788 4746 4805 4779 4791 4665
60 10125 10312 10127 10230 10313 10251 9936
64 12952 13138 12981 13066 13124 13065 12703

Table 4.3: Cell count of tumors, plotted at various time steps of interest.
Vasculature is added during time step 36.
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MC No Vascular Delay Delayed Vascular
Step Linear Grid Hex Linear Grid Hex None

37 1469 1537 1478 1414 1396 1413 1337
40 1845 2010 1887 1978 1980 1978 1702
50 2886 3029 2965 2928 3068 3030 2726
60 5307 5478 5394 5313 5442 5455 5078
64 6446 6585 6650 6440 6567 6652 6196

Table 4.4: Proliferating cell count of tumors, plotted at various time steps
of interest. Vasculature is added during time step 36.

MC No Vascular Delay Delayed Vascular
Step Linear Grid Hex Linear Grid Hex None

37 201 121 195 253 261 251 343
40 437 276 406 288 295 295 557
50 1799 1759 1781 1877 1711 1761 1939
60 4818 4834 4733 4917 4871 4796 4858
64 6506 6553 6331 6626 6557 6413 6507

Table 4.5: Quiescent cell count of tumors, plotted at various time steps of
interest. Vasculature is added during time step 36.

MC Tumor Tumor Total Proliferating Quiescent
Step Volume Diameter Cell Count Cell Count Cell Count

37 98168 57.23 1642 984 254
40 114711 60.28 1847 442 256
50 89175 55.43 1419 212 256
60 61757 49.04 1017 756 256
64 85534 54.67 1460 1204 256

Table 4.6: High chemotherapy dose information. The high dose is 2.0
grams, beginning on step 36, with concentration obeying the chemical pro-
file produced by equation (3.18).



50 Experimental Results

MC Tumor Tumor Total Proliferating Quiescent
Step Volume Diameter Cell Count Cell Count Cell Count

37 98275 57.26 1650 1125 253
40 118440 60.93 1970 814 256
50 142355 64.78 2240 886 405
60 192790 71.67 3364 2406 958
64 260225 79.21 4654 3121 1533

Table 4.7: Low chemotherapy dose information. The low dose is 1.2 grams,
beginning on step 36, with concentration obeying the chemical profile pro-
duced by equation (3.18).



Chapter 5

Future Work

This Harvey Mudd Mathematics Clinic project has focued on developing
one important component of the larger model being constructed by the
team at LANL. As the year has progressed, the direction of the project has
evolved. We have discovered through the wealth of literature on chemother-
apeutic measures, myriad possibilities for future improvements upon the
model. A few of these possibilities will be discussed in this section, some of
which include reconsiderations of assumptions of the current model, while
others involve changes only possible when considering the entire model
at once. We also discuss the incorporation of additional variables into the
current model. These variables could allow the model to more accurately
simulate biological conditions. Lastly, different chemotherapeutic models
are considered.

5.1 Modifying Basic Assumptions

One assumption to reconsider is the values of the diffusion constants of
each modeled chemical. Currently the constants are set to equal values,
although it seems feasible to create a variable diffusion constant that is a
function of the chemical as well as of the cell type in which it is diffusing.
Making the diffusion constants functions of the chemicals under consider-
ation would involve calculations based upon properties of the chemicals,
such as molecular weight and dipole moment. Also, it should be kept in
mind that chemotherapeutic agents diffuse and convect at different rates
depending on the permeability of the vasculature (Jang et al. [2003]) The
effect of changing these values is unknown to us, although on a funda-
mental level, the change would be more biologically accurate, because this
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variability is ignored by the current model. However, it is also possible that
the source and sink terms within the model will override any differences
accounted for in the change of the diffusivity constants.

Another assumption that could be reconsidered is that of simplified
blood flow. Recall that the chemical concentrations were given constant
values to approximate an average over time. Although the blood flow
works well with the non-vascularized, non-chemotherapeutic trials, the
transport of chemicals within the blood vessels is one that can be modeled
and might be integral to the correctness of the transport of the chemother-
apeutic agents. Also, many of the experiments run by outside researchers
consist of measures of plasma blood concentration levels versus toxicity
or survival levels. Modeling the blood flow with an incorporation of the
plasma drug concentration curves would be an interesting course of study
that might elucidate properties of transport that could not be measured
within a laboratory.

5.2 Restructuring for Additional Treatment Types

With the implementation of chemotherapy, some of the basic structures of
the model need to be re-evaluated for a more accurate response to che-
motherapy in vivo. In the case of the necrotic cells, a major assumption
from the original code was that upon cell death, the cell remains fixed
to the grid instead of being carried away. This assumption, while per-
fectly valid in spheroids which contain concentric rings of cell types which
do not shed, is of limited value in a vascularized chemotherapy model.
Biologically, tumors may shrink as cells are lysed and carried away, al-
though the current model has no such shrinking capability. Futhermore, in
many cases, chemotherapeutic drugs induce apoptosis rather than necrosis.
While “necrosis is the death of cells or tissues due to chemical or physical
injury,” apoptosis is “biologically programmed cell death. Necrosis leaves
extensive cellular debris that need to be removed by phagocytes, whereas
apoptosis does not” (Jr. et al. [2005]). Because there is quicker transport in
interstitial spaces, the type of cell death (in which the induction is depen-
dent upon type of drug as well as strength and regimen of drug) is quite
important in modeling the transport of the chemotherapeutical agents. Ei-
ther change would allow more accurate measures to validate our model.

An additional step in the implementation of chemotherapy would be
creating a general structure in which different kinds of chemotherapeutic
agents (whether of one type or multiple) could be modeled within the sys-
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tem. This would not only allow the model to respond to different types of
chemotherapy, but also allow chemotherapy cocktail treatments to be mod-
eled. Combination chemotherapy is a very common treatment approach,
so it is important to be able to simulate the results of using this method. The
code we have written is structured to be flexible and to allow for additional
chemotherapy types to be added if the appropriate parameters are known.
New chemicals can diffuse and be consumed by cells in the same way that
other chemicals are modeled. Additionally, depending on the type of che-
motherapy, a more complicated cellular reaction could be modeled using
components of the protein expression code.

5.3 Alternate Models

Our current chemotherapy model only handles chemotherapeutic agents
which do not depend upon cells being in a particular phase of the cell cy-
cle. An addition could be made to allow for cycle-specific drug treatments.
Five main criteria have been identified to characterize a drug’s pharma-
cokinetics. These are the route of administration, dose administered, dos-
ing interval, plasma drug concentrations, and collection times relative to
drug administration (Undevia et al. [2005]). Our model only considers the
dose administered and the dosing interval. In order to account for the
plasma drug concentrations, the model should utilize the common area
under the curve (AUC) measurement in which plasma concentration lev-
els are plotted against time. Also, the ratio of the dose administered to
the AUC can be used to measure the body’s ability to remove the drug
(Undevia et al. [2005]). Interestingly, the route of administration has been
shown to affect the coefficient of variation. This coefficient for oral versus
intravenous administration has been shown to vary between 28% and 58%,
respectively (Undevia et al. [2005], Bardelmeijer et al. [2000], El-Kareh and
Secomb [2000]).

There already exist several models that simulate in various ways the
drug pharmacokinetics, e.g. Parker and III [2001], Gallo et al. [2004], Mori
et al. [2002], and Zhang et al. [2001]. It should be possible to incorporate
some of these into our current model as well.

5.4 Further Considerations

Of the five main variables that influence drug uptake, each can be influ-
enced by other factors, such as age, gender, ethnicity/race, etc. It has
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been determined that the differences in pharmacokinetics (drug uptake,
metabolism) cannot simply be extrapolated from studies conducted with
adults (Groninger et al. [2004]). Furthermore, there is a possible difference
in toxicity levels depending upon the age of the adult (Yancik [1997]). Race
and ethnicity have also shown signs of being factors in the pharmacody-
namics and pharmacokinetics of a drug (Johnson [1997]).



Chapter 6

Conclusion

Because cancer is the second leading cause of death in the United States,
this disease has obvious societal impacts, including those that affect our
economy and our health care system. Cancer treatments vary significantly
in their levels of success. Common types of treatment, including chemo-
therapy and radiation therapy, destroy healthy cells along with cancerous
cells. Because of this, cancer treatment is an extremely painful and risky
endeavor. By improving mathematical tumor models and studying cancer
treatment, it is possible to more fully understand these treatments, and, in
turn, improve them.

Although a realistic cancer model may not directly lead to a cancer cure,
it will elucidate our understanding of cancer and its treatments. Conse-
quently, research involving tumor growth models has the potential to affect
the quality of life for millions of people each year, if it can assist in develop-
ing better cancer treatments and permit the assessment of the effectiveness
of current treatments.

This paper has presented an overview of the HMC clinic team’s efforts
to expand and enhance a tumor model developed at LANL. The simulation
contains three models within it: a subcellular model governing the diffu-
sion of chemicals through the tumor environment, a cellular model gov-
erning the reproduction of cells, and an extracellular Monte Carlo model
governing the interaction and growth of cells.

The inclusion of a blood vessel system in a previously avascular model
required many changes to the existing code. To do this correctly, the team
carried out extensive research into how this particular model functions and
how tumors develop. The team then made changes to the model to include
vasculature. Each section of the model required some modifications. The
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team made background changes to allow for blood vessel cell types to be
represented, altered the diffusion calculations to account for the presence
of vasculature, modified the Monte Carlo component so that the vascula-
ture would not be encroached upon by growing cells, and determined that
the protein expression step should not be affected by the vasculature. The
team streamlined the code for efficiency, improving the run-time. This was
achieved by converting Cell ID numbers to pointers as well as optimizing
memory use and processing time.

We have added to the model the ability to simulate treatments using
non-cell cycle specific chemotherapy drugs. In particular, the model now
simulates treatments using cyclophosphamide, which alkylates the DNA of
proliferating tumor cells. By doing so, it induces apoptosis, which results
in tumor shrinkage immediately following the administration of the dose.
In the experiments that we ran, higher doses of chemotherapy better served
to inhibit tumor regrowth.

However, in considering the results of our experiments, it is important
to keep in mind that due to hardware limitations, we were unable to run ex-
periments where the tumor reached a detectable size before the first dose of
chemotherapy was administered. Furthermore, the time allowed to elapse
between chemotherapy doses was shorter than is typical in medical prac-
tice (Gurney [2002]). This adjustment was required because of hardware
limitations, but can be relaxed in future experiments using this model.

We have adapted the code provided by LANL so that a vascularized
tumor can be modeled. We have also laid groundwork for including che-
motherapy treatment in simulations, and run preliminary chemotherapy
experiments. As such, we hereby provide to LANL all of the deliverables
specified in the work statement for this project.



Appendix A

Source Code

The following files are given as example source code in the simulation. The
clinic team has added support for a vasculature into the CELL class and
changed the cell ID’s to pointers in order to improve efficiency and main-
tainability. The code has also been optimized for memory usage to reduce
the problem of thrashing with large data sets. Thrashing occurs when the
computer spends most of its time moving large amounts of data into and
out of RAM, rather than actually manipulating the data and running the
simulation.

Cell.h and Cell.cxx implement the CELL class. Each CELL is either
proliferating, quiescent, necrotic, or part of the vasculature. Each proliferat-
ing CELL has a series of proteins that are either expressed or not expressed
at each step in the simulation, and these proteins determine whether the
CELL divides or becomes quiescent. Each cell also contains a pointer to
its parent cell, and the concentrations of oxygen, nutrients, waste, growth
factor, and inhibition factor within it.

Site.h implements the SITEs that make up the GRID. Each site has
concentrations of the five chemicals in them (oxygen, nutrients, etc.), as
well as a pointer to the cell in which it currently resides.

A.1 TumorSlice.m

%% Tiffany Head HMC mathematics clinic Sp2006

%% adapted from matlab scripts provided by LANL

%% This function creates 2d slices of the tumor

%% which show concentrations of chemicals or the cell types
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%% be sure to unzip all .gz files before begining

function TumorSlice(prefix,time,chem,xyz,depthPer,con)

% prefix is the file prefix found on all output files

% time is the cycle number at which the tumor snapshot has been taken

% note, this should be a 3 digit string imput

% chem is either the chemical being profiled or ’cells’ which

% will display the different cell types

% cells will display cell types

% gf will display growth factor

% 02 will display oxygen

% w will display waste

% n will dsiplay nutrients

% if will display inhibitory factor

% xyz is either an ’x’, ’y’ or x depending on the desired

% cross-section

% depthPer is the percentage in the x y or z direction which describes the

% depth or the cross-section

% con is true if contours of cell types are to be added in the chemical

profile plots and false if not

if (strcmp(chem,’cells’)==1 )

filename=[prefix,’Types’,time];

else

filename=[prefix,’Chem’,time,’C’,chem];

if(con)

filename2=[prefix,’Types’,time];

end

end

load(filename);

tumor=eval(filename);
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len=length(tumor(1,:));

depth=round(depthPer/100*len);

if (xyz == ’z’)

for(i=1:len)

A=tumor((i-1)*len+1:len*i,depth);

tumor2d(:,i)=A;

end

elseif (xyz == ’y’)

for(i=1:len)

tumor2d(i,:)=tumor((i-1)*len+depth,:);

end

else

tumor2d=tumor((depth-1)*len+1:depth*len,:);

end

if (strcmp(chem,’cells’)==0 && con)

load(filename2);

tumor2=eval(filename2);

len2=length(tumor2(1,:));

depth2=round(depthPer/100*len2);

if (xyz == ’z’)

for(i=1:len2)caxis([cmin cmax])

A=tumor2((i-1)*len2+1:len2*i,depth2);

tumorCon(:,i)=A;

end

elseif (xyz == ’y’)

for(i=1:len2)

tumorCon(i,:)=tumor2((i-1)*len2+depth2,:);

end

else

tumorCon=tumor2((depth2-1)*len2+1:depth2*len2,:);

end

end
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length(tumor2d);

figure;

pcolor(tumor2d); shading flat; caxis([-1 5]) ;

xlabel(’Grid Sites’);

ylabel(’Grid Sites’);

hold on;

if (strcmp(chem,’cells’)==0 && con)

colorbar;

thing=contourc(tumorCon,5);

left=1;

while(left>0)

numpts=thing(2,1);

plot(thing(1,2:numpts+1)+.5,thing(2,2:numpts+1)+.5,’k’);

hold on;

thing=thing(:,numpts+2:end);

left=length(thing);

hold on;

end

%figure;

%contour(tumorCon,5);

%hold on;

figure;

surf(tumor2d);

end

%figure;

%pcolor(tumor2d); shading flat; cax = caxis; colorbar;

A.2 TumorPassthrough.m

%% Tiffany Head HMC mathematics clinic Sp2006
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%% adapted from matlab scripts provided by LANL

%% This function creates a serries of 2d slices of the tumor

%% which show concentrations of chemicals or the cell types in a movie

%% which passes through the tumor on the axis specified

%% be sure to unzip all .gz files before begining

function [M,moviefile]=TumorPassthrough(prefix,time,chem,xyz)

% prefix is the file prefix found on all output files

% time is the cycle number at which the tumor snapshot has been taken

% note, this should be a 3 digit string imput

% chem is either the chemical being profiled or ’cells’ which

% will display the different cell types

% cells will display cell types

% gf will display growth factor

% 02 will display oxygen

% w will display waste

% n will dsiplay nutrients

% if will display inhibitory factor

% xyz is either an ’x’, ’y’ or x depending on the desired

% cross-section

%% This section loads the file

filename=’’;

chem;

if (strcmp(chem,’cells’)==1 )

filename=[prefix,’Types’,time];

else

filename=[prefix,’Chem’,time,’C’,chem];

end

load(filename);

tumor=eval(filename);
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len=length(tumor(1,:));

% This determines the max and min vaules in the data so that the

% colors can normalized over all cross-section plots

cmax=max(max(tumor));

cmin=min(min(tumor));

% This for loop creates the slices of tumor and then captures them

% into a movie

for (j=1:len)

depth=j;

if (xyz == ’z’)

for(i=1:len)

A=tumor((i-1)*len+1:len*i,depth);

tumor2d(:,i)=A;

end

elseif (xyz == ’y’)

for(i=1:len)

tumor2d(i,:)=tumor((i-1)*len+depth,:);

end

else

tumor2d=tumor((depth-1)*len+1:depth*len,:);

end

pcolor(tumor2d); shading flat; caxis([cmin cmax]); colorbar;

M(j) = getframe;

end

% Plays the moive

movie(M);

% Saves the movie as MPG if MPGWRITE is installed

%moviefile=[’PassThrough’,’_’,chem,’_’,xyz,’_’,time,’.mpg’];
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%mpgwrite(M,hsv,moviefile);

A.3 TumorGrowthMovie.m

%% Tiffany Head HMC mathematics clinic Sp2006

%% adapted from matlab scripts provided by LANL

%% This function creates 2d slices of the tumor

%% which show concentrations of chemicals or the cell types

%% taken over a time interval and then shown in a movie

%% be sure to unzip all .gz files before begining

function [M,moviefile]=TumorGrowthMovie(prefix,timevec,chem,xyz,depth)

% prefix is the file prefix found on all output files

% timevec is a vector of numbers of cycles at which each movie frame

% is taken. Example: [1,3,5,7,9] will produce a movie which

% displays slices of the tumor after 1, 3, 5, 7 and 9

% cycles.

% chem is either the chemical being profiled or ’cells’ which

% will display the different cell types

% ’cells’ will display cell types

% ’gf’ will display growth factor

% ’02’ will display oxygen

% ’w’ will display waste

% ’n’ will dsiplay nutrients

% ’if’ will display inhibitory factor

% xyz is either an ’x’, ’y’ or ’z’ depending on the desired

% cross-section

% depth is the percentage in the x y or z direction which describes the

% depth or the cross-section
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tlen=length(timevec);

% This loop collects all of the slices into one large matrix

for (j=1:tlen)

if (timevec(j)>99)

time=num2str(timevec(j));

elseif (timevec(j)>9)

time=[’0’,num2str(timevec(j))];

else

time=[’00’,num2str(timevec(j))];

end

if (strcmp(chem,’cells’)==1 )

filename=[prefix,’Types’,time];

else

filename=[prefix,’Chem’,time,’C’,chem];

end

load(filename);

(j/tlen)*100

tumor=eval(filename);

len=length(tumor(1,:));

if(j==1)

depth=round(depth/100*len);

end

if (xyz == ’z’)

for(i=1:len)

A=tumor((i-1)*len+1:len*i,depth);

tumor2d(:,i)=A;

end

elseif (xyz == ’y’)

for(i=1:len)

tumor2d(i,:)=tumor((i-1)*len+depth,:);

end

else

tumor2d=tumor((depth-1)*len+1:depth*len,:);

end
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tumormov((j-1)*len+1:j*len,:)=tumor2d;

clear(filename);

end

% This determines the max and min vaules in the data so that the

% colors can normalized over all cross-section plots

cmax=max(max(tumormov));

cmin=min(min(tumormov));

% This loop re-separates the large matrix into separate snapshots so

% and then captures them into a movie.

if(cmax==cmin)

M=0;

disp(’No data to make movie’);

return;

else

for (j=1:tlen)

tumor2d=tumormov((j-1)*len+1:j*len,:);

pcolor(tumor2d); shading flat; caxis([cmin cmax]); colorbar;

M(j) = getframe;

end

end

% Plays the moive

movie(M,2);

% Saves the movie as MPG if MPGWRITE is installed

st=num2str(timevec(1));

en=num2str(max(timevec));

dep=num2str(depth);

moviefile=[’Growth_’,chem,’_’,xyz,dep,’_’,st,’to’,en,’.mpg’];
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%disp(’writing...’)

%mpgwrite(M,jet,moviefile);

%disp(’done’)



Appendix B

Glossary

During the literature search, the team composed this list of commonly used
biological vocabulary found in many of the research papers.

anastomosis: The surgical connection of separate or severed tubular hol-
low organs to form a continuous channel, as between two parts of the
intestine. Source: dictionary.com

angiogenesis: The formation of blood cells from a preexisting vasculature.

annulus: A ringlike figure, part, structure, or marking, such as a growth
ring on the scale of a fish. Source: dictionary.com

apoptosis: When cells that are superfluous or that could harm the individ-
ual undergo a type of ”cell suicide”. Leads to the death of cells that
are no longer required in adult (Karp [2002]).

carcinogenesis: The production of cancer. Source: dictionary.com

chemotaxis: The characteristic movement or orientation of an organism or
cell along a chemical concentration gradient either toward or away
from the chemical stimulus. Source: dictionary.com

desmosomes: disk-shaped adhesive junctions 1 (mu)m in diam (Karp [2002]).

epithelial: Of or relating to Membranous tissue composed of one or more
layers of cells separated by very little intercellular substance and form-
ing the covering of most internal and external surfaces of the body
and its organs. Source: dictionary.com
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embryogenesis: The development and growth of an embryo. Source: dic-
tionary.com

endogenous: Produced or growing from within. Source: dictionary.com

endothelial: A thin layer of flat epithelial cells that lines serous cavities,
lymph vessels, and blood vessels. Source: dictionary.com

extracellular: Outside the plasma membrane (the functional barrier be-
tween the inside and outside of a cell) (Purves et al. [2001]).

extracellular matrix: plant cell wall for animals. Composed of fibrous pro-
teins. Holds things together, lets materials pass through, etc. (Purves
et al. [2001]).

metastasis: The spread of a tumor within the body (Karp [2002]).

metastatic cells: Cancer cells that are able to initiate the formation of sec-
ondary tumors.

oncogenes: Genes implicated in carcinogenesis, encode proteins that pro-
mote the loss of growth control and the conversion of a cell to a ma-
lignant state (Karp [2002]).



Bibliography

ACS. Acs webpage. 2006. URL http://www.cancer.org.

ACS. Cancer facts & figures 2004. 2004. URL http://www.cdc.gov/node.

do/id/0900f3ec80193c0d.

T. Alarcon, H.M. Byrne, and P.K. Maini. A cellular automaton model for
tumour growth in inhomogeneous environment. Journal of Theoretical
Biology, 225:257–274(18), 2003.

T. Alarcon, H.M. Byrne, and P.K. Maini. Towards whole-organ modelling of
tumour growth. Progress in Biophysics and Molecular Biology, 85:451–472,
2004.

T. Alarcon, H.M. Byrne, and P.K. Maini. A multiple scale model for tumor
growth. Multiscale Model Simul., 3:440–475(2), 2005.

Sharyn D. Baker, Jaap Verweij, Eric K. Rowinsky, Ross C. Donehower,
Jan H.M. Schellens, Louise B. Grochow, and Alex Sparreboom. Role of
body surface area in dosing of investigational anticancer agents in adults
1991-2001. 94:1883–1888(24), 2002.

Heleen A. Bardelmeijer, Olaf van Tellingen, Jan H.M. Schellens, and Jos H.
Beijnen. The oral route for the administration of cytotoxic drugs: strate-
gies to increase the efficiency and consistency of drug delivery. Investiga-
tional New Drugs, 18:231–241, 2000.

Elaine Y.L. Blair, Laurent P. Rivory, Stephen J Clarke, and Andrew J.
McLachlan. Population pharmacokinetics of raltitrexed in patients with
advanced solid tumours. British Journal of Clinical Pharmacology, 57:416–
426(4), 2004.



70 Bibliography

H.M. Byrne, C.J. W. Breward, and C.E. Lewis. A multiphase model de-
scribing vascular tumour growth. Bulletin of Mathematical Biology, 65:
609–640(4), 2003.

Ian W. Campbell and Soon Song. Blood glucose levels. In
http://www.netdoctor.co.uk/health, 2005.

C.Y. Chen and H.M. Byrne. The influence of growth-induced stress from the
surrounding medium on the development of multicell spheroids. Journal
of Mathematical Biology, 43(3):191–220, 2001.

L.G. de Pillis and D.G. Mallet. A cellular automata model of tumor-immune
system interactions. Journal of Theoretical Biology, 239:334–350(3), 2006.

Vincent T. Devita, Samuel Hellman, and Steven A. Rosenberg. Cancer: Prin-
ciples and Practice of Oncology. Lippincott, Williams, & Wilkins, 2004.

A.W. El-Kareh and T.W. Secomb. A mathematical model for comparison of
bolus injection, continuous infusion, and liposomal delivery of doxoru-
bicin to tumor cells. Neoplasia, 2:325–338(4), 2000.

S.C. Ferreira, M.L. Martins, and M.J. Vilela. Morphology transitions in-
duced by chemotherapy in carcinomas in situ. Physical Review, 67, 2003.

Z.G. Forbes, B.B. Yellen, K.A. Barbee, and G. Friedman. An approach to tar-
geted drug delivery based on uniform magnetic fields. 39:3372–3377(5),
2003.

James M. Gallo, Paolo Vicini, Amy Orlansky, Shaolan Li, Feng Zhou, Jian-
guo Ma, Sharon Pulfer, Michel A. Bookman, and Ping Guo. Pharmacoki-
netic model-predicted anticancer drug concentrations in human tumors.
Clinical Cancer Research, 10:8048–8058, 2004.

Amy J. Galpin and William E. Evans. Therapeutic drug monitoring in can-
cer management. 39:2419–2430(11), 1993.

D.J. Gavaghan, J.M. Brady, C.P. Behrenbruch, R.P. Highnam, and P.K.
Maini. Breast cancer: Modelling and detection. Journal of Theoretical
Medicine, 4:3 – 20, 2002.

K Groebe and W Mueller-Klieser. On the relation between size of necrosis
and diameter of tumor spheroids. International Journal of Radiation Oncol-
ogy Biology Physics, 34 (2):395–401, 1996.



Bibliography 71

E. Groninger, J.H. Proost, and S.S.N. de Graaf. Pharmacokinetic studies in
children with cancer. Critical Reviews in Oncology/Hematology, 52:173–197,
2004.

H. Gurney. How to calculate the dose of chemotherapy. British Journal of
Cancer, 86:1297–1302(86), 2002.

Yuen Yi Hon and William E. Evans. Making tdm work to optimize cancer
chemotherapy: a multidisciplinary team approach. Clinical Chemistry, 44:
388–400(2), 1998.

T.L. Jackson and H.M. Byrne. A mathematical model to study the effects
of drug resistance and vasculature on the response of solid tumors to
chemotherapy. Mathematical Biosciences, 164(1):17–38, 2000.

R.K. Jain. Delivery of molecular medicine to solid tumors: lessons from
in vivo imaging of gene expression and function. Journal of Controlled
Release, 74:7–25, 2001.

Seong Hoon Jang, M. Guillaume Wientjes, Dan Lu, and Jessie L.-S. Au.
Drug delivery and transport to solid tumors. Pharmaceutical Research, 20:
1337–1350(9), 2003.

Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, and J. Freyer. A multiscale model
for avascular tumor growth. Biophysical Journal, 2005.

Julie A. Johnson. Influence of race or ethnicity on pharmacokinetics of
drugs. 86:(12), 1997.

Charles A. Janeway Jr., Paul Travers, Mark Walpart, and Mark J Shlomchik.
Immunobiology, 6th. Edition. Garland Science Publishing, 2005.

Gerald Karp. Cell and Molecular Biology, 3rd Edition. John Wiley and Sons,
Inc., 2002.

J.E. Klaunig and L.M. Kamendulis. The role of oxidative stress in carcino-
genesis. Annual Review of Pharmacology and Toxicology, 44:239–267, 2004.

M.A. Konerding, E. Fait, and A. Gaumann. 3d microvascular architecture
of pre-cancerous lesions and invasive carcinomas of the colon. 84:1354–
1362(10), 2001.

Kyoto. Kyoto encyclopedia of genes and genomes. 2005. URL http://

www.kegg.com.



72 Bibliography

Mathworks. Matlab, v. 7.1.0.183. 2006. URL www.mathworks.com.

S.R. McDougall, A.R.A. Anderson, and M.A.J. Chaplain. Mathematical
modelling of flow through vascular networks: Implications for tumour-
induced angiogenesis and chemotherapy strategies. Bulletin of Mathemat-
ical Biology, 64:673–702, 2004.

Howard L. McLeod. Therapeutic drug monitoring opportunities in cancer
therapy. Pharmacol. Theor., 74:39–54(1), 1997.

Takeshi Mori, Masafumi Ohnishi, Megumi Komiyama, Arisa Tsutsui, Hi-
romitsu Yabushita, and Hiroshi Okada. Prediction of cell kill kinetics of
anticancer agents using the collagen el droplet embedded-culture drug
sensitivity test. Oncology Reports, 9:301–305, 2002.

W. Mueller-Klieser. Tumor biology and experimental therapeutics. Critical
Reviews in Oncology/Hematology, 36:123–139, 2000.

Jan Nissl. Arterial blood gases. 2004. URL http://www.webmd.com/hw/

lab\_tests/hw2343.asp.

Robert T. Osteen, Ted S. Gansler, and Raymond E. Jr. Lenhard. Clinical
Oncology. American Cancer Society, 2001.

Robert S. Parker and Francis J. Doyle III. Control-relevant modeling in drug
delivery. Advanced Drug Delivery Reviews, 48:211–228, 2001.

Pennsylvania State University. Biology of cultured cells. 2005. URL http:

//www.bmb.psu.edu/courses/biotc489/notes/biointeract.htm.

William Purves, David Sadava, Gordon Orians, and H. Craig Heller. Life.
Sinauer Associates, Inc., 2001.

A.S. Qi, X. Zheng, C.Y. Du, and B.S. An. A cellular automaton model of
cancerous growth. Journal of Theoretical Biology, 161(1):1–12, 1993.

B. Ribba, K. Marron, and Z. Agur. A mathematical model of doxorubicin
treatment efficacy on non- hodgkins lymphoma:investigation of current
protocol through theoretical modeling results. Bull Math Biol, 2005.

Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, 1996.



Bibliography 73

M. Sarntinoranont, F. Rooney, and M. Ferrari. Interstitial stress and fluid
pressure within a growing tumor. Annals of Biomedical Engineering, 31(3):
327–335, 2003.

J.A. Sherratt and M.A.J. Chaplain. A new mathematical model for avascular
tumor growth. Journal of Mathematical Biology, 43(4):291–312, 2001.

Carolien H. Smorenburg, Alex Sparreboom, Marijke Botenbal, Gerrit Stoter,
Kees Nooter, and Jaap Verweij. Randomized cross-over evaluation of
body-surface area-based dosing versus flat-fixed dosing of paclitaxel. 21:
197–202(2), 2003.

Samir D. Undevia, Gonzalo Gomez-Abuin, and Mark J. Ratain. Pharma-
cokinetic variability of anticancer agents. Nature, pages 447–458, 2005.

Rosemary Yancik. Cancer burden in the ages. 1997.

Liping Zhang, Richard Price, Francesca Aweeka, S. Eralp Bellibas, and
Lewis B. Sheiner. Making the most of sparse clinical data by using a
predictive model-based analysis, illustrated with a stavudine pharma-
cokinetic study. European Journal of Pharmaceutical Science, 12:377–385(4),
2001.


