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CELLULAR PATTERN FORMATION

Abstract
by

Yi Jiang

This thesis studies the formation and evolution of cellular patterns in foams and
living organisms using the extended large-() Potts model. Specific problems include
grain growth, foam drainage, foam rheology, and patterning and cell sorting in the
mound phase of the slime mode Dictyostelium discoideum.

In a wide range of cellular materials, surface-energy-driven diffusion leads to
boundary motion which causes some grains to expend and others to shrink. Two-
dimensional large-@) Potts model simulation of the evolution of a disordered cluster
developed from a hexagonal grain array with a defect shows that abnormal grain
growth can occur without strong anisotropy of surface energy. The grains at the
boundary of the disordered cluster reach a special scaling state with no scale change.

In three-dimensional liquid foams, drainage occurs due to gravity. Large-() Potts
model simulations, extended to include gravity in three dimensions, agree with both
experimental and analytical results for various kinds of foam drainage, and also
predict new phenomena.

Foams exhibit a unique rheological transition from solid-like to fluid-like. Simula-
tions using the large-() Potts model, extended to apply shear to a two-dimensional
foam, show three different types of hysteresis in foam’s stress-strain relationship,
which correspond to the elastic, viscoelastic and viscous fluid properties. This wide-

ranging mechanical response depends on the structure and dynamics of local topo-
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logical rearrangement of foam cells.

Biological tissues resemble foams and the large-() Potts model can also simulate
sorting in biological cell aggregates. In Dictyostelium mound, two types of cells are
initially randomly distributed. In time, one cell type sorts to form a tip. Simulations
show that both differential adhesion and chemotaxis are required for sorted tip
formation. With only differential adhesion, no tip forms. With only chemotaxis,
a tip forms containing both cell types. Thus simulations can provide a method to

determine the processes necessary for biological patterning.
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CHAPTER 1

SUMMARY

This thesis treats the formation and evolution of cellular patterns in foams and
living organisms using the extended large-@) Potts model. Specific problems include
two-dimensional anomalous grain growth from inhomogeneous initial conditions,
liquid drainage under gravity in three-dimensional wet foams, foams’ mechanical re-
sponse and topological rearrangements under external stress, and pattern formation
and cell sorting in the mound stage of the slime mode Dictyostelium.

Two-dimensional coarsening occurs in a wide range of materials. In spite of
a few complications, the simple and well understood von Neumann’s law governs
the evolution of grains. Surface energy drives diffusion which causes boundary mo-
tion, some grains expand and other shrink and eventually disappear. Experiments
show that most homogeneous initial conditions evolve into a scaling state where the
statistics of the ensemble of grains remain the same while the average area of grains
increases linearly in time. For highly inhomogeneous initial conditions, the evolution
differs. The large-Q) Potts model on a two-dimensional lattice simulates the evolu-
tion of the disordered cluster developed from a perfect hexagonal grain array with
a single defect. The distribution functions are not stable, while the average area
and the number of grains in the cluster grow linearly in time. However, the grains
at the boundary of the cluster form a well defined region which reaches a special
scaling state with time invariant distributions and no scale change. Abnormal grain

growth can occur without anisotropy of surface energy, contrary to previous belief.



It requires only widely spaced topological defects in an initially homogeneous array
of grains.

Studies of foams with a small liquid fraction often ignore the role of Plateau bor-
ders, the liquid-filled regions at the intersections of cell walls. For three-dimensional
liquid foams, an additional complication is the vertical drainage of the liquid due to
gravity. Often drainage, rather than diffusion, determines foam stability and prop-
erties. Many applications require detailed understanding of drainage. The large-@)
Potts model extended to include gravity on a three-dimensional lattice simulates
the vertical liquid profile of foam drainage. For ordered foams, a constant profile
develops for forced drainage with liquid input from the top of the foam at a constant
rate. In free drainage, without liquid input from the top, homogeneously distributed
liquid drains to the bottom of the foam until capillary effects and gravity balance,
while for pulsed drainage, as liquid drains from the top of the foam into the dry
foam, a sharp interface between the wet and dry foam develops. The fixed pro-
file moves downward at a constant velocity with a flat interface. The simulations
agree with both experimental data and analytical results. In a disordered foam or
when coarsening is not negligible, the wetting front is no longer sharp and stable,
challenging current theories and experiments.

Foams have unique rheological properties that range from solid-like to fluid-
like. The large-() Potts model, extended to apply shear to a two-dimensional foam,
simulates two-dimensional non-coarsening foam under shear. Simulations of periodic
shear show three different types of hysteresis in the stress-strain relationship, which
correspond to the elastic, viscoelastic and fluid-like properties of foams. This wide-
ranging mechanical response of foams depends on the structural disorder and local
topological rearrangement of foam cells. The effects of structural disorder on the

dynamics of topological rearrangements are studied by applying steady shear on



disordered foams. Structural disorder decreases the yield strain; sufficiently high
disorder practically eliminates the elastic and viscoelastic regimes. Larger shear
rates have effects similar to larger structural disorder. The statistics and dynamics
of local topological rearrangement events (avalanches) depend sensitively on the
degree of polydispersity of the foam structure. As the structural disorder increases,
the topological rearrangements become more correlated and their power spectra
change from white noise to 1/f noise. Intriguingly, the power spectra of the total
stored energy exhibit the same 1/f trend. While avalanches of T1s globally reduce
the stored elastic energy, leading to foam flow, isolated single T1 events locally
reduce the elongation of cells. Studying the effects of single T'1s may help explain
the connection between microscopic topological rearrangements and macroscopic
mechanical response.

While biological tissues differ from foams in many aspects, their structures are
similar. The large-Q) Potts model can also simulate cell sorting in biological cell
aggregates. Dictyostelium discoideum is a classic model for biological pattern for-
mation. Its life cycle alternates between solitary amoebae and multicellular fruiting
body. Propagating extracellular chemical waves supply chemotactic signals which
control collective cell motion. In the multicellular mound, cells differentiate into two
major types, pre-stalk and pre-spore. The initially randomly distributed pre-stalk
cells, in time, sort to the top of the mound to form a cylindrical, nipple-like tip.
Two possible mechanisms could govern relative cell motion: differential adhesion,
in which differences in contact energy at cell interfaces bias the direction of cell mo-
tion, and chemotactic motion of cells along a chemical gradient. Simulations of both
differential cell adhesion and chemotaxis show that with differential adhesion only,
pre-stalk cells move to the surface of the mound but form no tip. With chemotaxis

driven by an outgoing circular wave only, a tip forms but contains both pre-stalk and



pre-spore cells. Only for a narrow range of parameter values does a tip form which
contains only pre-stalk cells. These simulations provide a method to determine the

processes necessary for patterning and suggest a series of further experiments.



CHAPTER 2

INTRODUCTION

2.1 Overview

The formation and evolution of patterns which arise from spontaneous instabil-
ities in a driven, initially homogeneous medium by symmetry breaking and wave-
length selection, have attracted considerable attention. In systems as diverse as
Rayleigh-Bénard convection, diffusion-limited aggregation, solidification fronts, the
Belusov-Zhabotinsy reaction, vibrated liquids (Faraday experiment), vibrated gran-
ular materials, and many others, patterns arise as a result of a nonlinear or a non-
equilibrium mechanism [1]. A different class of non-equilibrium disordered patterns,
known collectively as cellular patterns, begins with an intrinsically patterned state
with defined domains which then evolve.

Cellular patterns take their name from their resemblance to living tissue. As
shown in Figure 2.1, they consist of domains separated from each other by dis-
tinct boundaries. Already in the 17th century, researchers across several different
disciplines noted that the appearance of many cellular materials was almost identi-
cal [2, 3]. Geologists found cellular patterns in crack networks in lava slopes [3, 4] and
stone arrangements due to convection during freeze-thaw cycles [5]; biology offered a
huge variety of cellular patterns of different length scales, from territorial patterns in
ecology to cellular structures in tissues [6]; materials science offered polycrystalline
structures in metals and sintered ceramics, cracks in glazes and fracture in polymer

films above their glass transition temperature [7]; finally, cellular patterns are also



characteristic of some nonlinear convection problems like solar granulation [8] and
Bénard-Marangoni convection [9]. More examples can be found in Glazier’s the-
sis [11] and several review papers [10, 12]. Sir D’Arcy Thompson [13] guessed, quite
rightly, that the ubiquity of cellular patterns is not the result of detailed, system
dependent interactions, but is the outcome of competition between a minimization
process and global constraints of a geometric nature. However, he did not proceed
to a general theory of cellular patterns, but chose to apply these insight to explain

biological structures.

b

Figure 2.1: Photograph of soap bubbles confined between two glass plates: a typical
two-dimensional cellular pattern in a quasi-static equilibrium with three-fold vertices
and 120° contact angles. Walls curve due to the pressure difference between adjacent
cells.



The modern history of the subject begins with C. S. Smith [14], who at a metal-
lurgy conference in Cleveland, proposed the study of two-dimensional soap froth as
a means of understanding a problem of vast practical importance: the evolution of
grains inside a metal. J. von Neumann was at the seminar and he immediately de-
rived the equation for the growth of polygonal bubbles in two-dimensional soap froth
now known as von Neumann’s Law [15]. Ever since, the formation and evolution
of two-dimensional cellular patterns has attracted considerable attention. Experi-
ments have studied a variety of materials including soap froth [16, 17, 18], magnetic
bubbles [19, 20, 21], Langmuir films [22, 23], lipid monolayer foams [24] and ferro-
fluid foams [25]. Theoretical studies of two dimensional cellular patterns proceed
mostly in three distinct branches: area dominated (mean field theories using von
Neumann’s law), boundary dominated (motion induced by boundary curvature) and
vertex dominated (motion induced by tangent forces) [10, 26, 27]. A great deal of
understanding has been achieved about the evolution from a nearly ordered foam
to a disordered scaling state, where the length scale of the pattern grows but the
statistics stay the same. The statistical distributions, including the topological dis-
tribution p(n) (where n is the number of sides of a domain), and the normalized
area distribution p(a/(a)) (where a, (a) are the area of domains and the average
domain area), and the various topology and area correlations characterize the pat-
tern disorder. Questions, however, remain whether the scaling state is universal and
why a wide range of materials select the same scaling distribution from a family
of possible solutions. In those materials where coarsening does not reach a scaling
state, e.g. in abnormal grain growth, where some domains grow at a much faster
rate than the rest, what are the necessary conditions for these anomalies? We will
attempt to answer (partially) these questions by presenting a special scaling state

evolved from a single topological defect on a homogeneous lattice [Chapter 3].



Recently, research on cellular patterns has extended from two-dimensional to
three-dimensional, from quasi-static coarsening in single phase systems to multi-
phase, more dynamic problems, including drainage and rheology.

Foam drainage, while extremely important in foam applications, had only been
described by empirical rules. In a charming book “Soap Bubbles: their colors and
forces which mold them,” C. V. Boys [126] in the early 20th century, discussed the
thickness of bubble walls after demonstrating many interesting and entertaining
experiments. Bikerman [127] in his book “Foams: Theory and Industrial Applica-
tions,” reported early experiments measuring the amount of liquid drained from a
foam and gave no less than five different functional forms for the volume of liquid
draining out of a standing foam [127]. Mysels et al. [128] investigated different
types of thin film drainage, concentrating on vertical films formed by withdrawal
of glass frames from pools of surfactant solution. Only recently has foam drainage
been systematically studied. Weaire et al. performed a series of experiments which
measured the evolution of the liquid profile during different kinds of drainage [129].
A theory has emerged in the form of the drainage equation [130, 131] to explain
some of the experimental observations and to predict others, which in turn, were
verified in experiments. But both experiments and theories are limited to ordered
foams, where effects can be averaged. We will describe our Monte Carlo model,
which reproduces both experimental and theoretical results in ordered foams and
predicts new phenomena in disordered foams [132, 133]. Our model represents “an
interesting change of direction for theory” [129] [Chapter 4].

A growing interest in the complex behavior of driven simple systems has resulted
in ever increasing research on the rheology of cellular and granular materials. Many
soft materials, including foams and emulsions, have intriguing rheological proper-

ties [161]. They behave as elastic solids for small applied shear due to their linear



deformation, recovering their initial shape and size when the shear is released, but
flow like viscous liquids at large applied shear due to nonlinear and collective local
rearrangements. While analytical study is only possible for periodic structures or
linear responses, computer modeling has provided important insights into the rhe-
ology of foams. Several models have been developed: constitutive models based on
local mechanical interactions [162, 163, 164], a vertex model treating foams as a col-
lection of interacting vertices [165], a center model based on Voronoi reconstruction
of foams [166] and a “bubble” model where bubbles interact as elastic disks with
viscous dissipation [167]. These models make different assumptions and have dif-
ferent regimes of applicability. The phenomenology of foam flow is well-established
but experiments revealing the connection between detailed structure and mechanical

response have been scant [Chapter 5].

2.2 Dynamics of Cellular Patterns

As the following pages will emphasize, a part of this thesis treats cellular pat-
terns of a particular kind: in two-dimensions, all vertices are three-fold (except
during topological changes) and the walls connecting them meet each other at 120°
angles. Simple geometry shows that a three-fold vertex with non-120° angles has
larger boundary length than one with 120° angles. Minimization of the total bound-
ary length makes a pair of three-fold vertices energetically more favorable than a
four-fold vertex, and walls become circular arcs [28]. Figure 2.2 shows a four-fold
vertex decaying into a pair of three-fold vertices with 120° contact angles; the bound-
ary length in the latter is about 3.4% shorter than that in the former. This decay
is just a simple example of the centuries-old Steiner’s problem: given n points, find
a spanning tree that includes every point with minimal total length. Fermat posed
the basic problem in 1646 but it was Steiner (1796-1863) who devised this formula-

tion [29]. A minimal spanning tree is called a Steiner tree, and arises frequently in



problems concerning network design, optimal location of facilities etc. [30]. While
Steiner’s problem is a well known NP-complete problem [31], soap films naturally
“solve” it by minimizing their surface energy. Note that a soap froth spanning tree
is not necessarily Steiner’s tree — it can be a local minimum in configuration space.
Topology and dynamics relate intimately in cellular patterns. A three-fold vertex
is topologically stable, i.e. a small displacement of one wall does not destroy it,
whereas moving a wall at a four-fold vertex immediately forms two three-fold (not

necessarily with 120° angles) vertices.

Figure 2.2: A four-fold vertex decays into two three-fold vertices because the total
boundary length decreases.

In Summary, at equilibrium:

The pattern has a vertex connectivity of three (higher connectivity is unsta-

ble).

Walls are minimal surfaces (with constant mean curvatures).

Walls meet each other at 120° angles at vertices.

The curvature of a wall is proportional to the difference in pressure across it.
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The last point is the Young-Laplace law:

ap=2%" (2.1)

,
where o is the coefficient of surface tension and r the radius of curvature of the wall.

In foams, pressure differences between adjacent bubbles, given by Equation 2.1,
cause gas to flow through the walls from higher pressure bubbles to lower pressure
ones. Note that the gas pressure difference caused by film curvature is negligible
compared to the mean pressure within bubbles, so the amount of gas inside a bubble
is nearly proportional to its area. Hence, assuming that the diffusion rate is linearly
proportional to the pressure difference, the rate of area change through a wall is

proportional to the wall length /;; and pressure difference:

Aai—>j = Fv"(pz’ - pj)lija (2-2)

where £’ is a diffusion constant. In the soap froth, this relation is essentially Fick’s
diffusion equation [77].

From these assumptions, elementary trigonometry shows that:

dc% = k(n —6), (2.3)
where a,, is the area of a cell of n sides and « is a coefficient depending on " and o.
Equation 2.3 is known as von Neumann’s law which is exact under these assump-
tions. von Neumann’s law also holds for metallic polycrystals where the boundaries
are not always at equilibrium, provided that locally the boundary velocity is propor-

tional to local curvature. Considering the force balance on a point at the boundary

with no inertia [77]:

pi—Dpj=0/r— vy, (2.4)
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where o is the surface tension, r is the local radius of curvature, A is the coefficient
of viscous drag and v, is the normal velocity of the boundary, which relates to the

area change of a bubble through:

dai f
= ULdl. 2.5
dt bubble i ( )

Using equations 2.2 and 2.4, and a geometrical identity,

1
}[ Yl = 2r —nn/3 = (6 — n)rn/3, (2.6)
bubble i T

we recover von Neumann’s law with:

K o
e — 2.7
"3t W) 27)

In the limit A — 0, this relation is the original von Neumann’s derivation for
soap foams; in the limit A — oo we obtain idealized metallic grain growth, since the
pressure differences become negligible and boundary velocities are simply propor-
tional to local curvature. In both cases, von Neumann’s law states that coarsening
does not depend on domain areas or on the local configuration, except through the
number of sides.

The walls meet the boundaries of the container or any second phase object at 90°
because of the symmetry in contact angles. This angle difference is best illustrated
in the picture of dragon fly wings in Figure 2.3, where walls meet at 120° angles
among themselves but form 90° angles with the wire frame. Studies of coarsening,
often neglect boundary effects. But in thin film strips, the boundaries strongly in-
fluence the microstructural evolution, which may have important consequences for
the performance of the material. Vaidya and coworkers [103] observed a “bamboo”
microstructure develop as individual grains spanned the width of a thin film conduc-

tor strip; Walton et al. [104, 105] simulated grain growth in thin film strips; Fortes
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Figure 2.3: A dragonfly’s wing, top, can be mimicked by two-dimensional soap films
in a suitable frame (thick lines), bottom. Notice that the walls form 90° angles
with the frame but meet at 120° angles among themselves. [From Hildebrandt and

Tromba [29]].
and Rosa [110, 111] investigated similar bamboo formation in soap froth confined

in long tubes [Section 3.5].

While surface tension drives foam dynamics, the competition between surface
minimization and conservation constraints gives rise to complex patterns. Sim-
ilar rules hold in three dimensions: walls have constant mean curvatures (% +
%), and vertices are four-fold with 109.47° internal angles (the tetrahedral angle,

cos™'(—1/3)). However, some of the geometrical constraints are relaxed in three

dimensions, considerably complicating the problem. Glazier has proposed from
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simulations a coarsening law for three-dimensional cellular structures in analogy
with von Neumann’s law [113]. Sire has developed a compatible mean field the-
ory [114]. Experimental three-dimensional coarsening studies have used various
new techniques such as diffusion wave spectroscopy [115, 116], magnetic resonance
imaging [117, 118], and optical tomography [119] [Section 3.6].

We will first present our research on foams, including foam coarsening (grain
growth) [Chapter 3|, foam drainage (phase separation)[Chapter 4] and foam rheol-
ogy (mechanical response under external driving) [Chapter 5]. We have employed
a Monte Carlo simulation, the large-() Potts model and extended it to all these
problems [Chapter 2]. As Sir D’Arcy Thompson did, we then go back to the realm
of biology. The obvious similarity in appearance between the cells of a soap foam
and the cells in a living organism leads to many attempts to connect the two more
formally. In his book On Growth and Forms, Sir D’Arcy Thompson expressed the
analogy succinctly: “...surface tension is of great and is probably of paramount im-
portance” in the determination of the shapes of simple organisms and cells [13]. We
apply the same model and a general understanding of physical mechanisms to study
cell sorting.

Cell sorting is critical to life. Cells move extensively in embryonic development,
wound healing and metastasis of cancer. When cells of two or more types are ran-
domly intermingled and aggregated, they are able to migrate over long distances
to re-establish homogeneous cell masses and sometimes to re-construct functional
tissues [192]. Living organisms, even adult animals such as Hydra, can regener-
ate from an aggregate of randomly mixed cells of different types [193, 194]. Cell
migration and sorting in wvivo usually require a high degree of organization and
complex cellular interactions. The driving mechanisms for cell sorting fall into two

categories: short range interactions where cells interact through direct contact, and
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long range interactions where cells interact through the external environment. We
seek to understand how cells migrate and sort by studying these interactions in a
simple organism, slime mold amoebae Dictyostelium discoideum, which are easy to
manipulate experimentally. We will focus our discussion on explaining cell sorting
and patterning in the mound stage of Dictyostelium, based on direct (differential
adhesion) and indirect (chemotactic) cell interactions [Chapter 6].

Except in the discussions of cell sorting, we use the word foam as broadly as
possible — to describe a cellular structure. Only in specific contexts will we distin-
guish between wet and dry foams, ordered and disordered foams. We neglect all
chemical aspects of foams in our study: that is, we describe them mainly by one
parameter, 7, the surface tension, whose value will not be specified. While the rate
at which gas diffuses across bubble walls and the rate at which bubble walls relax
when perturbed both depend on the chemical makeup, especially the viscosity, of
the foam, we usually assume that the walls relax much faster than other processes,
such as gas diffusion or liquid drainage. In this respect, foams and concentrated
emulsions may differ only in their degree of wetness or average bubble size. The
terms grain, bubble, cell and domain are more or less interchangeable, as are film,

wall, boundary, grain boundary, and membrane.

15



CHAPTER 3

POTTS MODEL

3.1 Introduction

3.1.1 Overview

Potts introduced the Potts model in 1952 [32], as a generalization of the Ising
model to more than two components. Historically, Ashikin and Teller first studied
a four-component version of the model [33], so the model is sometimes called the
Ashikin-Teller-Potts model. The general @)-state model gained its current name
after Domb [34] proposed it to his then student Potts as a thesis topic. It became a
subject of intense research interest in the 70’s and 80’s because it has a much richer
phase structure than the Ising model. Its critical behavior is also richer and more
general than that of the Ising model. In the ensuing effort to explore its properties,
the Potts model became an important testing ground for different methods and
approaches in critical point theory [35]. The phase transitions of the low @ Potts
model are still studied [36].

The phase transition literature is strikingly replete with “models:” the Ising
model, the Heisenberg model, the Potts model, the chiral Potts model, the XY
model, the Baxter model, the Zamolodchikov model, the F model and even the non-
linear sigma model, to name just a few. For these models, we can often compute the
partition functions exactly or at least reduce them to a finite number of integrals [37].
The Potts model is the generalized Ising model, having discrete degenerate spin

values (except in the ) = oo limit); the XY (or O(2)) model consists of a set of
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continuous valued spins regularly arranged on a two-dimensional square lattice; the
Heisenberg model is the three-dimensional version of the XY model, where spins
obey a continuous symmetry in three dimensions.

The early 80’s saw the pioneering work of Anderson, Grest, Sahni and Srolovitz
who developed the Q-state Potts model to study cellular pattern coarsening [38, 39,
40, 41, 42, 43, 45, 46, 47, 48, 50, 51]. They used the Potts model to simulate metallic
grain pattern relaxation at low temperatures, very different from most high temper-
ature phase transition problems. A quasi-microscopic view of grain growth naturally
led metallurgists to think of the interior of a grain as being composed of a lattice
of “atoms” (corresponding to spins), and the grain boundaries as the interfaces be-
tween different types of atoms or different crystal orientations (corresponding to

mismatched lattice bonds).

3.1.2  Original Potts Model For Grain Growth

As mentioned in chapter 1, the basic driving force in coarsening is surface energy.
Unlike a molecular dynamics model that requires the detailed interaction potentials
among the atoms, or a mean field theory that begins with von Neumann’s law [Equa-
tion 2.3], the Potts model minimizes total surface energy and essentially solves the
minimal surface equations. The Potts model puts surface energy on a lattice by
defining a free energy proportional to the total area of grain boundary. Mathemat-
ically, each site on the lattice has a spin o. All the lattice sites within a given grain
have the same spin o, with a different spin for each grain. The difference between
spins defines the grain boundaries. Figure 3.1 shows a schematic of the model in
two dimensions. The energy of interaction between like spins is zero, and between
unlike spins one. Thus the Potts Hamiltonian - the total energy - is:

H=2 [1=0,600) (3.1)

- =

0,J
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where 7 and j are neighboring lattice sites. The neighbor range (discussed below)

affects the nature of the interaction.
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Figure 3.1: Schematic of a two-dimensional cellular pattern represented in the large-
@ Potts model. Numbers show different spin values. Heavy black lines indicate grain
boundaries.

Monte Carlo simulations of ()-state Potts models have traditionally used local
algorithms such as that of Metropolis et al. [52]. A lattice site is chosen at random
and a new trial spin is also chosen at random from one of the other () — 1 spins.

The probability of accepting such a reassignment is:

1 AH <0
P = (3.2)
exp(—AH/T) AH >0,

where AH = Hager — Hbetore denotes the difference between the total energy before
and after the spin reassignment, and 7" is the magnitude of fluctuations. Simulation

time is measured by Monte Carlo steps (MCS), where one MCS corresponds to
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as many spin flip attempts as the total number of lattice sites N. Note that this
definition of time is somewhat arbitrary, as the spin configuration and energy are
updated instantaneously with every spin flip. The updating rules are exactly the
same for each lattice site and the evolution is continuous. Thus the relative timing
of events, for example two spin flips, is uncertain within one MCS. While this
uncertainty is insignificant for well separated events, it can change the measured
interval between frequent events.

On average the maximum velocity of boundary motion is 1 lattice site per MCS.
However, for pathological updating sequences, the velocity can range from zero to N
lattice sites per MCS. Thus velocity is intrinsically a statistical distribution. Correct
calculation requires averaging over replicas. In practice, these pathologies are rare.
Hence time averages can substitute for replica averages. Successful spin flips at
the grain boundaries correspond to boundary migration. A segment of boundary

therefore moves with a velocity v; related to the local energy difference, AH;, by

v; = C[1 —exp(—AH;/T)], (3.3)

where C'is a constant corresponding to a boundary mobility [44]. Equation 3.3 is
equivalent to the boundary velocity derived from classical reaction rate theory [54].

This algorithm makes the crucial assumption that the boundary motion is Brow-
nian, described by Boltzmann dynamics. This assumption is true for metallic mate-
rials, where atoms jump back and forth across the boundary if the thermal energy is
high. Mombach et al. [208] showed in chicken embryo cell experiments that certain
cell membranes also perform thermal fluctuations. But soap foams are essentially
fluctuation free. Many of our simulations accept only reassignments that lower the

total energy, i.e.,
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1 AH <0
P=1 05 AH =0 (3.4)
0 AH>0,

corresponding to the zero temperature limit, which is appropriate for soap froth.
However, even zero temperature simulations have fluctuations due to Monte Carlo

updating.
3.1.3 Small-@) Simulations

Early simulations by Anderson et al. used small @) values, shown in Figure 3.2

for ) = 3,6,12, and 64 on a triangular lattice at T" ~ 0.

Obviously low-@) configurations consist of very irregular and asymmetric grains while
the high-@) configurations consist of more compact and symmetric grains. In the
low-@) limit, when grains meet and coalesce with other grains of the same spin value
(same orientations), their areas have large discontinuous changes. The probability

for two like grains to meet scales as:

1—(1-1/Q)%, (3.5)
which for large @ reduces to Z/@Q, where 7 is the number of neighbors on the
lattice [44]. For Q = 64, on a next-nearest neighbor triangular lattice where Z = 12,
the probability of grain coalescence is about 0.172 which is not negligible. Since
coalescence events are strictly forbidden in most real metallic grain growth [53],
only the large-@) limit can successfully model grain growth. In unstable foams, wall
breakage sometimes occurs and two bubbles sharing the same wall coalesce. While
the topological distribution and von Neumann’s law determine the rate of diffusive
bubble disappearances, coalescence depends on different mechanisms and thus has

rates independent of diffusional coarsening. Also, wall breakage usually appears as
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a cascade, strongly correlated in space and time [55], rather than being uncorrelated
and probabilistic as in the low-() Potts model. Coalescence can be modeled in the

large-(@) limit by assigning the same spin value to the two merging grains.

3.1.4 Lattice Anisotropy

In practice, lattice simulation of surface energy runs into difficulties when lat-
tice discretization results in strong lattice anisotropy. The lattice anisotropy can be
characterized by the ratio of lowest to highest surface energies per unit boundary
length as a function of orientation, usually shown in a Wulff plot (surface energy wvs.
surface orientation). Figure 3.3 shows that longer range spin interactions smooth
the Wulff plot. Table 3.1 gives the values of lattice anisotropy and the corresponding
orientations of energy extrema: 6,; for energy maxima and #,, for energy minima.
In low temperature Potts model simulations, boundaries tend to align preferentially
along low-energy orientations. For example, if we use a simple nearest neighbor
interaction on a square lattice, boundaries tend to be horizontal and vertical, allow-
ing stable vertices to deviate from the 120° rule. As a result, coarsening gradually
slows down and finally stops altogether (as observed in many real metals with a
high anisotropy), rather than continuing indefinitely. Moreover, the Potts model
with strong lattice anisotropy consistently yields wider side and area distributions
than soap froth [56]. One way to treat this problem is to work at a higher tempera-
ture where thermal activation allows the boundaries to overcome anisotropy pinning.
Experimentally in metals, higher temperatures result in higher growth rates. There-
fore this choice is reasonable in simulating grain growth. As mentioned, soap froth,
free of boundary fluctuations, should be simulated in the zero temperature limit. A

better solution is therefore to reduce the lattice anisotropy by using a triangular
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Figure 3.3: Wulff plots of lattice anisotropy in two dimensions: (a) sq-1 [11], (b)
sq-2 [11], (¢) sq-3, (d) sq-4 correspond to nearest, 2nd nearest, 3rd nearest, and 4th
nearest neighbors on a square lattice; (e) tr-1 [39], (f) tr-2 correspond to nearest
and 2nd nearest neighbors on a triangular lattice, respectively.
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Table 3.1: LATTICE ANISOTROPY IN THE POTTS MODEL

‘ # of Neighbors O 0, ®=FEy/E, ‘

sq-1 4 45.0 0.0 1.414
sq-2 8 19.5 45.0 1.190
Sq-3 12 31.5 0.0 1.166
sq-4 20 16.5 0.0 1.037
tr-1 6 27.0 0.0 1.119
tr-2 12 10.5 45.0 1.077

lattice, or increasing the range of interaction. We generally use a fourth nearest
neighbor interaction on a two-dimensional square lattice, which corresponds to a lat-
tice anisotropy of 1.037 [see Table 3.1], a good approximation to the ideal, isotropic
1.00 but not too computationally expensive. An alternative approach is to use dif-
ferent weights for different order of neighbors, which can provide low anisotropy with
fewer neighbors but is not necessarily more computationally efficient, as it involves
using non-integer numbers.

Holm et al. [56] have studied the effects of lattice anisotropy and temperature
on coarsening in the large-() Potts model. Although by very different mechanisms,
increasing temperature and smoothing the Wulff plot of the lattice both can over-
come the anisotropy inherent in discrete lattice simulations, resulting in continuous
coarsening that obeys von Neumann’s law (Equation 2.3).

When using long range interactions, size limits become more significant: e.g.
in a fourth nearest neighbor two-dimensional square lattice, for any cells of area
a < 21, all lattice sites are surface sites. For small size cells, von Neumann’s law
fails because the surface to volume ratio does not follow r : 2. For a fourth nearest
neighbor interaction on a two-dimensional square lattice, a = 35 is the minimum
area. In general, cell areas must be larger than Z?/4w, where Z is the number of

neighbors, for the surface to volume ratio to be approximately correct.
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3.1.5  Algorithms

The standard Metropolis algorithm selects a site at random with uniform proba-
bility, and tries to change the spin at the site to another randomly selected spin. At
zero temperature, no spins can change except those at the boundaries, because cre-
ating an unlike spin inside a domain can only increase the total surface energy which
is not accepted. However, finite temperature simulations can cause heterogeneous
grain nucleation, which does not occur during normal grain growth. We employ a
new algorithm: we randomly choose lattice sites at the boundaries only, and try
to reassign to them one of their neighbors’ spin values. In real materials, grain
boundaries migrate as a result of thermally activated atomic jumps across a bound-
ary. The atoms added to a growing crystallite assume its orientation. Hence from
microscopic considerations, a chosen lattice site should attempt to reorient into one
of its neighbor’s orientations. This algorithm considerably speeds coarsening and
eliminates heterogeneous nucleation. Recently, a detailed comparison between this
algorithm and the standard Metropolis algorithm has shown that they have the
same growth exponents a ((r) ~ t*) and distributions of grain sides and sizes [53].
A further improvement of the algorithm keeps only the list of boundary sites instead
of the entire lattice configuration, and selects trial spins from local neighbors. To
keep the rate of time evolution constant as the number of boundary sites changes,
the definition of MCS changes: one MCS is as many spin flip attemps as the total
number of boundary spin sites. Hence, one new MCS : one old MCS = bound-
ary length : area. This new algorithm is much faster than the old ones when grains

are large, for example, in late stage coarsening.
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3.2 Extensions

The large-@) Potts model has been extended in many ways to incorporate different
aspects of cellular materials. In analogy to other spin models, the extensions fall

into the following catagories:
e coupling between spins,
e coupling to external fields,
e constraints.

We shall describe in detail how we implement these in due course. Here we give

only an overview.

3.2.1 Interaction Between Spins

When more than one type of cell (more than one phase) is present in a cellular
material, surface tensions at boundaries between like types and unlike types differ.
To incorporate these differences in surface energies, instead of using a constant
coupling strength for all unlike spin pairs, we introduce different coupling strengths
for different “types” of spins. Graner and Glazier [215, 206] first proposed this
extension of the Potts model in their simulations of cell sorting, where they included
three types of cells: dark cells (d), light cells (1) and a fluid medium (M) treated
as a generalized cell. Low surface energy corresponds to a smaller value of coupling

constant. The total energy becomes:

Hi= Z Tr(0@) 0@ (L = Oo@ o) (3.6)
"3‘

where 7(0) is the type of cell . The summation is always over all neighboring

sites on the lattice. The coupling constants can be mapped into surface tensions,
Yrr [214]:
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Taa + T

Ya = Ja — 5 (3.7)
Yamur = Jam — %, (3.8)
Y = T — % (3.9)
The total surface energy ‘H can be rewritten as:
H = Yala + Yam Lave + i Line + Z Ai%, (3.10)

cells

where Iy, I;yr and Iy are the total interface areas between the respective types,
and A; is the total surface area of cell 7. The last term is constant if all cell surface
areas stay the same.

For cell sorting in the Dictyostelium mound [Chapter 6], we include four cell
types: prestalk, prespore, sheath and substrate, and model the different surface
tensions by using type dependent coupling strengths.

As the coupling strength describes the interaction between spins, J;; usually
is symmetric, i.e. J;; = Jj. But it does not have to be symmetric. In fact, an
asymmetric coupling strength effectively exerts a force [57]. When J;; > Jj;, a spin
flip from 7 to j has a different energy from that from j to 7. J;; — J;; contributes
to AH, and therefore biases the probability of a spin flip between ¢ and j, favoring
1 to j. Figure 3.4 illustrates this bias on a nearest neighbor square lattice. In case
(a), the change in configuration energy is AH, = 3J21 — J12, when the circled spin
1 flips to its neighbor spin 2; in case (b), AH;, = 3J12 — J21, when the circled spin

2 flips to its neighbor spin 1.

Hence the ratio of the probabilities for (a) and (b) is:

exp(—AH,/T) : exp(—AH,/T) = expld(TJ12 — Jo1)/T), (3.11)

28



w 11122 1.1{2 2
1 (12 2 1.2)2 2
11:22 1122

J12 37n
AH =391 = 12
1 1.2 2 1 12 2

n 1122 1 1@_;2

1122 1 1122

J2 3712

AH =371, = I

Figure 3.4: Asymmetric coupling strength in the Potts model: [Ji5 # J21. Case (a)
corresponds to cell-2 expanding into cell-1. Case (b) corresponds to cell-1 expanding
into cell-2. AH is the energy difference after the spin flip.
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which can be generalized to an arbitrary lattice by replacing 4 with the total neighbor
number Z. This ratio reflects the net velocity of the segment of boundary, as given
in Equation 3.3. If J12 > J51, the probability of cell-2 protruding into cell-1 is
higher than the other way around. Since in highly damped motions such as cell
movements, motion stops as soon as the applied force stops, the velocity, rather
than the acceleration, is proportional to the applied force, or ¢ oc F'. So in the Potts

model, we can treat the forces as derived from an effective potential energy. Hence,

=

VH,
[VH,|

Via the spin flip probabilities, the Potts model translates energy into forces.

F ot ox [I —exp(AH/T)]

(3.12)

Since the probability is exp(—AH /T), the above arguments hold true for asym-
metric temperatures T as well. Although the term “asymmetric temperature” may
sound odd, it occurs often in biological cells. Different types of cells have different
intrinsic membrane fluctuation amplitudes. Stronger membrane fluctuations corre-
spond to higher temperatures. When two different membranes touch, the asymmet-
ric membrane fluctuations at the contact surface can be described by “asymmetric
temperature,” i.e. a spin flip from ¢ to j is driven by a stronger force than that
from j to 1.

More generally, to apply force through coupling strengths, we can make J a

tensor (2 X 2 in two dimensions) which relates to the stress tensor:

Tee  Tay
J = . (3.13)
jyx jyy

The detailed form of J can be as complicated as desired for different effects, e.g.
asymmetric and time dependent. For example, when we apply uniaxial stress, J

has perpendicular basis vectors, with diagonal components only:
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e 0
J = ( ) , (3.14)
0 e*

where «, which can depend on time, & = «(t), is a convenient measure of the
applied stress field. This choice of 7., J,, conserves the total area, since extension
in the z direction is compensated by contraction in the y direction and vice versa.
Hydrostatic pressure can be readily included if 7., x J,, # 1.

We should emphasize that coupling between spins exerts forces locally, different

from a globally applied field.

3.2.2 Coupling to an External Field

When an external field acts on the cells, or some subset of cell types, the spins
need to couple to the external field. But unlike magnetic materials where spins flip
to align or anti-align with the magnetic field, in our extended Potts model, since
the spins do not correspond to any microscopic properties, cells keep their identity
in the field. The coupling only exerts force on the cell boundaries and the boundary
migration results in cell motion. For example, in the case of wet soap foams, where
cells have two types, gas and liquid, liquid drains under gravity [chapter 4]. One spin
value corresponds to the liquid phase, which is subject to an external gravitational

field. The total energy therefore has a potential term, in addition to H; [132]:

Ho = Hq + Z 9z3, (3.15)

liquid
where g is the weight per unit volume and z; is the height of the liquid spin. As the
foam tries to minimize the total energy, lower positions for liquid spins are favorable.
Therefore, the spin flip probability is higher for liquid spins to move downward than
in any other directions, as illustrated in Figure 3.5 on a nearest neighbor square

lattice.
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Figure 3.5: Effect of an external gravitational field in the Potts model. Spin 1 is a
liquid subject to gravity and spin 2 is a gas. z is the height of the spins. AH is the
energy difference after the spin flip.
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The ratio between the probabilities of a side-ways flip and a downward flip is:

exp(—AH,) : exp(—AH,) = exp(—g) < 1. (3.16)

The coupling between liquid spins and the gravitational field does not change the
liquid spins to other values if their total volume is constrained, but rather biases
the probable direction their motion.

Similar terms can model biological cell chemotactic motion when external chem-
ical gradients guide cell movement in the direction of higher or lower chemical
concentration. Given that the cell velocity is proportional to the local chemical

gradient [245], the modification is

Hy=Hi+p) G (3.17)

where p is the chemical potential, C; is the chemical concentration at site ¢, and the
summation is over lattice sites experiencing chemotaxis. A spin flip causes an energy
change AH' = AH+pu(C—C;). For a positive p, if C > C’ then AH' < AH and the
probability of accepting the reassignment increases; if C' < C’ then AH' > AH and
the probability decreases; if C' = C’ the probability does not change. So, over time,
boundaries move more often into sites with higher concentrations than with lower
concentrations, and the cell migrates up the chemical gradient. The direction can

be changed by simply changing the sign of . Chapter 6 discusses cell chemotaxis.

3.2.3 Constraints

In the Potts model, coupling between spins and coupling to external fields both
exert local forces that depend only on local spin configurations. Non-local forces
such as those depending on global properties, like cell volume or substrate curvature,

can be treated as constraints. In general, we can add a constraint to the total energy,
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just as a constraint is included in the Lagrangian:

He=2> Y Tulflo) = F(r(o))]", (3.18)

o a=1
where I is the equivalent Lagrange multiplier, f is the actual value of some property
of cell o, F is the constrained value, and « indicates different orders of constraints.
When the pattern satisfies the constraint, H. = 0, with an energy penalty increasing
for worse constraint violation.

Biological cells generally have a fixed range of sizes. They do not grow un-
boundedly nor shrink and disappear like coarsening soap bubbles. We include this
constraint in the form of an elastic term with elastic constant I', and a fixed target

size V', which may depend on cell type. The total energy becomes:

Hs =M1+ Y _T(7(0)[v(o) — V(r(o))], (3.19)

where v(0o) is the volume of cell ¢ and V' (7(0)) is the type dependent target volume.
Deviation from the target volume increases the total energy and therefore is not
favored. This term is the lowest order expansion of the volume energy, the elastic
approximation. More sophisticated volume energy needs higher powers (4,6...) for
nonlinear features. In practice, unless the total volume of all cells are strictly con-
strained, all the cells at equilibrium are slightly smaller than their target volumes.
This bias can be understood by looking at the total energy Hs. As shown in the
schematic in Figure 3.6, the volume constraint term (II) is quadratic, an even func-

tion of the target volume, V2 ~ 76

, i.e. the same deviation from the target volume
is equally energetically unfavorable, regardless of whether it is larger or smaller than
the target volume. The surface area term (I) in Hg, however, is a linear function of

the total surface area ~ 72, which favors smaller total surface areas, hence smaller

volume.
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Figure 3.6: Energy sketch for the volume constraint. The solid line is the quadratic
volume constraint. The dotted line is the linear surface energy term.

We can rewrite H as:
H = Ar* + B(r* — R?)? (3.20)

where A and B are constants, r and R are the radius of the cell and its target radius,

respectively. If we expand r = R + € to O(€?),
H=AR+e)?+B[(R+¢)?—R?>=AR? + 2ARe + (A + 9BR"Y)e®.  (3.21)

If € < 0, the second term can cancel the last one, i.e. the loss in total surface energy
balances the increase in volume energy. Surface energy minimization lowers the
cell volumes. The same arguments hold true in two dimensions. The competition
between surface and bulk energy results in smaller areas than the target areas.

For two cells which satisfy their constraints, if a spin flip occurring at the cell
boundary causes Cell-A to lose one pixel and Cell-B to gain one, the increased
volume energy results in a higher probability for Cell-A to gain one pixel, when the
next spin A at the boundary of Cell-A is chosen for flipping, and for Cell-B to shed
one pixel when a boundary spin B is chosen. Although all the spin updates still
occur locally, the volume constraint is non-local, which imposes a long range (of the

order of the cell size) interaction on the cells.
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Weaire et al. [58] modeled foam coarsening using an area constraint term in two
dimensions, including von Neumann’s law explicitly to control the dynamics in the
calculations, and using the hexagonal lattice Potts model only to relax the grain

boundaries. Their energy looked very much like H3:

H = % (1= b00) + % > (an — Ay, (3.22)

- =

n
2,7

where A, is the von Neumann’s law determined target area for cell n in two dimen-
sions, and N is the total number of cells. Surface energy minimization under area
constraint leads to minimal surfaces with each cell having a fixed target area. The
target areas were updated according to von Neumann’s law at each time step.

However, because the Potts Model obeys the Young-Laplace law in a probabilistic
fashion, von Neumann’s law arises spontaneously. So, Weaire’s model is actually
redundant. But it has the advantage over the original Potts model, H;, that even
cells small relative to the lattice constant properly obey von Neumann’s law.

More importantly, this method separates boundary relaxation from gas diffusion.
In foams, boundary relaxation is much faster than boundary diffusion, while in
metallic grains the two timescales are of the same order. But the conventional
Potts model does not distinguish these two timescales. Hence the Potts model can
give non-minimal surfaces if the boundaries are not fully relaxed, especially when
temperature is high or there is a fast external driving force (e.g. drainage [Chapter
4] or shear [Chapter 5]). We can change our model as follows: (1) at time 0, switch
off the area constraint by letting A = 0 and evolve the pattern to time ¢; (2) turn
on the area constraint and relax the boundaries by letting A = A, and A,, = A,(t).
Repeating steps (1) and (2), the Potts model can produce von Neumann coarsening
with fully relaxed patterns.

If we let the target volume be time dependent, V' = V(¢), we can model a

whole variety of growth dynamics. Examples include cell growth as a function
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of nutrient supply (cancerous cell growth [59]), and foam-making from reacting
chemicals (sponge making processes [60]).

A completely different class of geometric constraints includes coarsening on a
curved surface. Grest et al. extended the Potts model to include a linear Gaussian

curvature term [61]:

Hp=—cY > Koo, (3.23)
i

where ¢ is a constant, K3 1s the local Gaussian curvature of a surface element at
site j Their simulations on a sphere, torus and a pseudo-sphere agree with the

generalized von Neumann’s law on curved surfaces [62].
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CHAPTER 4

GRAIN GROWTH

4.1 Background

The complete prediction of microstructural development in polycrystalline solids
as a function of time and temperature is a major objective in materials science,
but is not yet possible, primarily due to the complexity of the grain interactions.
The evolution of the polycrystalline structure depends on the coordinates of the
grain boundary network, the crystallographic orientations of the grains, and the
microscopic mechanisms by which elements of the boundaries move [46].

The term grain growth describes the increase in grain size which occurs upon an-
nealing a polycrystalline aggregate after primary recrystallization is complete. Two
different types of grain growth have been distinguished — normal grain growth
and abnormal grain growth (or secondary recrystallization) [63]. Normal grain
growth refers to the microstructure homogeneously increasing in scale, while ab-
normal grain growth refers to the rapid increase in size of a few grains, with the
maximum grain size increasing at a rate much faster than the mean growth rate [64].

Smith proposed almost half a century ago that coarsening foams can model grain
growth in polycrystals [14]. Pressure difference driven gas diffusion in foams and
interface energy driven particle motion in polycrystals both result in boundary mo-
tion, causing some grains to expand and others to shrink and eventually disappear.
The net result of this coarsening is a continual decrease in total boundary length (or

interface area), and an increase in mean grain size. The statistical and dynamical
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properties of soap froth and metallic polycrystals are rather similar in spite of the
different underlying mechanisms. In a soap froth, gas diffusion through the walls
determines the motion of cellular boundaries, and the rate of diffusion and there-
fore the rate of evolution depends on the thickness, composition and surface tension
of the soap films. On the other hand, polycrystals are made of monocrystalline
grains, and the boundary or interface between two grains has an interface energy.
The energy per unit length of the boundary depends on the mis-orientation of the
neighboring grains and on the orientation of the boundary itself with respect to the
two grain orientations, two aspects of the anisotropy of boundaries in polycrystals.
The boundary moves due to rearrangements of the atoms and tends to reduce the
interface energy.

Due to the difficulty of visualizing the interior structure of three-dimensional
foams and polycrystals, most experiments have been two-dimensional, e.g. coarsen-
ing dynamics in two-dimensional foams made between two parallel glass plates [11]
or in thin film growth [65, 66, 67].

Besides technical applications, a strong theoretical motivation for studying coars-
ening in cellular structures is that cellular structures provide an example of disor-
dered constrained patterns where a set of rather simple “microscopic” rules produces
a nontrivial global nonequilibrium dynamics. The dynamics of the cellular struc-
ture is fully deterministic, 7.e. the evolution is completely determined by the initial
configuration. Nevertheless, statistical approaches are very useful. A variety of
statistical mechanical models can be built and compared with experiments. Sta-
tistical characteristics of the cellular structure are the area distribution and the
side distribution (also called the topological distribution). We can also study the
corresponding correlation functions among these variables, such as Lewis’ law and

Aboav-Weaire’s law (see below).
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A few well known experimental facts concerning the dynamics of soap froth and
polycrystals are:

1. They are far from equilibrium:

They are not stationary except for some very special initial conditions, e.g. a
perfect hexagonal array of bubbles in two dimensions. The simple thermodynamic
reason for coarsening in cellular patterns is that cell boundaries have an additional
free energy proportional to their length or surface area, which drives the evolution
to continuously minimize the total surface energy until the pattern becomes a single
domain. This equilibrium state is not interesting, so we always study the transient.

2. They obey von Neumann’s law in two dimensions:

Foams have two very different dynamic timescales. A fast timescale driven by
surface tension minimizes the total length of the network while keeping constant
the areas of the domains. The pattern achieves a quasi-static equilibrium. A much
slower timescale is the gas diffusion driven by pressure differences across cell bound-
aries. In metallic polycrystals, however, these two timescales are comparable. The
boundaries are not always at equilibrium, and they are not always minimal surfaces
but can be significantly irregular. Figure 4.1 shows a cross section of a low car-
bon steel, arrows indicating a few non-equilibrium features: boundaries do not have

constant curvature and contact angles are not 120° degrees.

Smith [69], supported by a series of experiments, proposed that the irregularities
of the metal boundaries averaged out over a sufficiently large population of grains.
Hence, both soap froth and metals obey von Neumann’s law, Equation 2.3. von
Neumann’s law states that in two dimensions, cells with more than six sides expand
while cells with fewer than six neighbors shrink and eventually disappear. The rate
of area change, the coarsening dynamics, depends only on n, the coarsest topological

quantity.
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Figure 4.1: Crystal morphology of a cross section of a low-carbon alloy steel
(10%Cr — 2.6%Si — 0.35%Al), with average grain size 107%cm. Arrows indicate
some non-equilibrium features of the pattern. [From Nagai, Kawasaki and Naka-
mura [70]].

3. Topological requirements:

The topological charge is 7 = n — 6. The sum of topological charge over the
pattern is a constant by virtue of Euler’s theorem, which gives a conservation law

for the faces (F'), edges (F) and vertices (V') of any cellular structure, provided that

the face or cell at infinity is not counted:

F-E+V=1 (4.1)

In two dimensions, topologically stable patterns have coordination number (num-
ber of edges meeting at the same vertex) 3, so the average number of edges (n) can
be determined as follows. Three cells share each vertex and each cell has (n) edges

or vertices on average, so,

(n)F =3V. (4.2)
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Two cells share each edge,

(n)F =2F. (4.3)
Applying Euler’s theorem, we have:
1 1
F — §<n>F + §<n>F =1. (4.4)

So (n) = 6%, which tends towards 6 for an infinite system, F' — oo. Hence the

topological charge summed over all cells:

d 7= n—6F=—6, (4.5)

is a constant, independent of the number of cells, i.e. topological charge cannot be
destroyed, it can only be redistributed [27].

In three dimensions, the analogy fails since the number of polyhedra, P, is an
extra degree of freedom:

_P+F-—E+V =1 (4.6)

The topological charge is undetermined. For a three-dimensional cellular pattern
where all vertices have coordination number 4, the average number of faces (f) and

the average number of sides per face (n) have the relation:

(f) = : (4.7)

4. Topological rearrangements:

At first glance von Neumann’s law appears to lead to the disappearance of all
the cells with fewer than 6 sides and thus a large size separation among the cells
with different numbers of sides. However, when a cell disappears, its neighbors
can either gain or lose sides (i.e. change from one topological class to another).
On average, the neighbors lose sides to preserve the topological charge. These

topological rearrangements exchange cells between topological classes. Recall that
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Euler’s theorem implies that (n) = 6, so cells with fewer than six sides are always
present in the foam unless all the cells are hexagons.

Cell rearrangements fall into two classes, the T1 process and the T2 process.
Shown in Figure 4.2, neighbor switching (the T1 process) preserves the number of
cells. Two cells gain one side and the other two lose one side; the local topological
charge stays constant. The disappearance of a triangle, square, or a pentagon (T2
process), shown in Figure 4.3, decreases the number of cells and the local topological
charge redistributes. In a T2(3) process, all three neighbors lose one side. In a
T2(4) process, the four-sided cell first shrinks to a four-fold vertex, which then
splits into a pair of three-fold vertices. Two cells lose sides while two stay unchanged.
Constraints from neighboring cells determine the orientation of the new wall, except

in the rare completely symmetric case where the symmetry breaking is probabilistic.

Figure 4.2: T1 process: the wall between bubbles b and d disappears and a new
wall forms between bubble a and c¢. Bubbles a and ¢ become neighbors and both
gain one side.

5. Scaling regime:

Although these cellular patterns are far from equilibrium, experiments reveal
that the patterns evolve into a scaling state in which they evolve self-similarly.
Standard measurements for cellular patterns are the topological distributions, area

distributions, correlations and boundary lengths — all quantities which can be mea-
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Figure 4.3: T2 processes: disappearance of a triangle, a square and a pentagon.
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sured in experiments. The topological distribution function, p(n), the probability
of a cell having n sides, and the rescaled size distribution functions p(a/{a}), where
(a) is the mean area, remain constant in the scaling state, while the length scale

increases in time. The mth moments of the distributions are:

pm () =Y pla) (@ — ()™, (4.8)
among which ps(n) is the most commonly used. The scaling regime was observed
in experiments on aluminum foils [26] as well as soap foams [17]. The topological
distribution tends to a stationary scaling form and j5(n) assumes a roughly constant
value. Two-dimensional soap froth experiments with up to 10000 bubbles in the
initial state [11, 17] and early smaller simulations [71] gave a value of pz(n) = 1.4 in
the scaling regime. Other simulations showed a slightly lower value of py = 1.2 [79].

The scaling hypothesis can be expressed as:

N,(a,t)
N(t)

1 a

where N, is the number of n-sided cells with areas between a and a+da, N(t) is the
total number of cells and f,,(x) is some function. Experiments and simulations sug-
gest that the distribution function f,(z) is universal, independent of the microscopic
mechanisms underlying the dynamics. Figure 4.4 shows p(n) for a two-dimensional
soap froth [11], an aluminum thin film [26] and a Potts model simulation on a

triangular lattice with nearest neighbor interaction [84].

Combining von Neumann’s law and the scaling hypothesis, from dimensional

arguments, the average cell area grows as [72]:

(a(t)) ~ t°, (4.10)
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Figure 4.4: Topological distribution functions for a two-dimensional soap foam [11],
an aluminum foil [26] and a Potts model simulation on a nearest-neighbor triangular
lattice [84].
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where o = 1. The same linear area growth in the scaling regime applies to both
two-dimensional metallic polycrystals and soap froth. But this linear growth occurs
only for pure metals with low surface energy anisotropy and for specially prepared
dry soap foams (where the bubble walls maintain the same width, i.e. no liquid
drainage, accumulation, or wall rupture, throughout the evolution). For dirty metals
(e.g. with impurities) and usual soap froth (wet foam) the growth exponent « is
less than 1.

6. Correlations: Lewis’s Law and Aboav-Weaire’s Law:

Lewis discovered a simple linear relationship between cell area and topology in

cucumber skin, human amnion and pigmented epithelium of the retina [73, 74]:

(an) = c1 + can, (4.11)

where a,, is the area of an n-sided cell and ¢; and ¢, are fitting parameters. Most un-
differentiated biological tissues seem to obey this phenomenological law, though the
evidence is not conclusive [75]. Rivier and Lissowski [76], using a maximum entropy
argument applied to the topological distribution p(n), derived Lewis’s law. But
Equation 4.11 fails for both soap froth and metal grains [11]. From two-dimensional
soap froth data and Potts model simulations, Glazier and Weaire [77] concluded
that Lewis’s law holds only for materials which have a constrained area distribu-
tion, while for coarsening cellular patterns the average radius of cells with n sides

linearly depends on n:

(rn) = c1 + con. (4.12)

Iglesias and de Almeida have given a maximum entropy argument for a similar

perimeter law [78]
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an/{ay) o< n?. (4.13)

Herdtle and Aref’s simulations of ideal dry froth found that a linear relation could
fit both average areas and average perimeters, though for small n the perimeter fit
was slightly better [79]. Flyvbjerg [80], based on a random neighbor mean field
model, argued that Lewis’s law is asymptotically true for large n.

Aboav [81] suggested an inverse correlation between a cell’s number of sides n
and the number of sides of its neighbors m(n), the nearest-neighbor topological

correlation of bubbles, with the basic form:

m(n) = A+ %, (4.14)

where m(n) is the mean topology of nearest neighbors of an n-sided cell and the
values of A and B were empirically determined to be 5 and 8 respectively. Weaire

developed this relation into what is known as Aboav-Weaire’s law:

m(n) =6 —a+ [6a + pa(n)]/n, (4.15)

where « is a constant of order 1 [81, 82, 83]. Stavans et al. measured m(n) for a
scaling state of a two-dimensional helium froth and found excellent agreement with
Aboav-Weaire’s law with pe(n) = 1.4, = 1 [17]. A detailed comparison between
m(n) for soap froth and the Potts model simulations can be found in [11, 84].

The correct description of pattern evolution should include these neighbor cor-
relations. But we often use the distribution functions and their second moments to

describe the pattern.
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4.2 Mean Field Theories

The analytical treatment of the evolution of cellular patterns is very difficult
because of the random nature of foams and the topological correlations between
cells. However, if we neglect the topological correlations by effectively replacing
m(n) with m(6), various mean field theories become possilbe [85].

Fradkov [86, 87] and Beenakker [88] suggested a mean field description and
derived the corresponding kinetic (Master) equations for the distributions using a
“gas” approximation, i.e. no correlations for cells. Flyvbjerg and Jeppesen [89, 80]
used a very similar description. The main simplifying assumption is that all the
cells are completely uncorrelated. This approximation is worse for cells with fewer
sides, which fortunately are rare [80]. The cells then can behave as points moving in
a two-dimensional phase space a —n (area vs. side or topological class). The area is
the coordinate of a particle while n — 6 corresponds to its velocity, as determined by
von Neumann’s Law. The velocities of particles are different for different topological
classes and the points can change their velocities due to collisions when they transfer
from one class to another. When a particle reaches a = 0, it disappears and the
consequent T2 process results in a transition to new topological classes for randomly
selected cells. The Master equation for the concentrations p(n) = N,(a,t)/N(t)

takes the form:

dp(n) . 0p(n)
5, " oa

— [C_(n+1)p(n+1)= (C—+CInp(n)+C (n=1)p(n—1)] +2p(n),

(4.16)
where @ is determined by von Neumann’s Law; C'_ and (' are the rates at which
an n-sided cell loses or gain one side, due to T2 processes. Since T2s involve the
disappearance of triangles, squares and pentagons, these rates depends on the cor-

responding concentrations p(3), p(4), p(5) at a = 0. T1-processes can be included
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but only with an arbitrary rate constant which is a major shortcoming for mean
field models. The expression in square brackets stands for the transition probability
between the topological classes due to a T2 process while the addition of the last
term guarantees ), p(n) = 1. In the scaling regime < a(t) > is expected to grow

linearly in time. The scaling distributions can be obtained by substituting,

) = 1125 (4.17)

where the scaling function f,, follows

%4—(1’&—6—@% =C (n+1)fp, —[(C_+C)n=2]f+Ci(n—1)f, 1, (4.18)

where x = a/ < a > is the rescaled area. Equation 4.18 is both nonlinear and
nonlocal, since C_ and C, are functions of f5(0), f1(0) and f5(0). However, it can
be treated as a linear equation by considering constant C'_ and C';, and then solved
for C'"_ and C'; self-consistently.

Fradkov [86] was first to derive an equation of this kind but did not try to solve
it. He characterized the Master equation as “very difficult for analytical treatment”
(because of the nonlinearity) and used it only to derive a few simple relations and did
not attempt to solve it numerically, restricting himself to Monte Carlo simulations.

Instead of solving the Master equation or doing Monte Carlo simulations, we
can simulate the “molecular dynamics” of the “gas” particles directly as follows.
The particles are characterized by their areas and their number of sides. The initial
values are taken such that the average number of sides is 6 while the areas are
random. At each time step the areas change according to von Neumann’s law.
When some of the areas reach zero, some randomly chosen particles change their
topology according to the T2 rules. For example, when a pentagon vanishes, pick

at random three particles, two of them lose a side and the third gains a side. To

50



conserve the total number of particles, new particles have to be created in such a
way that the topological and area distributions are not disturbed. The simplest way
is just to duplicate a randomly chosen particle. This process is described by the
Master equation and its realizations are solutions. Conserving the total number of
particles eliminates restrictions on simulation time.

This model can take into account explicitly the effects of topological correla-
tions: instead of randomly picking the cells affected by the T2 processes, only the
neighboring cells change their topological classes. The “topological network mod-
els” [80, 88] maintain a list of neighboring cells at all times and consider the nearest
neighbor correlations of bubbles. But they assume the neighbors of the vanishing
cell randomly gain or lose sides, while the choice in real materials depends in a
complex but deterministic way on the detailed geometry rather than the topological
distributions and correlations.

The difficulties in solving equations 4.16 and 4.11 called for a simpler description
of coarsening. Indeed, it is possible to separate the topological and area components
of the dynamics. Stavans, Domany and Mukamel [90] proposed a mean field model
which describes the dynamics of the soap froth in terms of the topological distribu-
tion p(n) without considering the areas. The advantage of this model is that instead
of differential equations for the distribution f,(a), it has only algebraic equations
which can be solved analytically. The model changes cell sides according to the rules
for T2 processes. The relative probabilities of the vanishing of a triangle, square and
pentagon are W3, W, and Wy, which in principle can be determined experimentally.
Only two of these rates are independent because the sum W3+ W, + W5 determines

the time scale. The rate of disappearance of an n-sided cell is:

= —W, N, (t). (4.19)
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Notice that this equation represents only the rate of disappearance of n-sided cells
due to their areas vanishing. The rates are proportional to the number of n-sided

cells which have zero area N, (a,t)|.—o. Hence:

AN, (1)
dt

- Nn(O,t)da% = N,.(0,t)k(n — 6), (4.20)

where the second step uses von Neumann’s law. Therefore,

B Ni(0,8)  Nu(0,%) N(2)
W, = —k(n — 6) AR (GERACE (4.21)

In the scaling regime,

e = ) (122

and

Nolt) _ [ 1, a a= x)dx
N =] e = [ e )

Since this calculation does not depend on the initial conditions, all initial con-
ditions reach a scaling state at long times in this mean field model. The scaling
function, f,, represents a family of stable scaling solutions, raising intriguing ques-
tions about the mechanism by which soap froth, polycrystals and the Potts model

all select one particular solution [11, 80, 90, 71, 91, 92].

4.3 Abnormal Grain Growth

In additional to the rate of equilibration, the other main distinction between
soap foams and polycrystals is anisotropy. In foams, the surface energy is isotropic
while in polycrystals, surface anisotropy plays an important role in growth and can

not be ignored. von Neumann’s law does not consider boundary anisotropy.
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Abnormal grain growth occurs when the boundaries surrounding a few grains
move relatively rapidly while other boundaries are relatively stationary, i.e. a few
grains grow much faster than the rest.

Often abnormal grain growth requires normal grain growth to be impeded, with
the exception of a few grains which act as nuclei for abnormal grain growth [93].
Several factors have been suggested to contribute to the inhibition of normal grain

growth [94]:

Grain boundary grooving in thin films and sheets.

Impurity particle induced pinning of boundaries.

Texture inhibition in a material with strong preferred orientation.

Impurity inhibition by zone refining.

Srolovitz et al. modeled two-dimensional grain growth in the presence of a second-
phase particle dispersion using the large-Q Potts model [41]. They randomly select
lattice sites and assign to them spins that do not interact with the rest of the spins.
Each particle occupies one lattice site. The particle concentration and spatial loca-
tion are fixed during grain growth. Simulations for different particle concentrations
show that grains exhibit normal growth at first, followed by an abrupt transition
to a pinned state. Figure 4.5 shows the pinned patterns for four different particle
concentrations. During the normal growth phase, mean grain size grows as r ~ t¢
with a = 0.39 + 0.02, close to that in the absence of particles. The average grain
area at pinning is inversely proportional to the particle concentration, which is at-
tributed to the eliminating of boundary curvature by particles when they intersect
boundaries, as illustrated in Figure 4.6. The shifting of boundary curvature halts
further grain boundary movement, leading to pinning of the entire pattern when,

on average, each boundary has one particle or equivalently three particles per grain.
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Figure 4.5: Potts model simulations of pinned microstructures for four pinning par-
ticle concentrations. [From Srolovitz et al. [41]].

Yabushita et al. [95] used the same model but with different sizes of particles and
found that larger particles reside exclusively in the grain boundaries, which they

interpreted as an increased pinning effect.

Hillert [96] and Detert [64] suggested that removing second-phase particles from
the pinned stage can lead to abnormal growth. Srovovitz et al. [42] tested this
idea by gradually decreasing the particle density. They found that homogeneous
decrease of particles does not lead to abnormal grain growth. However, in real
materials, particles may disappear preferentially in one part of the microstructure
due to non-uniformities in temperature, solute concentration, stress, etc... The

simulations indeed show that grain growth proceeds within the particle free region
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Figure 4.6: Schematic showing grain boundary curvature elimination. The vertex
with three particle-pinned boundaries translates and rotates. The curved lines are
the initial grain boundary shape and the dotted straight lines are the grain boundary
configuration following the vertex translation and rotation. [Redrawn from Srolovitz
et al. [41]].

but is restrained by the neighboring pinned grains.

Since the boundary velocity is a driving force times a boundary mobility, the
standard belief is that abnormal grain growth results from spatial variation in forces
or mobility. “Abnormal grain growth may then result either from an abnormally
high mobility, or from the existence of a higher driving force. We may note that
abnormal growth is not expected to occur solely as a result of an initial size advan-
tage” [109]. The reasoning is the following: although an extra-large grain may grow
faster than its neighbors, it will not grow relatively faster than the average size of
normal grains. Also, in a moderately disordered pattern, many-sided cells tend to
lose side as they grow, i.e. the topological distribution regresses to the mean. If
the initial structure does not contain any abnormally large grains, they should not
develop from geometrical considerations alone.

Simulations of the abnormal growth of a grain due to the enhanced mobility

of all its boundaries were reported in [108, 49, 42]. The result of such abnormal
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growth is that the abnormal grain grows relative to the average normal grain size
until its relative size asymptotically reaches a certain value. Another possible source
of abnormal grain growth is a difference in the driving force for abnormal grains.
One likely source of driving forces in addition to grain boundary capillarity is that
different grains, with different crystallographic orientations, may have different sur-
face energies for the interfaces between the film and its exterior surroundings, either
free-surface energies or film-to-substrate interface energies. If the free-surface en-
ergy of one grain is different from that of a neighboring grain, then an additional
force drives the boundary which separates the two grains to migrate to expand the
lower-energy surface at the expense of the higher-energy one.

In our simulations of grain growth from a single defect, we show a new source of
abnormal grain growth: topological defects. As long as the topological defects are
widely spaced, abnormal grain growth can occur with isotropic and homogeneous

surface energy.

4.4 Defect Growth

In a recent model of the time evolution of two-dimensional soap froth with a
single defect [97], Levitan challenged the common wisdom that the scaling state
dynamics does not depend on the initial condition. Using a mean-field treatment, he
claimed that the long-time distribution function p(n) from generic initial conditions
differs from that for an initial hexagonal lattice with only one defect. He also found
the scaling law that the number of cells in the evolving cluster follows N (t) ~ t.
This work excited considerable interest and some controversy [98, 99]. We used the
large-() Potts model to examine the evolution of a single defect in a lattice of perfect
hexagonal foam in two dimensions and study its scaling state [100],

A perfect hexagonal foam is stable for all time. We put in the center of the

lattice a grain with area somewhat greater than the mean area of the hexagons so
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that it has more than six sides at time zero. The defect functions as a seed for the
evolution. Therefore the pattern consists of two parts: the evolving neighborhood of
the defect, and the rest of the lattice which does not evolve. As the pattern evolves
in time, the boundary of the disordered region propagates outwards.

We used the Potts Hamiltonian, Equation 3.1, in the 7" = 0 limit on a 2000 x 2000
lattice, running until the disordered cluster reached the boundaries of the lattice. For
our simulations, we chose a fourth nearest neighbor square lattice (lattice anisotropy
1.037, see Table 3.1), which is known to evolve in a manner very close to ideal grain
growth [56].

In agreement with Levitan [97], we defined the disordered cluster to consist of all
grains with at least one non-hexagonal neighbor, yielding a large grain in the center

and a boundary of grains around it. Figure 4.7 shows snapshots of the evolution.

As we can see from the figures, the center grain grows much faster than the grains
at its boundary, whose average area randomly fluctuates around a value < a >'=
(0.88 £ 0.08)ag, where aq is the initial area of the hexagons. The grains outside
the cluster remain unchanged. The disordered cluster maintains a bilayer of grains
around the large grain; that is, the large grain grows at the same rate as disorder
propagates outward in the pattern. The diameter of the cluster grows linearly in
time, while the area of the cluster grows quadratically. This result is trivial if
we consider a big grain growing without affecting neighboring non-evolving small
grains. Its number of sides (number of neighbors) is proportional to its perimeter,
i.e., n ~ d, with d being the diameter of the big grain, 7.e. the normal velocity of

the propagating front is constant. Using von Neumann’s law:

da,

Equation 4.24 gives a ~ t?> and d ~ t. Also, the large center grain determines the

diameter and the total area of the cluster. Therefore the cluster grows like the large
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Figure 4.7: Snapshots of the time evolution of an initially hexagonal pattern with a
single defect: (a) 0 MCS, (b) 5000 MCS, (c) 10000 MCS. Figures show the center
1/4 of the whole pattern.
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Figure 4.8: Evolution of the disordered cluster. The total area of the cluster (o)
grows quadratically while the number of grains in the cluster (x) grows linearly.

center bubble, as shown in Figure 4.8.

The number of grains in the cluster grows linearly, as shown in Figure 4.8. This
result is again trivial, although not obvious, since the total number of grains in the
cluster n, ~ n (the number of neighbors of the center grain), n. ~ t, agrees with [97].
The average area of the grains in the cluster, as we predict, (< a >=< a/n >~
t?/t ~ t) grows linearly, accidentally mimicking a normal scaling state, whereas the

average area of the grains in the cluster boundary is constant.

The tail of the topological distribution function, p(n), extends towards larger
and larger values of n, corresponding to the large center grain. The peak stays at

n = 6 due to our definition of the cluster. The second moment of the topological
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Figure 4.9: The second moment of p(n) of the cluster (us, bullets) and the boundary
(1, circles).
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distribution, dominated by the large grain, grows linearly (Figure 4.9), consistent
with the data of Aboav [83], for the transient behavior of samples which are initially
almost hexagonal. If we exclude the large grain in the center, the rest of the cluster
presents a pub fluctuating around a constant value of about 0.7 (Figure 4.9) and
the topological distribution is constant (Figure 4.10). Thus, the boundary of the
cluster preserves self-similar growth, yielding a special scaling state of constant
length scale. We never reach a normal scaling state. The mean field theory fails
because in this pattern, the large grain, the boundary grains and the remaining
hexagonal grains form three distinct classes with fixed spatial relations: exactly

opposite to the homogeneous mean field assumption.

The transient time to reach a scaling state strongly depends on the randomness
of the initial conditions [77]. To quickly reach the scaling regime in computer sim-
ulations requires a sufficiently random initial lattice of grains. A very regular array
with a few widely spaced defects has a few grains grow rapidly, until the sizes of the
few large grains reach the initial separation between defects, as in abnormal grain
growth. In the evolution of a single defect in an isotropic hexagonal lattice, the large
grain (from the defect) grows at the same rate as disorder propagates outward. The
statistics of the disordered cluster show that the topological distribution diverges
in time, while the average area of the grains in the cluster grows linearly, a result
supported by Aboav’s data and previous simulations. However, excluding the large
center grain, side and area distributions are steady for the boundary of the cluster.

Contrary to general belief, our results also show that abnormal grain growth
can occur in materials provided they have well spaced topological defects, and their
crystallites are highly uniform and ordered, even without any anisotropy or fluctua-
tions of surface energy. The recent experiments of Fortes et al. [101] and Earnshaw

et al. [102] on bubble rafts confirmed our results on both the special scaling state
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Figure 4.10: Topological distribution, p(n), excluding the large center grain, aver-
aged over six different times between 6000MCS and 10600MCS. Error bars indicate
standard deviation from the mean.
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Figure 4.11: Schematic illustration of the technique used to prepare a monolayer
hexagonal foam. The monolayer foam is formed between the surface of a surfactant
solution and a parallel glass plate above it. [Redrawn from Vaz and Fortes [101]].

and abnormal grain growth. Both experiments generated ordered foams by sand-
wiching bubbles between the surface of a soap solution and a glass cover plate, as
shown in Figure 4.11. A steady air flow into soap liquid generates a nearly uniform
bubble size distribution. Since the foams are wet, bubbles are round rather than
polygonal. It is difficult to avoid grain boundaries in such experiments. Confining
the two-dimensional foam in a hexagonal frame helps enforce the desired crystalline
symmetry. By systematically sweeping the tip of a needle to and fro along the lines
of bubbles, Kader and Earnshaw created within the hexagonal cell, a nearly perfect
six-fold coordinated lattice comprising several thousand bubbles about 2mm in di-
ameter [102]. Using a syringe and needle, they introduced a large bubble that had
more than six nearest neighbors. Figure 4.12 shows a typical evolving ordered foam

with a single topological defect.

Experiments show that the disordered cluster grows, but those bubbles compris-
ing the area of disorder around the center large bubble reach a stationary state in

which the topological and area distributions are constant, supporting our simula-
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Figure 4.12: Pictures of a typical evolving foam containing an initial isolated larger
bubble, constituting a topological defect: (a) t = 0, (b) t = 25h, (c) t = 28h, (d)
t = 32h. [From Kader and Earnshaw [102]].
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tions. Quantitative differences, however, arise. In the topological distribution of
the boundary of the disordered cluster, shown in Figure 4.13, an unusual feature is
the significant population at n = 3 [102]. In conventional two-dimensional foams,
such bubbles disappear through T2(3) processes. In the bubble raft experiments,
the threefold-coordinated bubbles are small and lie around the center large bubble,
adjacent to two more normal sized bubbles. The difference from the simulations
clearly lies in the wetness of the experimental foams. The experiments failed to de-
termine whether pf reached a steady value because of coarsening-induced disorder
elsewhere in the foam, as shown in Figure 4.12(b). Another difference appears in
the final steady value of (a/ag), the average area of the bubbles in the boundary of
the disordered cluster. It is 0.88 + 0.08 in the simulations and 0.77 £ 0.04 in the
bubble raft experiments [102]. The difference is small and may again be due to the
wetness of the experimental foams. Also the simulations have much better statistics

than the experiments.

In our simulations, the center grain gradually becomes hexagonal. A closer
observation shows that the final hexagon is a 90° rotation of the initial hexagons, as
illustrated in Figure 4.14, whereas in experiments, the large center bubble remains

circular [101, 102].

This shape development is an artifact of the lattice simulation. On the square
lattice, when the hexagon boundaries align with the underlying lattice, boundary
mobility is slightly impeded. Thus the boundary of the large center grain migrates
more rapidly along the hexagon boundaries, and more slowly perpendicular to the
hexagon boundaries, which explains why the hexagonal shape of the center grain is
90° rotated from the initial hexagons. If we rotate the initial hexagonal pattern 45°
so that no hexagon boundaries align with the lattice, the center defect no longer

develops a hexagonal shape, as shown in Figure 4.15.
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Figure 4.13: Topological distributions for an evolving foam from a single defect:

numbers show the number of sides of the center bubble (n.). The distributions omit

the data points at n.. [From Kader and Earnshaw [102]].

Figure 4.14: The large center grain in Potts model simulations becomes hexagonal

when the initial hexagons align with the underlying square lattice.
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Since we used fixed boundary conditions because of the difficulty of applying
periodic boundary condition to the rotated pattern, the edge grains were also non-
hexagonal defects and coarsened in time. Before the edge grains destroy the ordered
pattern, the center grain grows relatively homogeneously. The final state shown is
strongly reminiscent of many examples of abnormal grain growth in metals, in which

the background grains slowly coarsen.

4.5 Bamboo Formation

The effect of solid walls on grain growth and foam coarsening is poorly under-
stood. Most studies have ignored boundary effects by either assuming infinite or
periodic boundary conditions. However, boundary effects sometimes are significant.
For example, many of the interconnects in integrated circuits are patterned metallic
thin films, particularly aluminum alloys [104]. Experiments show that formation of
a “bamboo” microstructure, in which grains traverse the width of the metal strip, in-
creases the rate of eletromigration-induced failure of thin film strip conductors [103].
Walton and coworkers [104, 105] used a boundary migration model to simulate the
formation of bamboo structure. Their model treated grain boundary segments as

arrays of points, which move so that the Mullins’s rate equation holds [106]:

T = ui (4.25)

where v, the local boundary velocity is proportional to the local curvature &, with
i, the mobility constant, depending on the grain boundary energy. The model
alternates between moving the boundary segments and relaxing the vertices to con-
figurations with 120° contact angles. This model was first used to simulate two-
dimensional grain growth in continuous thin films [66, 107, 108]. They began with

a standard initial condition and then patterned the structure into a long strip of
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Figure 4.15: Snapshots of the time evolution of a defect in a hexagonal pattern

rotated by 45° with respect to the underlying square lattice. Numbers indicate time
in MCS.
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a specified width. The strip has periodic boundary conditions in the direction of
its length and forces the grain walls to be perpendicular to the top and bottom
surfaces of the film. Figure 4.16 shows a sequence of grains evolving into a bamboo

structure.

b
vyONA A 0.7
Y/ Y 10
N, .5

Figure 4.16: Evolution of grains with strip width w = 3.0 (initial average grain size
1.0). 7 is simulation time in arbitrary units. By 7 = 0.2 some grains traverse
the width and the strip breaks into clusters. Eventually the clusters develop into
bamboo. [From Walton et al. [104]].

They found that the rate of bamboo formation is inversely proportional to the
square of the strip width w: t o< w?. The fully developed bamboo-like domains
have average aspect ratio (length to width ratio) v = 2.3. If the initial grains are
much smaller than the strip width, normal grain growth occurs until some grains

grow large enough to traverse the entire strip width, creating sections of bamboo
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structure, which then expand and consume the grain clusters separating them, until
all grains completely span the width.

Fortes et al. [110] used glass tubes with diameters between 7.5 and 15.0 mm, and
nominal length 50 cm. They created nearly monodisperse three-dimensional foams
with an initial average diameter around 2 mm and observed the bamboo formation
in the middle 40 cm of the tube. They found an average aspect ratio v = 0.97,
different from Walton et al.’s result. To investigate whether this difference is due to
the dimensionality, Rosa and Fortes [111] performed a two-dimensional soap froth
experiment in a narrow ring (Figure 4.17) and found v = 1.43, which does not
coincide with either of the previous results. They tried to collect information on
~ from arbitrary slices of a simulated two dimensional foam image, but arbitrary
slices of a two-dimensional pattern do not have grain boundaries perpendicular to

the slice lines.

In their simulations, Walton et al.started with an initial condition with three
grains across the width of the strip. In the three-dimensional foam experiments,
Fortes et al. varied the diameter of the tubes which contained from three to seven
bubbles across the width. For larger tubes, v was found to be larger. The ring
geometry nicely avoided boundary effects in the length direction but the effects of
its curved walls are not understood. All these differences make comparison diffi-
cult. To fully investigate boundary effects on coarsening dynamics, more controlled
experiments and corresponding detailed simulations [112] of bamboo formation are

desirable.

4.6 Grain Growth in Three Dimensions

In soap froth, minimization of surface energy results in grain boundaries that are

minimal surfaces with constant mean curvature, k = % + %, where ry and ry are the
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Figure 4.17: A two-dimensional foam experiment on bamboo formation in a ring: (a)
t =0, (b) t = 24h, (c) t = 180h, (d) t = 200h. Diameters of the rings are 63.9mm
and 71.8mm. The width of the ring is 7.9mm. [From Rosa and Fortes [111]].
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two independent radii of curvature. The mean curvature determines the pressure
difference across the grain boundary via the Young-Laplace law:
1 1

AP:HZ()(—-F—),
r1 r2

(4.26)
where K is a diffusion constant [28]. In a quasi-two-dimensional soap froth, all films
stretch between top and bottom plates. The equality of contact angles between
the films and plates (90°) means that ry is infinite. Thus 1/ry ~ 0, and all films
are circular arcs, reducing Equation 4.26 to Equation 2.1. Equation 4.26, together
with geometric considerations, results in von Neumann’s law, Equation 2.3. In
three dimensions the derivation for von Neumann’s law fails. The topology does
not determine the mean curvature k but the Gaussian curvature G = % The
two curvatures are independent in three dimensions. Walls need not be spherical
sections. In addition, the mean number of faces in an infinite three dimensional
polyhedral foam can vary (Equation 4.7), while in a two dimensional foam, the
mean number of sides is exactly 6.

Early three-dimensional grain growth simulations by Anderson et al. [46, 50]
used the Potts model but only focused on the evolution of a cross-section which was
essentially a two-dimensional problem. Indeed, they found the same growth expo-
nent and scaling distributions for the cross-section as for two-dimensional coarsening.
Later they used the same model for three-dimensional growth and found the growth
exponent « of the average grain volume (v) o t*, o = 1.5 [48]. Kawasaki et al. used
a vertex model which treated the cellular pattern as a collection of vertices mov-
ing to minimize surface energy [120, 121] and found a similar growth exponent.
This 3/2 exponent, however, can be derived from a simple dimensional argument

if we assume a scaling state in which topological and area distributions are time

independent [121, 113]. Since the Young-Laplace law implies [113]:
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d
d_: = kya(l/ry +1/rs), (4.27)

where a is the surface area of the grain, x; a diffusion constant, and the average is
over the grain surface, when the grain shape distributions are constant,
dv -1/3

Y

— x 1/roxow

- (4.28)

yielding a = 3/2. This average growth exponent, however, says little about the
dynamics of individual grains. Glazier, using a large-() Potts model simulation,
concluded that the average growth rate of three-dimensional grains depends linearly
on their number of faces [113]:

d?}f

(TL) = koS — fi), (429)

where () is an average over all grains in a topological class. Equation 4.29 is analo-
gous to von Neumann’s law, but with f, = 15.8 rather than (f). Because the Potts
model is discrete and statistical, it cannot directly determine if Equation 4.29 holds
for individual grains in the continuum limit. Weaire and Glazier [122] also showed

that volume conservation requires:

fo= {1+ %) (4.30)

where 1y = (f?) — (f)? describes the foam disorder. Sire [114] in a mean field
model reproduced Equation 4.29. Assuming a three-dimensional scaling state to
investigate possible scaling properties, de Almeida et al. [123] used a maximum
entropy approach, but did not try to study the coarsening dynamics.
Experimentally, because of the strong scattering of light, which gives foams their
familiar white appearance, optical photographs can only probe the surface layers

of bubbles. The foam structure, distribution, and dynamics of coarsening remain
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largely inaccessible to traditional experimental measurements such as surface obser-
vation, freeze fracture, or electrical conductivity ete. [169]. Insertion probe sampling
provides foam volume distributions but destroys the sample [124]. Recently, several
non-invasive experimental techniques have been developed to probe the dynamics
and interior structure of foams.

Durian et al. [115, 116] developed a non-invasive technique, using multiple light-
scattering (diffusing wave spectroscopy or DWS), and measured the average bubble
diameter in a three-dimensional shaving cream foam. They found that after a tran-
sient of a few minutes, the growth followed r o< t*, @ = 0.45 + 0.05 up to times of
the order of 1000 minutes, yielding o = 1.35 £ 0.15. However, this technique does
not provide direct information on bubble size or topology distributions.

Magnetic resonance imaging (MRI) provides non-destructive visualization of the
foam by sampling the polarization density of the nuclear moment (protons) as a
function of position. Gonatas et al. [117] used a 1.8 Tesla medical MRI spectrometer
with a spatial resolution of 100um to probe the interior of a foam, and studied the
topological distribution in two-dimensional sections. While they claimed that the
foam coarsening did not reach a scaling state up to 50h (over a decade of growth in
the mean length scale), since ps(a) increased linearly over time, their observed area
growth was compatible with (a) ~ t, i.e. v ~ t3/2. However, the finite resolution of
their measurement introduced a systematic error by missing substantial numbers of
small bubbles, which skewed their estimates of mean bubbles sizes and distributions
and affected po. When the small bubbles dominate the distribution, under-counting
them lowers ps(a). As the foam coarsens, the length scale increases and the fraction
of bubbles below the cutoff length decreases, resulting in increasing ps(a). In other
words, under-counting small bubbles can result in increasing po(a) even if the true

distribution is constant. Checking the shape of the tail of the distribution would
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Figure 4.18: A three dimensional MRI image of foam obtained using the 14 Tesla
MRI at the NHMFL, FL. The voxel resolution is 86m and the height of the foam is
10mm. The line in the center of the tube is an artifact of the image reconstruction
algorithm. [Courtesy of B. Prause].

help to directly verify if a scaling state exists, which, however, was not possible with
their limited statistics. Thus higher spatial resolution is required to improve the
technique. Prause et al. [118] used a protein gelatin foam to produce the first full
three-dimensional image of a liquid foam and showed the potential for studies of time

evolution and drainage in three dimensions. Figure 4.18 shows a three-dimensional

MRI foam image.

Monnereau and coworkers in a very recent paper [119] used optical tomography
and a foam reconstruction algorithm based on Surface Evolver software (minimiza-
tion software developed by Brakke [125]) to measure the mean volumes for f-faced

bubbles. Their data suggest that:
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d(vy)

S = DT = o), (431)

where fy was found to be (f) = 13.4. This work was the first experimental investi-
gation of Equation 4.29, but limited data render the results hard to interpret.

It is still unclear whether three-dimensional coarsening reaches a scaling state.
Glazier’s Potts model simulation used a small lattice (100%) and collected statistics
only over a decade of growth [113]. Simulations on a larger lattice and experimental
investigations over a few decades of growth should clarify this point. If yes, what are
the dynamics of individual grains? What is the value of f, and why? If not, what
causes the difference between two-dimensional and three-dimensional coarsening?
Many questions are unanswered for three-dimensional coarsening. Experiments us-
ing the high-field (7 Tesla) large-bore MRI facility in Glazier’s group will try to

answer these questions.
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CHAPTER 5

FOAM DRAINAGE

5.1 Introduction

Concentrated emulsions (bi-liquid foams) are a family of materials composed of
one liquid dispersed in another. In this chapter, the term “foams” and “concentrated
emulsions” can be used interchangeably, as many of the principles discussed here
apply equally to both cases.

Foams are metastable. Besides diffusional coarsening, wet foams also show a
spontaneous tendency to separate into their two distinct bulk phases: liquid and
gas for foam, two liquids for concentrated emulsions. The time scale for the disinte-
gration, however, varies widely [134]. Foams can persist from a few minutes to many
days even years, depending on the conditions such as surfactants, air humidity and
foam structure.

To effectively use foams and concentrated emulsions in any application, requires
some control over their stability. A detailed understanding of the mechanisms in-
volved in foam persistence and decay is therefore desirable.

For foams with homogeneous size distributions, under some conditions no liquid
drains from the foam. Three possible equilibrium scenarios are: separation of a
single phase (separation of the continuous phase liquid by drainage, or separation of
the dispersed phase gas via film rupture), separation of both phases (both drainage
and film rupture occur) or no phase separation (neither drainage nor film rupture

occurs). The rate of drainage depends on a single dimensionless parameter which
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measures the relative magnitudes of the gravitational and capillary forces [134].
Using a standing foam to study foam stability is simple and convenient. Typ-
ically, a certain volume of foam is prepared by blowing gas into surfactant liquid.
The height of the foam decreases over time and the liquid phase accumulates at the
bottom. Figure 5.1 shows a picture of a draining foam. Usually at the same time,
the mean size of the bubbles increases, resulting in decreasing interfacial area. A
successful model for the stability of standing foam should be able to predict the
foam height, the bubble sizes and the liquid fraction of the foam as a function of

time.

Figure 5.1: A three-dimensional standing foam: liquid drains and accumulates at
the bottom of the foam. Bubbles closer to the bottom contain more liquid, with
thicker films and Plateau borders. [Courtesy of B. Prause].
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The continuous phase liquid in a foam is present in the liquid films between the
faces of the polyhedral bubbles, and in the channels, the so called Plateau borders,
where films meet. A sketch of a Plateau border is shown in Figure 5.2. These
Plateau borders form a complex interconnected network through which liquid flows
out of the foam under gravity. At the same time, liquid in the films is sucked into
the Plateau borders. As a result, the films become thinner and more subject to
rupture. In soap froth, film rupture at the foam boundary also causes loss of the
dispersed gas phase from the foam. When a film ruptures, the bubbles sharing the
film coalesce, leading to an increase in the average bubble size. Drainage of the

continuous phase liquid therefore plays a pivotal role in foam stability.

Figure 5.2: A Plateau border in three dimensions. [From Weaire and Pittet [135]].
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Mysels et al., in their book Soap Films: Studies of Their Thinning [128], first
published in 1959, best presented the thinning of soap films in dry foams. They
argued that liquid flows from films into Plateau borders. Their argument is as
follows: the curved Plateau surface indicates that the liquid inside the border is
at a lower pressure than the surrounding gas, whereas the flat parallel surfaces of
the films indicate that the contained liquid is at a pressure close to that of the gas.
Therefore a negative pressure gradient exists between the liquid in the films and in

13

the Plateau borders. The film, due to its relative thinness, “ ... is a stable structure
in which little liquid can flow.” As a result of this negative pressure gradient and the
immobility of the liquid in the films, liquid will tend to flow out of the film into the
border but not vice versa. Therefore liquid flows through the foam predominately
in the Plateau border network. In addition, film rupture can be prevented in foams
by placing them in a shock free and humid environment, for example, in a sealed-off
glass container. Choices of surfactant also stabilize foams against rupture. High
viscosity liquid thickens films and slow-diffusing gas like N, slows down diffusional
coarsening. Therefore we focus on liquid drainage through the Plateau channels
only, neglecting film rupture and foam coarsening, assuming they do not occur on
the time scale we investigate.

Weaire and coworkers’ experiments studied different types of foam drainage [136,
139], and Verbist et al. [130, 131] developed a theoretical model to calculate the
liquid fraction as a function of foam height, the liquid profile. We extended
the large-@) Potts model to include two phases, liquid and gas, and incorporated
gravitational forces to act on the liquid phase. The simulation results agree with
both experimental data and analytical calculations [132]. Without adding liquid,
initially uniformly distributed liquid drains to the bottom of the foam until capillary

effects balance gravity. In an ordered dry foam, if a fixed amount of liquid is added
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from the top, a sharp flat interface between the wet and dry foam develops. The
wetting front profile forms a downward moving pulse, with a constant velocity.
The pulse decays over time, while its leading edge over a brief period behaves like
a solitary wave. With continuous liquid addition from the top, the pulse does
not decay and we observe a solitary wave front moving with a constant velocity.
Continuously adding liquid to an initially wet foam keeps the liquid profile constant.
Our simulations also predict an unstable interface for the wetting front in disordered
foams, which challenges current experiment and theory [133].

This chapter is organized as follows: Section 5.2 introduces experiments that
are relevant to our study. Section 5.3 describes the micro-channel flow theory. In
Section 5.4, we present the details of the model and compare the simulation results

with experiments and theory.

5.2 Experiments

The traditional drainage experiment is to create a foam by blowing a given
amount of gas through a given amount of surfactant solution, then measure the
amount of liquid draining out of the foam as a function of time. This type of
experiment is termed free drainage [136]. Notice that in three-dimensional foams,
the bubbles are usually polyhedral, because normal foams have gas fractions more
than 90% while the highest gas volume fraction for which identical spheres can occur
is 74%. However, with polydisperse foams, the small bubbles can remain spherical
at much higher volume fractions. Bikerman [127], almost half a century ago in
his book “Foams: Theory and Industrial Applications,” reported early experiments
measuring the amount of drained liquid as a function of time [127]. Variations of
this procedure are widely used in the brewing industry [137, 138]. Unfortunately,
the empirical functional forms describing the rate of drainage as a function of time

never offered much insight into the physics of drainage.
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Mysels et al. were the first to investigate the different types of thin film drainage
[128], concentrating on vertical films formed by withdrawing glass frames from pools
of surfactant solution. Information concerning the history of drainage measurements
can be found in the review article by Weaire et al. [129].

The experiments relevant to our modeling were mainly done by Weaire and com-
pany. Weaire et al. performed a new type of drainage experiment, called forced
drainage. Once the foam is created inside a tube by blowing nitrogen through a
surfactant solution, it drains to reach its equilibrium. Then surfactant solution is
added at the top of the foam column at a constant flow rate (). Weaire et al. first
monitored the shape of the interface between wet and dry foam by introducing
two partially stripped wire electrodes into a tube of foam, and measuring the local
resistance as a function of time. The resistance could be converted into liquid frac-
tion. By increasing the number of electrodes, they developed a segmented resistance
measurement of the foam. Later, they developed segmented AC capacitance mea-
surements. The segment capacitance depends on the liquid fraction of the foam at
the measured vertical position averaged over a finite vertical range which determines
the vertical resolution. Scanning the capacitor segments yields the vertical liquid
fraction profile of the foam.

They performed various kinds of drainage experiments with AC capacitance
measurement [139]. Figure 5.3(a) shows the liquid fraction profiles of the foam
under forced drainage as a function of vertical position, when liquid is added from
the top of the foam with a constant flow rate. A sharp interface between wet and dry
foam develops, and travels downwards at a constant velocity, the profiles keeping
the same shape. Figure 5.3(b) shows the liquid fraction profile for free drainage.
Initially uniformly distributed liquid drains out of the foam, so the foam dries from

the top. Figure 5.3(c) shows liquid fraction profiles for pulsed drainage, when a fixed
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amount of liquid is added at the top of the foam at time zero. The pulse spreads

and its front decreases in height as it travels downwards with a constant velocity.

Other experiments trying to study the dynamics of foam drainage used mag-
netic resonance imaging (MRI) to obtain the average liquid concentration as a func-
tion of vertical position, German and McCarthy et al. in beer foams and whipped
cream [140] and Glazier’s group in soap foams [117, 118]. Figure 5.4 shows a set of

MRI data obtained by Prause et al. with soap froth.

More detailed experiments are ongoing in Glazier’s group. Current efforts include
imaging the interface between wet and dry foam, and studying the effects of foam
polydispersity on interface shape and stability. This study will test the predictions

of our simulations [133].

5.3 Theory

Foam drainage research has suffered from a lack of communication between
scientific disciplines. The recent foam drainage equation theory by Verbist and
Weaire [130] was developed independently by Gol’dfarb [141], and many of the de-
tails have been covered elsewhere [142, 143, 144].

These models assume that the drainage occurs mainly along the Plateau bor-
ders, neglecting the contribution of the films. A further refinement to this type
of model is to analyze the geometry of the Plateau border network in addition
to the local flow properties. Hass and Johnson [145] proposed the most relevant
among the earlier models, recognizing that most of the drainage occurs through the
Plateau border channels. But they assumed the Plateau channels to be cylinders
of uniform cross-section with immobile walls. In engineering literature, three recent
models consider triangular channels with mobile walls [146, 147, 148]. However,

some important differences between these models need to be recognized. First, only
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Figure 5.3: Liquid density profiles from segmented AC capacitance measurements.
The z-axis covers a range of 70cm. Left (right) corresponds to the top (bottom)
position of the standing foam, but does not include the top and the bottom of
the foam. (a) Forced drainage in an initially dry foam: a solitary wave moves at
constant velocity downward; (b) Free drainage: initially homogeneously distributed
liquid drains when the liquid input stops. (c) Pulsed drainage: a fixed amount
of liquid travels down into an initially dry foam. The pulse decays and spreads.
[Courtesy of D. Weaire. After Hutzler et al. [139]].
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Narsimhan [148] considered the gradient of Plateau border capillary pressure which
opposes gravity, thus predicting an equilibrium. The other two models predicted
that drainage continues until all the liquid in the foam has drained out. Second,
the model of Bhakta et al.[147] is microscopic, i.e. flow balances are written over
individual Plateau channels. The other models use a macroscopic approach in which
balances are written over differential volumes containing a large number of bubbles.
Third, the models treated different initial conditions. However, the complexity of
these models prevents their application to realistic situations.

The theoretical model we present here follows Verbist et al. [130, 131] and
Gol'dfarb et al. [141, 144]. We study the propagation of liquid in the network
of Plateau channels.

Before going into the details, keep in mind that the key assumption of the model
is that drainage occurs only along the Plateau borders. This assumption is only
valid for relatively dry foams. In the wet limit, flow can also occur through the
films, whose thickness is no longer negligible compared to that of the Plateau bor-
ders [149]. Furthermore, a monomolecular layer of surfactant on the film surfaces
reduces the surface tension and retards liquid flow, resulting in non-slip conditions
on the boundaries of channels [150]. Thus the flow through the channels resembles
Poiseuille flows. But unlike in solid pipes or in porous media, the cross section of the
Plateau borders is not fixed in time but depends on the flow. In fact, because the
cross sectional area is directly proportional to the liquid content, liquid propagation
in the foam can be described by the evolution of the cross sectional area.

More simplifying assumptions include:

e The network of Plateau border channels is random and homogeneous.
e The liquid is incompressible.

e The liquid viscosity is constant.
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Figure 5.5: Cross section of an ideal Plateau border channel.

e The gas pressure is constant throughout the foam.

The Plateau borders, through which drainage proceeds, have curved triangular
cross sections shown in Figure 5.5. The capillary pressure, i.e. the pressure across

the liquid-gas interface, is:

Pcapillary = Pl - Pg = ) (51)

where 7 is the surface tension, 6 is the contact angle between liquid and gas, and

P, and P, are the pressures of the liquid and gas, respectively.

For an incompressible liquid, the derivative of Equation 5.1 yields the relation

between the change of gas pressure, 0 P, and the change in the channel area, Js:

6P = yas 3/2§s, (5.2)

where « is a constant determined by the curvature of the lateral surface of the
channel. For ideal Plateau channels, the radius of curvature of the lateral surface,

r, relates to the area of the Plateau channel, s, as s = (v/3 — 7/2)r?, yielding,

a=(V3-m/2):.
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Now we apply the continuity equation to the channel flow:

s W25 L0 (5.3)

where u is the speed of the flow and s is the cross sectional area which is directly
proportional to the liquid fraction as a function of position, x.

For Poiseuille type micro-channel flow, we can write the solution of the Navier-
Stokes equation for massive fluid in a straight tube of arbitrary cross section with

vanishing velocity on all interfaces as:

L [la_P_pg], (5.4)

where 7 is the viscosity of the fluid, the factor 1/3 comes from averaging over the
directions of motion of the liquid, and ( is a numerical coefficient depending only
on the shape of the cross section of the channel: e.q. § = 8r for a tube of circular
section, § = 49.1 for a cross section in the form of a Plateau triangle [141]. This
equation can also be viewed as the force balance between the capillary force, the

pressure gradient and gravity [130]:

pg— =7 — ——=0. (5.5)

Eliminating P and u from the above equations and introduce zq = \//pg and

to = Bn/\/7pg, the equations reduce to a nonlinear PDE:

S 0 12
o7 ox [0‘5

95

o 52} =0, (5.6)

with dimensionless variables X = x/z¢, 7 = t/ty and S = s/x¢*. Equation 5.6 is

called the “foam drainage equation” [130].
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In a moving frame, £ = X — vT:

0 1/285
o€ vS + aS 3¢

S? =0. (5.7)
Neglecting the term which represents the variation of pressure along the Plateau

border due to capillarity, the drainage equation can be reduced to a first order

equation which was first proposed by Kraynik [142]:

9S  05?

— 4+ —=0. 5.8
or T ox (5.8)
Having arrived at these equations, we will look at their major numerical and

analytical solutions for different types of drainage.

5.3.1 Forced Drainage

When liquid is added to the top of an initially dry foam, a sharp interface between
the wet and dry foam develops and moves down the foam with a constant velocity.
The dependence of this velocity v on the flow rate of liquid @ is v oc Q'/2 [151].

For a constant downward flow at the top of the foam and accumulation of liquid
at the bottom, namely, *+ — —o0,v = const;x — +oo,v = 0, Equation 5.7 yields

the following three solutions:

S = (5.9)
{g(x - vr)} , (5.10)

s = wvtanh® [%(X — m—)] : (5.11)

s = wvcoth?

We consider only steady state solutions, for which the constant of the first integral
is zero. The first solution to the channel area describes a steady state, in which
the drainage balances the influx of liquid. The second solution is not physical as

it diverges at X — v = 0. The last one, a solitary wave traveling at a constant
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Figure 5.6: A solitary wave travels down the foam - solution given by Equation 5.11.
At the left side (top of the foam) the liquid fraction tends to a constant, correspond-
ing to a wet foam. At the right side (bottom of the foam) the liquid fraction is zero,
corresponding to a dry foam. The interface between wet and dry foams is sharp.
[Redrawn from Weaire et al. [129]].

velocity, plotted in Figure 5.6, agrees with experimental results for forced drainage

where liquid is continuously added at the top of the foam [139, 136].

Slightly disturbing a constant profile, we may expand the profile as:

S(X,7)=So(X,7) + eS1(X, 1), (5.12)

and linearize Equation 5.7 with respect to the small parameter ¢, leading to:
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2S, 0 12051

Equation 5.13 is a linear wave equation, which can be directly integrated to yield:

1

51:2—50

[e@X*”TV(&V2a>+-v]. (5.14)

The perturbation S;(X,7) decays exponentially in time, so Sy is indeed a stable
steady-state traveling wave solution.
Another solution can be found for finite flow rate at both X — +o00 and X —

—o00:, only in an implicit form[131]:

VS — Vo=,
VS + V=1,

where v is the wave velocity and v, is the velocity for X — 4+00. When wetting an

n

1 —
X —or = {V” =)

v — 20, 2

} (5.15)

—mln ﬁ—\/@
2 VS + /s

initially dry foam from the top with a flow rate g, = v,2, a solitary wave develops
as in the original forced drainage case. If the flow rate is then increased to a value
g = vp?, resulting in a second solitary wave of a higher velocity, the second wave will
catch up with the first, forming a final solitary wave with velocity v,. The catch up
speed v = v, + v according to equation 5.15. Results for solitary wave experiments

agree qualitatively with theory [139].

5.3.2  Free Drainage

In free drainage, liquid drains out of an initially uniformly wet foam (S = S
everywhere) until it reaches equilibrium. Its complexity prevents an analytical solu-
tion for free drainage in its entirety [129]. Nevertheless, based on numerical solutions
of the drainage equation together with insight from experiments, we can understand
the key features of free drainage. The sketch in Figure 5.7 distinguishes four different

regimes.
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In the first regime (a), the liquid fraction rises to a critical value at the bottom,
where the profile stays constant, i.e. the foam releases hardly any liquid. The
second regime (b) has a constant drainage rate due to the contraction of the uniform
part of the liquid fraction profile. This part can be described well by a linear
increase of liquid fraction towards the bottom of the foam, with a slope inversely
proportional to time. This linear regime corresponds to the solution to Kraynik’s

equation (Equation 5.8), given by:

1X-X,

2 r—1,

S(X,7) = (5.16)

The third regime (c) starts when the central constant wetness regime has contracted
to zero size. The advancing edge of the Kraynik solution, Equation 5.16, then merges
with the steady state profile at the bottom of the foam. Eventually, the liquid profile
tends toward its equilibrium shape (d). The drainage rate in this fourth and last

regime is presumably exponential.

5.3.3 Pulsed Drainage

In pulsed drainage, a fixed amount of liquid flows into a dry foam at the top
X = 0,7 = 0. This pulse travels downwards with a front resembling that of the
solitary wave.

Conservation of area (liquid volume) predicts, for the peak of the pulse,

peak \/ 7__1/2 (517)

where )\ is the total amount of liquid in the foam. The position of the peak is given
by:
peak =2 \/ 7__1/2 (518)

This result agrees well with experiments [129].
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Figure 5.7: Sketched evolution of the liquid profile for free drainage. [From Verbist
et al. [131]].
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5.4 Simulations

We extend the large-() Potts model to include two phases, liquid and gas, with
liquid subject to a gravitational field [132].

The foam is partitioned on a three-dimensional square lattice with ) > 5000,
i.e. we have over 5000 bubbles in these simulations. We treat liquid and gas as two
types, with the liquid forming a single bubble subject to a gravitational field. The

extended Potts Hamiltonian of the system is then:

H= Z ‘77—(‘7)7"'(’7’)[1 - 50’(?),0(?’)] + Z g hliquid; (519)

il neighbors liquid

where the coupling strengths Jeasgas > Jgasliquid > Jliquid,liquid SO that the surface
energy is progressively higher for gas-gas and gas-liquid and liquid-liquid; ¢ is the
force of gravity per unit density and hAjiquia is the height of the liquid spin. The
second term in H applies to liquid only. The ratio g : J;; controls the ratio between
the rate of drainage and that of coarsening.

We evolve the pattern by the standard Metropolis algorithm. We use periodic
boundary conditions in the horizontal direction to mitigate finite size effects, but
no-flux conditions in the vertical direction, the direction of the gravitational field.
To match Weaire et al.’s experiments, we use a very ordered initial foam, which
affects the shape of the wetting interface. We monitor the mean liquid fraction as a
function of vertical position.

Figure 5.8 shows the time evolution of the liquid profiles in free drainage. With
no liquid input, the initially homogeneously distributed liquid drains downwards
until gravity balances capillary effects, to produce an equilibrium profile. Drainage
profiles from MRI experiments by McCarthy [140] and our group (Figure 5.4) are
very similar, though quantitative comparison is difficult. Efforts to quantify the

slope of the linear part of the profile have not had much success.
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Figure 5.8: Liquid profiles for simulated free drainage in a three-dimensional foam.
Arrow indicates the direction of time.

Figure 5.9 plots the liquid profiles for pulsed drainage. When drainage is much
faster than coarsening, the interface is flat, within a band thinner than the dimension
of a bubble. We monitor the pulse as it descends. The leading edge of the pulse,
over short intervals such that decay is negligible, is quantitatively identical to the
soliton in [139, 136]. In Figure 5.9, we fit the leading edges of the liquid profiles to
the same soliton solution. A longer time simulation (with longer vertical distance
for the pulse to travel) allows us to see liquid transfer from the peak of the soliton
to the tail, resulting in pulse spreading. In addition, the width of the wave front

spreads over time, as predicted in [151]. The ordered structure of the simulated
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foams generates the high frequency structure of the profiles, shown in the vertical

cross sections in Figure 5.10.

Naturally, for a continuous liquid supply, the soliton has a non-decaying fixed
profile (Figure 5.11), matching both the analytic solution and the experimental
results. The wave front of the soliton moves at a constant velocity, in good agreement

with [139).

On the other hand, if the foam is initially wet, continuously adding liquid does
not change the shape of the profiles except to increase the foam wetness (Fig-
ure 5.12), indicating equilibrium between the liquid input, gravity and capillary

forces, corresponding to the steady state solution S = v = constant.

In polydisperse foams, where the Plateau channel network is no longer ordered,
as liquid penetrates into the disordered network, the sharp interface between the
wet and dry foam is no longer stable. Our large-() Potts model simulations predict
an unstable interface resembling viscous fingering. When the rate of coarsening is
comparable to that of drainage, the interface between the wet and dry foam is diffuse
due to the disordered structure. The liquid forms clusters or droplets in the middle
of the foam (Figure 5.13). Structural distributions become important in liquid flow.
The simplified pipe flow calculation, which does not consider the spatial disorder,
can no longer capture the flow properties. Drainage of a disordered foam is actually

a porous medium problem with evolving pore sizes and shapes.

The extended large-QQ Potts model simulations produce results comparable to
experiments and also validate the drainage theory for ordered foams. This model
represents a new direction for drainage theory, allowing us to continuously vary

the liquid content, the strength and range of interactions between like and unlike
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Figure 5.9: Liquid profiles for simulated pulsed drainage in a three-dimensional foam
vs. time (MCS). The leading fronts of the traveling pulse are fitted with the traveling
wave solution, Equation 5.11, at 4000 MCS and 6000 MCS (*).
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Figure 5.10: Snapshots of vertical cross sections of simulated pulsed drainage in a

three-dimensional foam: (a) 3000 MCS, (b) 8000 MCS, (c) 12000 MCS.
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Figure 5.11: Liquid profiles for simulated forced drainage in an initially dry three-
dimensional foam. The interval between each profile is 200 MCS.
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Figure 5.12: Liquid profiles for simulated forced drainage in an initially wet three-
dimensional foam. The interval between each profile is 200 MCS.
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Figure 5.13: Snapshot of drainage in a simulated disordered foam, showing a vertical
cross section of a three-dimensional standing foam.

phases, and the rate of drainage vs. coarsening. A detailed quantitative comparison
between the experiments and simulations should help determine realistic parameters

in the simulations.
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CHAPTER 6

FOAM RHEOLOGY

6.1 Introduction

6.1.1 Background

Invented by Bingham in the beginning of this century, “rheology” is “the branch
of physics that studies the deformation and flow of matter” (Hypertext Webster).

As a macroscopic form of matter, liquid foams, in which a small volume fraction
of fluid forms a continuous network separating gas bubbles [169], exhibit striking
mechanical properties which are different from their liquid and gas components.
If pushed gently, they resist deformation elastically like a solid, obeying Hook’s
law of linear elasticity. If pushed hard, they yield — flow and deform arbitrarily
like a liquid, described by viscosity. Furthermore, if their pressure, temperature
or volume is changed, they respond roughly as PV/T =constant. Thus, they are
neither solid, liquid, nor vapor, yet can exhibit the hallmark features of all three
basic states of matter. Exactly how this behavior occurs is not yet understood.

Our approach to study foam rheology is to correlate the microscopic details,
e.g. structural disorder and topological rearrangements of individual bubbles, to
the macroscopic mechanical properties of foams. This study also covers the wide
range of emulsions and slurries, which are other classes of materials that exhibit
similar rheology.

In foams, when shear stress is present, a pair of adjacent bubbles can be squeezed

apart by another pair, as shown in Figure 4.2, a so-called T1 switching event [10].
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This local but abrupt topological change results in bubbles rearranging from one
metastable configuration to another. The resulting macroscopic dynamics is highly
nonlinear and complex, involving large local motions that depend on structure at
the bubble scale. The spatio-temporal statistics of T1 events are fundamental to
the plastic yielding of two-dimensional liquid foams.

The relation between the stress (force F' divided by cross-sectional area) and
the strain (dimensionless deformation) is the most common and preferred measure
for determining the mechanical properties of structural materials [170]. The propor-
tionality between stress and stain is the Young’s Modulus. For an elastic solid,
the stress accumulates linearly as the applied strain increases. The slope is the
elastic modulus. For a plastic solid, the stress is nonlinearly proportional to the
applied strain and the stress saturates at a critical point, the yield stress, above
which brittle materials fracture and ductile materials slowly releases stress. Fluids,
on the other hand, deform and flow arbitrarily upon the smallest applied strain. No
stress can accumulate. The stress in fluids depends not on the strain, but on the
strain rate. The proportionality between stress and strain relates to the coefficient
of viscosity.

Figure 6.1 shows a schematic illustration of the stress-strain plot of a liquid foam.
At low strain, a foam is like an elastic solid, characterized by the linear response
of the foam. Above the yield point, a foam is like a viscous fluid, defined by an
effective viscosity. In the intermediate regime, a foam has both elastic and viscous

properties, thus behaving visco-elastically.

We apply constant shear strain to study foam’s solid-like behavior (linear and
nonlinear response) and periodic shear strain to study foam’s fluid-like behavior
(rate dependence). We plot the stress-strain diagrams, and study their correlations

to T1 dynamics and effects of structural disorder.
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6.1.2 Overview

Previous theoretical studies of foam rheology fall into three classes: constitutive
models, vertex models, and center models.

The constitutive models evolved from the ideas of Princen [163] and Prud’homme
[162]. They modeled foam as a two-dimensional periodic array of hexagonal bubbles,
as illustrated in Figure 6.2, where T1 events happen instantaneously and simulta-

neously for the entire foam.

Khan and Armstrong et al. developed a theoretical framework for treating shear
(simple shear and uniaxial shear) for arbitrarily oriented hexagonal networks. They
recognized that linear, homogeneous deformations of periodic networks require affine
displacement of bubble and film midpoints. They studied the stress-strain relation-
ships as a function of hexagon orientation and liquid viscosity [164]. Figure 6.3
shows a stress-strain curve for shear flow corresponding to hexagons under shear,
shown in Figure 6.2. Reinelt and Kraynik [171], using the same model, studied a
hexagonal foam with a size distribution and derived explicit relations between stress

and strain tensors.

While analytical calculations exist only for periodic structures or for linear re-
sponse, foams are naturally disordered with an inherent nonlinear response. Vertex
models include the effect of stress on structure and the propagation of defects in
dry foams. Okuzono and Kawasaki [165] studied the effect of finite shear rate by
approximating the force on each vertex, a term which depends on the local mo-
tion and is based on the work of Schwartz and Princen [174], and predicted that
rearrangements in a slowly driven foam have a broad, power law distribution of
avalanche size vs. energy release, and thus exhibit self-organized criticality. How-

ever, in a vertex model, the walls (films) connecting the vertices adiabatically follow
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Figure 6.1: Schematic illustration of the stress-strain diagram of a liquid foam.

a b C d

Figure 6.2: Princen-Prud’homme model showing the strain dependence of bubble
morphology for simple shear with initial hexagon orientation at zero. (a) Unde-
formed equilibrium network: strain e = 0. (b) Strain e = 1/4/3. (c) Yield strain
e = 2/v/3. (d) Relaxation, e = 2/v/3; the foam recovers its initial equilibrium
configuration but the bubbles have all undergone T1 processes [From Khan and
Armstrong [164]].
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Figure 6.3: Stress-strain curves for simple shear flow in ordered foams show periodic
behavior. In Khan et al. ’s notation, v is the applied strain, 7, is the shear stress and
Ny is the normal stress. Points (a)(b)(c)(d) correspond to the bubble morphologies
in Figure 6.2 [From Khan and Armstrong [164]].
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an out-of-equilibrium, slowly-relaxing vertex. In such a model, the walls are straight
and vertices typically have arbitrary angles. In essence, the deviation of the vertex
angles from the equilibrium value represents the integrated curvature of the bubble
walls. A pure vertex model with straight walls does not handle T1 events correctly.

Weaire and Bolton [166], in a center model based on Voronoi reconstruction
from the bubble centers, applied extensional deformation and simple shear to a
two-dimensional foam and concluded that stress and topological rearrangements
can induce ordering in a disordered foam. Using a similar model, Weaire and Hut-
zler [179] also found that only in the wet foam limit do foam rearrangements follow
a power law. Durian’s [167] center model, treating bubbles as disks connected by
springs, measured the linear rheological properties as a function of polydispersity
and liquid fraction. He found similar distributions for the avalanche-like rearrange-
ments with a high frequency cutoff. But in such center models, the coherence length
of a bubble is comparable to its diameter. Contact angles are correct at equilibrium
but approach and remain near 90° during a T1 event, since the centers are essen-
tially uninfluenced by topological details such as the difference between a fourfold
vertex and a pair of three-fold vertices.

A further problem with both vertex and center models is that they do not di-
rectly count T1 events. Instead, they measure the size of rearrangement events by
the associated decreases in energy. As we will discuss later, the energy decrease
is not directly proportional to the number of T1 events. The correlation between
energy decreases (macroscopic) and T1 dynamics (microscopic) is essential to un-
derstanding foam rheology.

A review by Weaire and Fortes [175] includes a brief overview of some of the
computer models (up to 1993) of the mechanical and rheological properties of liquid

and solid foams. Few models have attempted to relate the structural disorder and
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configuration energy to foam rheology. Only recently, Sollich et al. [161], studying
mechanisms for storing and dissipating energy, showed that the rheology of “soft
glassy” materials, including foams, depends on structural disorder and metastability.
Langer and Liu [172], using a bubble model similar to Durian’s, found that foam
packing randomness has a strong effect on the linear shear response of a foam. One
of our goals is to quantify the extent of metastability by measuring hysteresis.
Experimentally, rearrangement events are difficult to study in three dimensions
because of the difficulty of direct visualization of foams. Most studies were limited
to two dimensions. Khan et al. [173] applied simple shear to a foam trapped between
two concentric parallel plates. They rotated the top plate and measured the torque

on the bottom plate. Figure 6.4 shows a sketch of their mechanical spectrometer.

sandpaper

I b

C ])—> foam sample
I

2T

Figure 6.4: Schematic illustration of a Rheometeric Mechanical Spectrometer
(RMST7200). A foam sample is sandwiched between two parallel plates with both
surfaces covered with sandpaper to avoid slippage. The top plate rotates at a con-
stant angular velocity w and the force/torque T' on the bottom plate is measured.
[Redrawn from Khan et al. [173]].
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Using this aparatus, they found that foam viscosity decreases linearly with strain
rate, and that the yield strain stays nearly constant for strain rates between 0 and
1.8s7!'. Princen and Kiss [176], applying shear in a concentric cylinder viscometer
(i.e. boundary shear), determined the yield stress and shear viscosity of highly
concentrated water/oil emulsions. With the help of diffusing wave spectroscopy
(DWS), experiments by Gopal and Durian on shaving creams showed that the rate
of rearrangements is proportional to the strain rate, and that the rearrangements
are spatially and temporally uncorrelated [177]. None of these experiments directly
observed changes in bubble topology. Dennin and Knobler [178] performed a shear
experiment on a monolayer Langmuir foam and counted the number of bubble side
swapping events. Limited statistics, however, rendered their results hard to inter-
pret.

Here we extend our Potts model to include the application of shear and to study
the mechanical response of two-dimensional dry foams under stress.

Simulations of periodic shear using the extended large-() Potts model show three
different types of hysteresis in the stress-strain relationship, elastic, viscoelastic and
fluid-like. This wide-ranging mechanical response of foams depends on the structural
disorder and local topological rearrangement of foam cells. For steady shear the
yield strain is much higher for an ordered foam than for a disordered foam and the
statistics and dynamics of topological rearrangement events (avalanches) depend
sensitively on the degree of polydispersity of the foam. As the structural disorder
increases, the topological rearrangements become more correlated and their power
spectra change from that of white noise towards 1/f noise. Intriguingly, the power
spectra of the total stored energy exhibit the same 1/f trend.

In the next section, Section 6.2 we describe simulation details. Section 6.3

presents results on hysteresis. Section 6.4 contains discussions on dynamics and
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statistics of topological changes (T1 events). We discuss structural disorder in Sec-

tion 6.5 and effective foam viscosity in Section 6.6.

6.2 Model

The nonlinear and collective nature of bubble rearrangement dynamics makes
analytical studies difficult, except under rather special assumptions. Computer sim-
ulation therefore provides important insights into the full range of foam behavior.
Both bubble surface properties and structure are fundamental to understanding
foam flow. Previous models [165, 166, 167] were based on different special assump-
tions for the energy dissipation. Since the energy dissipation is poorly understood
and hard to measure in experiments, the exact ranges of validity for these mod-
els are not clear. Not surprisingly, these models result in conflicting predictions,
especially for the distribution of avalanche-like rearrangements (to be discussed in
Section 6.4). None of these models alone captures the full complexity of real foams.

The extended large-Q Potts model, where bubbles have geometric structures
as well as surface properties, is not based on any a priori energy dissipation as-
sumptions. In addition, it has the advantage of simultaneously incorporating many
interactions, including temperature effects, for foams with arbitrary disorder and
liquid content.

In a real evolving pattern, the equilibrium contact angle occurs only for slow
movement in which the vertices are adiabatically equilibrated. Whenever a topo-
logical rearrangement (a T1 event) occurs, the contact angles are far from their
equilibrium values. The boundaries then adjust rapidly to re-establish equilibrium.
The same holds true for the other possible topological change, the disappearance of
a bubble, known as a T2 event [10]. However, disappearance only occurs in foams
that do not conserve bubble number and area, which we do not consider in this

study. We define the equilibrium contact angle so that any infinitesimal displace-
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ment of the vertex causes a second-order variation of the surface energy, while during
a T1 event the energy must vary macroscopically over a small but finite coherence
length, typically the rigidity length of a bubble. In our simulations, a bubble under
stress can be stretched or compressed up to 60% of its original length, with its area
conserved.

In our extended large-() Potts model, films are free to fluctuate, which is not
true in vertex models; the contact angles during the T1 event are correct, which is
not true in center models. Our model can also provide information about individual
T1 events as well as averaged macroscopic measures such as total boundary length,
which offers new insights into the connection between foam structure and mechanical
response.

Before describing the details of the Potts model, we ought to mention its limita-
tions. Viscosity is one of the basic physical properties of foam (both liquid viscosity
and effective foam viscosity), but it is not easily defined in the Potts model. Al-
though the effective viscosity and the viscoelasticity of films can be extracted from
simulations and we understand the qualitative effects of parameters on viscosity, we
do not yet have an explicit relationship between the model parameters and viscosity.
Adjusting this property quantitatively in our model is nontrivial. Another draw-
back is that the Metropolis algorithm results in uncertainties in the relative timing
of events on the order of a few percent of a Monte Carlo step. While this uncer-
tainty is insignificant for well separated events, it can change the measured interval
between frequent events, especially when computing the size of T1 avalanches.

To focus on shear driven topological rearrangements, we prohibit foam coarsening
by applying an area constraint on individual bubbles (see Chapter 2 for detailed
discussions of the area constraint). In practical applications, foam deformation and

rearrangement under stress is often much faster than gas diffusion, so neglecting
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coarsening is reasonable. The Potts Hamiltonian, the total energy of the foam, then
includes a surface energy and an elastic bulk energy. We can extend this Hamiltonian

to apply shear:

——

H=> To(l=6,0) +T D (00— A"+ > Yy t)rs(1 = 6,,.), (6.1)
i n i
where J;7 and o7 are the coupling strength and spin; a, is the area of the nth bubble
and A, its corresponding area under zero applied strain, as described in Chapter
2. The second term is the area constraint which prevents coarsening. The strength
of the constraint, I'; is inversely proportional to the gas compressibility; Coarsening
can be included by setting the strength of the area constraint to zero. The last
term corresponds to applying shear, with v, the strain field and, x;, the position
of the spin in the direction of the strain. The system evolves by our Potts model
algorithm.

The shear term biases the probability of spin reassignment in the direction of
increasing (y < 0) or decreasing (y > 0) ;. The strain field v has units of force.
But because in the Potts model, the bubble boundary (film) speed is proportional
to the reassignment probability P and we do not allow boundary slip, this term

effectively enforces a velocity v, i.e. applies a strain rate to the foam. The strain

€(t) is proportional to a time integral of v,

t
€ / V(1 — e AT g (6.2)
0
The prefactor /7 sets the unit and relates v to the amplitude of strain.
If we limit this term to the edge layer of spins, we apply boundary shear, equiv-
alent to moving the top and bottom plates of the foam with edge bubbles glued to

the plates, namely:
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WG(E)  yr=1
7= G Y= Ymar (6.3)
0 otherwise
where vy is the amplitude of the strain field and G(¢) is a function of time. On the

other hand, the choice,

7 = BuiGl(t), (6.4)
corresponds to applying bulk shear with shear rate 3. The corresponding experiment
would be trapping the foam between two parallel plates and rotating the plates with
respect to a fixed point with no-slip edge boundary conditions. In all our studies
we use G(t) = 1 for steady shear, and G(t) = sin(at) for periodic shear. Since for
steady shear, the strain is a constant times time, \/7(1 — P)t, stress-time plots are
equivalent to stress-strain curves.

Experimentally, the mechanical response, including yield strain, the elastic mod-
uli, and topological rearrangements, is sensitive to the liquid volume fraction [135].
Especially, the simulation results of both Weaire [166] and Durian [167] showed a
critical liquid fraction at which the foam undergoes a “melting transition.” However,
although different liquid content and drainage effects can be readily incorporated in
the Potts model [132], we consider only the dry foam limit.

We use a periodic boundary condition in the & direction, the direction of strain,
to mitigate finite size effects, and a no-flux boundary condition in the y direction.
All our runs use a fourth nearest neighbor interaction on a square lattice, which has
a lattice anisotropy of 1.03, very close to an isotropic situation.

For ordered foams under boundary shear, we use a 400 x 100 lattice with each
bubble containing 20 x 20 lattice sites. For ordered foams under bulk shear, we

use a 256 x 256 lattice with 16 x 16 sites for each bubble. When unstressed, all
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the bubbles are hexagons, except for those touching the top and bottom boundaries
which are truncated, with four sides in the bulk. In the case of disordered foams,
we use a 256 x 256 lattice with various area distributions. We have tried a few runs
using a lattice of size 1024 x 1024 with 64 x 64 bubbles. The results did not appear
to differ.

The topological and area distributions characterize the foam disorder. Since the
bubble areas are constrained, the evolution of the area distribution is not useful.
We use a variety of disordered samples with different distributions characterized by
pa(n) and paa).

In practice, we generate the initial configuration by partitioning the lattice into
equal sized square domains, each containing 16 x 16 lattice sites. The squares are
offset in every other row, so the pattern resembles a brick wall. We then run the
simulation with area constraints but without strain at finite temperature for a few
Monte Carlo steps, and then decrease the temperature to zero and let the pattern re-
lax. The minimization of total surface energy (and hence the total boundary length)
results in a hexagonal pattern, the initial configuration for the ordered foam. For
disordered initial configurations, we continue to evolve the hexagonal pattern with-
out area constraints at finite temperature so that the bubbles coarsen. We monitor
p2(n) of the evolving pattern, and stop the evolution at any desired distribution or
structural disorder, then relax the pattern at zero temperature with area constraint
to guarantee that all our initial patterns have equilibrated, ¢.e. without adding
external strain or stress, the bubbles would not deform or rearrange.

For all our simulations, I' = 1, and J;; = 3, unless noted. All the simulations
shown are run at zero temperature except when we study temperature effects on
hysteresis. Finite temperature speeds the simulations, but does not appear to change

the results qualitatively.
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We keep a list of neighbors for each bubble. A change in the neighbor list
indicates a topological change, which, since bubbles do not disappear, has to be a

T1 event.

6.3 Hysteresis

Foam flow involves a collection of bubbles rearranging from one metastable con-
figuration to another. The configurations therefore are important in understanding
the flow behavior. Since foams are non-equilibrium, they can stick in metastable
configurations for a long time unless perturbed. We study the metastability by
hysteresis measurement.

Hysteresis is “a retardation of the effect when the forces acting upon a body
are changed (as if from viscosity or internal friction); esp.: a lagging in the val-
ues of resulting magnetization in a magnetic material (as iron) due to a changing
magnetizing force.” (Webster). Hysteresis occurs when the parameters have a non-
linear and delayed response to a changing external field, resulting in memory effects.
Hysteresis commonly appears in systems with many metastable states due to (but
not limited to) interfacial phenomena or domain dynamics. The classic example of
the former is that the contact angle between a liquid and a solid surface depends
on whether the front is advancing or retreating. The classic example of the latter
is ferromagnetic hysteresis, in which the magnetization lags behind the change in
applied magnetic field. In foams, hysteresis can have multiple microscopic origins,
including stick-slip interfacial and vertex motion, local symmetry-breaking bubble
rearrangements (T1 events), and the nucleation and annihilation of bubbles. In all
of these, noise and disorder play an intrinsic role in selecting among the many possi-
ble metastable states when the foam is driven away from mechanical equilibrium. If
the disordered systems have many metastable states with large energy barriers, i.e.

a very rugged free energy landscape, they can relax extremely slowly towards the
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global energy minimum. On long length scales and practical time scales, a pattern
driven by an external field will move from one metastable local energy minimum to
the next. The global free energy minimum and the thermal fluctuations that drive
the pattern toward it are, in this case, irrelevant. The state will instead depend
on its history. By focusing on non-coarsening foams, we rule out nucleation and
annihilation as sources for hysteresis. A two-dimensional dry foam is therefore an
ideal testing ground for improving our understanding of hysteresis arising from local
rearrangements and interfacial dynamics.

Finding a good order parameter is always the key problem for describing patterns

with many degrees of freedom. In accordance with [165], we define the quantity:

1
0= Z 0:5(1 = b5, (6.5)
.7‘;

as the total stored elastic energy, in which sites 77,] are neighbors and 6~ is the
wall thickness which is 1 in all our simulations (dry foam limit); the summation
is over the whole lattice. ¢ gives the total boundary length, L, rescaled by the
total lattice area A. As the energy resides on the surfaces of bubbles only, ¢ is
proportional to the total surface energy, differing by a constant (surface tension).
In the deformation of bubbles, we shall assume that the gas is nearly incompressible
(large I'), so any external forces concentrate at the films. Values of stress can be
calculated by taking numerical derivatives of the total surface energy [166]. The
calculation via derivatives is not suitable for foams undergoing many topological
changes, since the stored elastic energy is discontinuous when topological changes
occur. The alternative is to calculate stress directly, as given in [179], by the sum of
forces acting on the boundary, which locally is proportional to the boundary length
of a bubble. The total shear stress ¢ is proportional to the change of total boundary

length in the foam, or o(t) o< L(t) — L(0), with L(0) the initial boundary length.
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6.3.1 Ordered Foams

The simplest topological rearrangement occurs for boundary shear applied to an
ordered foam. In such a foam the deformation affects only the edge layer bubbles and
all the T1 events are easily localized. As the applied boundary shear increases, the
bubbles in the edge layer distort, giving rise to a stored elastic energy. Figure 6.5(a)
shows snapshots of the pattern. When a pair of vertices are pushed together to form
a four-fold vertex, the number of sides changes for the cluster of bubbles involved.
Colors in Figure 6.5 reflect the topologies of the bubbles. Note that a five-sided
(green) and a seven-sided (yellow) bubble always appear in pairs except during the
short lifetime of a four-fold vertex when the numbers of sides are ambiguous because

of lattice discretization.

Once the strain exceeds a critical value, the yield strain, the edge bubbles undergo
almost simultaneous rearrangements, which release the stress. The stored elastic
energy, ¢, and stress, o, increase during the time when the bubbles deform, then
drop rapidly when the bubbles rearrange and release stress. Accumulation of stress
stays within the edge layer of bubbles, and never propagates into the interior of the
foam. The whole process repeats periodically, due to the periodic bubble structure,
as shown in Figure 6.6, the stress-strain plot. This result corresponds to the stress-
strain curves obtained in the model of Khan et al. with periodic hexagonal bubbles

oriented at zero degrees with respect to strain as shown in Figure 6.3 [164].

When applying periodic shear v(t) = v sin(at), we keep the period 27/« fixed
and vary the amplitude 7. Under periodic (sinusoidal) shear, when the strain am-
plitude is small, bubbles deform when stress accumulates linearly and recover their
shapes when stress is released. No topological rearrangement occurs. The stress-

strain plot is linear, corresponding to an elastic response. This result is in perfect
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(a) (b) (c)

Figure 6.5: Snapshots of an ordered foam under shear. Colors encode bubble topolo-
gies (lattice size 256 x256): (a) boundary shear, (b) bulk shear (shear rate 5 = 0.01),
(c) bulk shear (shear rate § = 0.05). Six-sided bubbles are blue, five-sided green
and seven-sided yellow, four-sided (edge bubbles) are red.
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Figure 6.6: Stress-strain curve for an ordered foam under steady boundary shear,
corresponding to case (a) shown in Figure 6.5. The number of T1 events is his-
togrammed in 50 MCS bins.

119



agreement with the experimental result of DWS in [180]. As the strain amplitude
increases, the stress-strain curve forms a small butterfly shaped hysteresis loop be-
fore any topological rearrangements occur, indicating a macroscopic viscoelastic re-
sponse. For increasing strain amplitude, the hysteresis loop increases in size. When
the applied strain amplitude exceeds a critical value, T1 events occur, which change
the shape of the hysteresis loop. Even larger strain amplitude introduces more T1
events per period, adding small loops to the “wings” of the hysteresis loop. Fig-
ure 6.7 shows the transition between the three types of hysteresis in the stress-strain

curve.

Changing the coupling strength, J;;, changes the viscosity of the bubble walls.
Small coupling strength corresponds to lower viscosity. Similar transitions from
elastic, to viscoelastic to fluid-like low behavior occur for progressively lower values
of viscosity, shown in Figure 6.8. The phase diagram in Figure 6.9 shows the elastic,
viscoelastic and fluid-like behavior (as derived from the hysteretic response), as a
function of the coupling strengths, J;; (i.e. viscosity) and strain amplitude, 7. A
striking feature is the linear nature of all the boundaries (This figure contains 44

data points which are not shown).

Figure 6.10 shows the effect of finite temperature on the stress-strain curves.
With progressively increasing temperature, noise becomes more dominant and even-
tually destroys the hysteresis loop. This result implies diminished metastability at
finite temperature. However, it does not seem to change the qualitative mechanical
response.

A more conventional experiment is the application of bulk shear [165, 167, 176,
178], with the shear strain varying linearly as a function of the vertical coordinate,

from 7y at the top of the foam to —v, at the bottom. For an ordered foam, the
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Figure 6.7: Stress-strain curves for ordered foam under periodic boundary shear with
Ji; =3, T =0and o = 1.7 x 1073, Numbers above the figures are 7y, the shear
amplitude. Progressively increasing 7o leads to transitions among three types of
hysteresis: 79 = 1.0 corresponds to elastic response, 79 = 3.5 shows viscoelastic
response (before any T1 event occurs), 79 = 7.0 is a typical response when only one
T1 event occurs during one cycle of strain loading. The intermediate steps show
that the transition between these three types is smooth.
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Figure 6.8: Stress-strain curves for ordered foam under periodic boundary shear
with 70 = 7, T = 0 and @ = 1.7 x 107%. Numbers above the figures are J;;,
which is inversely related to liquid viscosity. Progressively decreasing 7;; produces
transitions from elastic (J;; = 10), to viscoelastic (J;; = 5) and to viscous flow due
to T1 events. For [J;; = 3, all the edge bubbles undergo one T1 during half a strain
cycle. For J;; = 1, all the edge bubbles undergo three T1s during half a strain cycle.
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Figure 6.10: Effect of progressively increasing temperature, 7' (J;; = 3, 70 = 4, and
a = 1.7 x 1073). All data shown are averages over 10 periods.
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stress-strain relationship has two distinct behaviors depending on the shear rate. For
a small shear rate, a “sliding plane” develops in the middle of the foam. Figure 6.11
shows that defects (non-hexagonal bubbles) appear only at the center plane. The
stress-strain curve, shown in Figure 6.8, therefore, is similar to that for boundary
shear on an ordered foam. The periodicity is due to the periodic structure of the
bubbles, reminiscent of the shear planes observed in metallic glasses in the inho-
mogeneous flow regime, where stress-induced rearrangement is the origin of plastic

deformation [181].

At high shear rates, the T1 events are not localized in space [Figure 6.5(c)]. Non-
hexagonal bubbles appear throughout the foam. The stress-strain curve, shown in
Figure 6.9, is not periodic but rather smooth; the bubbles constantly move and
do not have time to settle into a metastable configuration to sustain finite stress.
The foam therefore shows a smaller yield strain. The transition between these two
phenomena occurs when the shear rate is in the range 1 x 1072 < |3| < 5 x 1072
(See Section 6.5 for a discussion of the effect of shear rate on yield strain.). This
transition can be understood by looking at the relaxation time scale of the foam.
In our simulations, the relaxation time for a single deformed bubble is a few MCS.
In a foam, due to surface viscous drag and geometric confinement by other bubbles,
the relaxation time for a single bubble becomes of the order of 10 MCS. For a
shear rate 3 = 5 x 1072, 3! is of the same order as the relaxation time. Thus
for shear rates above the natural internal relaxation time scale, the macroscopic
response changes from jagged and elastic to smooth and viscous response, as found

in fingering experiments in foams [182].
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Figure 6.11: Stress-strain curve for an ordered foam under bulk shear at shear rate
0 = 0.01. The magnified view in the box shows the correlation between stress
releases and individual avalanches of T'1 events.
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6.3.2 Disordered Foams

In a disordered foam, when boundary bubbles of different sizes undergo T1 events
at different times, the boundary shear can no longer be confined to the edge layer;
instead it propagates into the interior of the foam [Figure 6.13(a)]. The yield strain
is much smaller. Figure 6.15 shows an example of such fluid-like behavior, where no
stress can accumulate in the foam. Linear elasticity and linear viscoelasticity is not
observed, since even a small deformation may lead to topological rearrangements
for the small bubbles, when the size distribution of the foam is broad. The foam
deforms and yields like a fluid upon application of the smallest strain. Note that
when shear is first applied, the stress decreases to below 1, the initial value, before
increasing to fluctuate around 1. This stress decrease occurs because the initial
disordered pattern is not fully relaxed. We generate the disordered initial pattern
by stopping coarsening of a foam at the desired ps(n). The initial pattern is thus
likely to be in a metastable state. Shear induced rearrangement helps the bubbles

to reach a packing configuration with lower surface energy.

A disordered foam under bulk shear, snapshots shown in Figure 6.13(b), behaves
like an ordered foam if the shear rate is low. The rearrangements are discrete and
avalanche-like, resembling a stick-slip process, or adding sand slowly to a sandpile.
However, if the shear rate is high, all the avalanches overlap, and the deformation
and rearrangements are more homogeneous and continuous, as in a simple viscous
liquid.

Note that in all the hysteresis plots, the stress-strain curves cross at zero strain,
indicating no residual stress at zero strain. This crossing is an artifact of the def-
inition of stress, which ignores the angular measures of distortion, ¢.e. the total

boundary length does not distinguish among the directions in which the bubbles
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Figure 6.13: Snapshots of a disordered foam under shear. Colors encode bubble
topologies (lattice size 256 x 256): (a) boundary shear, (b) bulk shear.
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Figure 6.14: Stress-strain curves for a disordered foam under steady boundary shear,
corresponding to Figure 6.13(a).
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tilt. A choice of stress definition which included phase information would show
non-zero residual stress at zero strain, but would not otherwise affect the results

reported here.

6.4 T1 Avalanches

In both experiments [11, 17] and simulations, the contact angles of the vertices
remain 120° until two vertices meet. The external strain determines the rate at which
vertices meet. The new four-fold vertex rapidly splits into a vertex pair, recovering
120° contact angles, at a rate determined by the viscosity. This asymmetry of time
scale in the T1 event contributes to the hysteresis.

In vertex model simulations, sudden releases of energy occur once the applied
shear exceeds the yield strain [165]. The event size, i.e. the energy release per event

3 .
2, where n is the

in the dry foam limit, follows a power-law distribution: p(n) ~ n~
event size. A similar power-law distribution was found in Durian’s bubble model
[167], with an additional exponential cutoff for large events. Simulations of Weaire
et al. [166, 179], however, suggest that power-law behavior only appears in the wet
foam limit. Experiments, on the other hand, have never found system-wide events
or long range correlations among events [177, 178]. One of our goals is to reconcile
these different predictions.

These differences may result from the use of energy release, rather than enumer-

ation of actual events, as well as the assumption of a linear relation between energy

jumps and the number of T'1 events, namely,

@@ _

=cN 6.6
=N, (6.6)

where N is the number of T1 events and ¢ is a constant. A drastic drop in the

total boundary length indicates a large number of T1 events. However, in a dis-
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ordered foam, all T1 events are not equal, since they do not all release the same
amount of stored elastic energy. Under the same strain, smaller bubbles flow more
easily. When bubbles deform by the same amount, Al, for smaller bubbles, the
relative deformation % is much higher. Thus they are more likely to go through
T1 events. Moreover, a T1 event is not strictly local, but results in a deformation
over a certain finite range of its neighborhood, as demonstrated by T1 manipula-
tions in ferro-fluid foam experiments [183]. Therefore, the number of T1 events is
not necessarily directly proportional to the decrease in total boundary length. We
cannot compare the energy dissipation and T1 events directly. Furthermore, the
mechanisms of energy dissipation differ in these models. Kawasaki et al. [165] in-
clude the dissipation due to the flow of liquid out of the Plateau borders; Durian
[167] considers only the viscous drag of the liquid, while the model of Weaire et al.
[166] is an equilibrium calculation involving quasistatic steps in the strain that do
not involve any dissipation. In the Potts model, the evolution minimizes the total
free energy naturally.

The avalanche-like nature of rearrangements appears in the sudden decreases
of the stress (as calculated from the total boundary length) and the total elastic
energy as a function of time. Figure 6.11 shows the relation between stress and
the number of T'1 events in an ordered foam under steady simple shear for a small
strain. The stored energy increases almost linearly until the yield strain is reached.
The avalanches are separated nicely. Every cluster of T1 events corresponds to a
drastic drop in the energy, and the periodicity is due to the ordered structure of the
foam. At a higher shear rate, shown in Figure 6.12, the yield strain remains almost
the same, but the avalanches start to overlap and the stress curve becomes smoother
and less regular. In the sandpile analogy, instead of adding sand grains one at a time

and waiting until one avalanche is over before dropping another grain, the grains

133



are added at a constant rate and the avalanches, large and small, overlap with each
other. A disordered foam, however, may not have a yield strain [Figure 6.14]; T1
events occur for the smallest strain. The foam flows as a fluid without going through
an intermediate elastic or viscoelastic regime.

To study the correlation between T1 events, we consider the power spectrum of

N(t), the number of T1 events at each time step,

on(f) = / dt / dre= T NNt + 7). (6.7)

Figure 6.16 shows typical power spectra of the time series of T1 events in an ordered
foam. At a shear rate § = 0.01, no power law exists for the T1 events. The peak
at ~ 1073 is due to the periodicity of bubble structure in an ordered foam when
a “sliding plane” develops. At shear rate 8 = 0.02, the spectrum resembles white
noise. As the shear rate increases to § = 0.05, the power spectrum develops a power
law tail at the low frequency end, with an exponent very close to 1. In a disordered
foam, with increasing shear rate, the spectra for the T1 events gradually change
from completely uncorrelated white noise to 1/f at higher shear rates. By 1/f, we
mean any noise of power spectrum S(f) ~ f~ where « is near 1. Such noise is more
erratic than Brownian noise, a = 2, but more orderly than uncorrelated white noise,
a = 0. These power spectra suggest that the experimental results for T1 events
[177, 178] correspond to a low shear rate, with no long-range correlation among T1
events. Structural disorder introduces correlations among the events. Power-law
avalanches do not occur in ordered polycrystalline lattices of hexagonal cells at low
shear rate, where rearrangements occur simultaneously. At a high shear rate, when
the value of 4! is comparable to the duration of rearrangement events, the bubbles
move constantly. The foam therefore behaves viscously, since rearrangements are

induced faster than bubbles can settle into metastable configurations which can
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Figure 6.16: Power spectra of the time series of the number of T1 events in
ordered foam for three shear rates, § = 0.01, 0.02 and 0.05, respectively.
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support stress elastically. At these rates, even an ordered structure behaves like a
disordered one, since its symmetry and periodicity are destroyed.

In a disordered foam, whenever one T1 event happens, the deformed bubbles
release energy by viscous dissipation and also transfer stress to their neighboring
bubbles, which in turn are more likely to undergo a T1. Thus, T1 events become
more correlated. Shown in Figure 6.17, the power spectra change from that of white
noise toward 1/ f noise. When the first sufficiently large region to accumulate stress
undergoes T1 events, it releases stress and pushes most of the rest of the bubbles
over the brink, causing an “infinite avalanche.” Some bubbles switch neighbors,
triggering their neighbors to rearrange (and so on) until a finite fraction of the foam
has changed configuration, causing a decrease in the total stored energy, mimicking
the cooperative dynamic events in a random field Ising model [184].

On the other hand, in a highly disordered foam, the bubbles will essentially
rearrange independently, if spatial correlations for area and topology are weak. Pairs
of bubbles switch as strain exceeds their local yield points. Although more frequent,
the avalanches will be small, without diverging correlation lengths. Figure 6.18
shows the power spectra for T1 events for a highly disordered structure with us(n) =
1.65. We observe no power law behavior, even at high shear rates. Thus a highly
disordered foam resembles a homogeneous viscous fluid.

Over a range of structural disorder the topological rearrangements are strongly
correlated. The question naturally arises whether the transition between these cor-
related and uncorrelated regimes is sharp or smooth, and what are the transition
points. Detailed simulations involving different structural disorder should clarify
these questions.

Previous simulation [167] and experiments [178] measured N, the average num-

ber of T1 events per bubble per unit shear, and claimed that N was independent
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Figure 6.17: Power spectra of the time series of the number of T1 events in a disor-
dered foam (us(n) = 0.81, ua(a) = 7.25) for five shear rates # from 0.001 to 0.05.
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Figure 6.18: Power spectra of the time series of the number of T1 events in a very
disordered foam (pa(n) = 1.65, puo(a) = 21.33) for three shear rates.
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Figure 6.19: Number of T1 events per unit shear per bubble, N, as a function of
shear rate, (3, for four samples. Squares correspond to a foam of 180 bubbles, with
p2(n) = 1.65, us(a) = 21.33. Stars correspond to a foam of 246 bubbles with
p2(n) = 1.72) po(a) = 15.1. Triangles correspond to a foam of 377 bubbles, with
pa(n) = 1.07, pa(a) = 2.50. Circles correspond to a foam of 380 bubbles, with
pa(n) = 0.95, us(a) = 2.35. The inset shows on a log-log scale that the N values
differ by several orders of magnitude.
of the shear rate. Our simulation results, based on three different sample foams
and shear rates covering two orders of magnitude, however, disagree. As shown in
Figure 6.19, N depends sensitively on both the polydispersity of the foam and the
shear rate. Only at large shear rates does N seem to be independent of the shear
rate, which might explain the above mentioned experimental data [178].

The avalanches and 1/f power spectra are reminiscent of a number of examples

with many degrees of freedom and dissipative dynamics which self-organize into
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states that are barely stable [185]. Simple examples include stick-slip models, driven
chains of nonlinear oscillators, and sandpile models. In sandpile models, both the
energy dissipation rate (total number of transport events at each time step) and the
output current (the number of sand grains leaving the pile) show power-law scaling
in their distributions. In particular, if the avalanches do not overlap, then the power
spectrum of the output current follows a power law with a finite size cutoff [186].
1/ f-type power spectra result from random superposition of individual avalanches
[187].

If the analogy with sandpiles holds, we should expect the power spectra of the
time derivative of energy to be 1/f, and the power spectra of the energy to be f~2.
But Figures 6.20, 6.21 and 6.22, the corresponding power spectra for ¢ from the
same simulations as figures 6.16, 6.17, and 6.18, obviously do not show f~2: i.e.
the topological rearrangements are not in the same universality class as sandpiles.

In particular, Figure 6.22 shows a complicated trend: the slope of the power
spectrum increases from a small value at shear rate 8 = 0.001 to a power law f~%8
spanning over 4 decades at # = 0.005. But as the shear rate [ increases, the power
law disappears. In addition, a flat tail develops at high frequencies due to Gaussian
noise. Other different slopes appears over different regimes, indicating the existence

of multiple timescales and lengthscales.

6.5 Structural Disorder

As structural disorder plays an important role in mechanical response, we study
the effect of disorder on the yield strain and the evolution of disorder in foams under
shear. We measure the yield strain, at which the first T'1 avalanches occur, by the
displacement at the top boundary of the foam divided by the half height of the foam
(since the strain in the middle of the foam is zero) rescaled by the average bubble

width.
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Figure 6.20: Power spectra of the energy for an ordered foam under
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141

steady bulk



12
10 — — — e

i £ 080 1
10" .
0.05
8
10" To02
10° F0.01 .
e
S—" 4
?n 10° i
0.00
10° .
L 0.001
10" .
107 F .
10’4 L L MR | L L MR | L L MR | L L MR |
107 107 107 107 10" 10°

f(MCS 1
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Figure 6.22: Power spectra of the energy for a very disordered foam [us(N) =
1.65, pa(a) = 21.33] for five shear rates, 5 = 0.001,0.005,0.01,0.02, and 0.05.
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Figure 6.23 shows the yield strain as a function of shear rate, 3, for different foam
disorders. For an ordered foam at low shear rates, when a sliding plane develops
in the middle of the foam, the yield strain is the same for all shear rates. This
equality is expected because T1 events occur almost simultaneously in the sliding
plane, so the bubble size determines the yield strain. At high shear rates, T1
events distribute more homogeneously throughout the foam, which lowers the yield
strain. The upper limit for the yield strain in an ordered foam is 2/ V3, when all
the vertices in a hexagonal bubbles array simultaneously become four-fold under
shear. The nucleation of defects (5-7 sided bubble pairs) and their propagation in
real foams lower the yield strain. For disordered foams, the yield strain is lower for
higher shear rate in the same foam; and at the same shear rate, the yield strain
drastically decreases to zero as disorder increases, confirming that a higher shear

rate has an effect similar to that of a higher disorder.

The most commonly used measure for topological disorder is the second moment
of the topological distribution, ps(n). We used samples with initial pz(n) ranging
from 0.437 to 2.02, but have not observed any shear-induced ordering, ¢.e. reduc-
tion of po(n) with shearing, as reported in [166]. Instead, us(n) increases and never
decreases back to its initial unstrained value, as shown in Figure 6.24 the evolution
of pa(n) in a few samples with different initial disorders. The difference between the
simulations of Weaire et al. and the Potts model is not surprising. Weaire et al. ap-
plied step strain and observed the relaxed pattern. In our simulations, bubbles are
constantly under shear. The foam is thus far from equilibrium. The topological dis-
order, as measured by ps(n), therefore does not necessarily settle to an equilibrium

value.

In an ordered foam at a small shear rate (5 = 0.01), with separated avalanches,

p2(n) fluctuates in synchrony with the decreases of stress, as shown in Figure 6.25.
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The amplitude of py(n) fluctuates from 0.437 to 0.500, as shown in Figure 6.25.
During the period of stress increase, ps(n) does not increase because the topology
remains roughly constant. Instead uo peaks at the beginning of avalanches, when the
topological rearrangements broaden the topological distribution in ordered foams.

Near the end of the avalanches of T1s, uy(n) returns to its equilibrium value.
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Figure 6.25: Evolution of ps(n) under steady simple shear for an ordered foam,
showing the correlation between the stress decreases and jio(n).

Notice that in the stress-time plots (Figures 6.6, 6.11, 6.12 and 6.14, 6.15), stress
slowly increases at long times, because we continuously apply shear and the foam is
always out of equilibrium. Bubbles do not fully recover their original shapes. This
deformation slowly accumulates at long times. In disordered foams, topological

rearrangement may enhance the spatial correlation of bubbles, i.e. clustering of
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small bubbles in time. Results on spatial correlations for bubble topology, n, and

area a should be investigated.

6.6 Effective Foam Viscosity

One of the greatest difficulties in applying the Potts model foam simulations to
the analysis of experiments is our inability to derive the viscosity from the simula-
tion parameters. We propose a few methods to measure the effective viscosity of

simulated foams.

E,

Figure 6.26: Schematic of the Kelvin Model for linear viscoelasticity.

Assuming that the viscoelastic behavior of foams arises from the viscoelastic
nature of liquid films, we can apply the standard Kelvin model [170] (schematic
shown in Figure 6.26), where a spring (elastic modulus Ej) is connected in series
with a dash-pot (viscosity 1) and another spring (elastic modulus E;) connected in

parallel. For strain e,

t
e=c+e ="+ —/ e o dt 6.8
B0 (') (6.8)

where € and € correspond to elastic and inelastic strain, respectively; 7 = n/F;.
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For constant stress, o(t) = 0,t < 0;0(t) = 09,t > 0,

€= 2—2 + 2—‘1[1 — exp(—t/7)]. (6.9)

For a periodic stress o(t) = 0,t < 0;0(t) = opsin(wt),t > 0, the strain would
be
o0 oT

=Bt iy arylee ! sinwt) - wt cos(w) (6.10)

Fitting this expression, Equation 6.10, to the stress-strain curve obtained in the
viscoelastic regime, determines the effective viscosity of the foam for a given set
of control parameters of the model (i.e. coupling strengths and shear rate). For
simulations with parameter values J;; = 3,I' = 1 and three shear amplitudes vy =
4.0, 5.0 and 5.5, we found Ey = 4.01£0.25, F; = 0.00274+0.0002 and n = 1.8040.03.

Note that the Kelvin model is only the zeroth order model for viscoelasticity. Due
to the complexity of foam, it is not surprising that the response may have multiple
time scales, requiring a generalized Kelvin model (schematic shown in Figure 6.27).
A detailed study is needed to determine the dependence of viscosity 1 on model

parameters by systematically varying J;; and shear rate.

El EZ En

M, M

Figure 6.27: Schematic of the generalized Kelvin model.

Another way to estimate the effective foam viscosity is by analogy with viscous

fluid. The traditional method of measuring fluid viscosity is to drop a heavy, hard
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sphere through the liquid and measure its terminal velocity. The hydrodynamic

force derived from Stokes’ law gives:

4
§7ra3Apg = 6mUa, (6.11)

where a is the radius of the sphere and Ap is the density difference between the
sphere and the fluid, U is the terminal velocity and 7 is the viscosity of the fluid.
Similarly, in the simulations, we can drop a “heavy bubble” through the foam by
applying gravity to a single bubble only. The effective viscosity, in this analogy, is
proportional to the ratio between gravity and terminal velocity. Figure 6.28 shows

the terminal velocity as a function of the density of the “heavy bubble”.

We use an ordered hexagonal foam and drop a “heavy bubble” of the background
bubble size through the pattern. We choose two directions for the gravitational field,
2 and g. Since the “heavy bubble” in the z-gravity field meets more boundaries than
in the g-gravity field, v, is smaller than v,. But the slopes are the same for both
cases, corresponding to the same viscosity of the foam.

This effective viscosity includes contributions from both films and topological
rearrangements. This analysis may help to separate the effects of topological rear-
rangements and clarify how individual T1s contribute to the mechanical response

[188].
6.7 Conclusions

Three different types of hysteresis occur in two-dimensional dry foams under
periodic shear stress in the Potts model simulations. As the applied shear increases,
foams change from elastic to viscoelastic to fluid-like. Glazier’s laboratory is cur-
rently testing this transition in an experiment similar to [180] by applying periodic

boundary shear to a foam, measuring the total boundary length directly (instead of
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using DWS) to provide the stress, which, plotted against the applied strain, can be
compared with the prediction of three distinct behaviors.

The comparison between the mechanical responses of ordered and disordered
foams sheds some light on the relation between structure and mechanical properties.
An ordered foam has a finite yield strain. As disorder increases, the yield strain
decreases. For a random foam with a broad topology and area distribution, linear
elasticity and viscoelasticity do not occur. Any finite stress can lead to topological
rearrangements of small bubbles and thus to plastic yielding of the foam. More
detailed simulations and experiments are needed to determine the dependence of
the yield strain on the area and topological distributions of the foam, and shear
rates.

High shear rates effectively introduce higher disorder into the foam, as seen
in ordered foams driven at high shear rates. Local topological rearrangements (the
appearance of non-hexagonal bubbles) occur throughout the foam, resulting in more
homogeneous flow behavior, as in disordered foams. While previous studies claimed
that N, the average number of T1 events per bubble per unit shear, is independent
of the foam structure and the applied strain rate, the simulation data show that N is
sensitive to the area distribution of the sample and the shear rate. Only for a small
range of shear rates do samples having similar distributions show similar values of
N, which may be the range of the previous studies [167, 178]. Our results emphasize
the importance of both structural disorder and metastability to the behavior of soft
cellular materials.

In disordered foams, the number of T1 events is not directly proportional to the
elastic energy release, because a T1 event is non-local and every T1 event releases
a different amount of energy. Therefore, we must consider T1 events and energy

release separately.
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Avalanche-like topological rearrangements play a key role in foam rheology. In
the Potts model simulations, T1 events do not have long-range temporal correla-
tions for ordered structures or slow shear rates, consistent with experimental obser-
vations. As the shear rate or structural disorder increases, the topological events
become more correlated. Over a range of disorders, the power spectra are 1/f. As
Hwa and Kardar pointed out, 1/f noise may arise from a random superposition
of independent avalanches [187]. These 1/f spectra suggest that avalanches of dif-
ferent sizes, although they overlap, are independent of each other. Both greater
structural disorder and higher shear rate introduce a flat tail at the high frequency
end, a signature of Gaussian noise, but do not change the exponent in the power
law region.

However, unlike the sandpile model, a similar trend to 1/f is found in the power
spectra of the total energy, rather than in the energy dissipation. The difference
between the T1 avalanches and the sand avalanches is that each sand grain carries
the same energy while each T1 event has different energy. A better analogy is a
“disordered sandpile” model, where the sand grains have different sizes or densities.

Avalanches of T1 events decrease the stored elastic energy, leading to foam flow.
How do single T1 events contribute to the global response? Magnetic fluid foam
experiments offer the unique opportunity to locally drive a vertex and force a single
T1 event (or a T1 avalanche) by a well-controlled local magnetic field. We are
currently investigating the effects of single T1 events using magnetic fluid foam
experiments and the corresponding Potts model simulations [188]. This study may
help to understand the connection between microscopic topological rearrangements

and macroscopic mechanical response.
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CHAPTER 7

CELL SORTING

7.1 Introduction

Cell migration is a critical process for life. Cells move extensively as an embryo
develops. In the adult, cells migrate to the site of an infection or wound. In cancer
metastasis, invading cells move through a tissue. When cells of two or more types are
randomly intermingled and aggregated, they are able to migrate over long distances
compared to their diameter to re-establish homogeneous cell masses and sometimes
to re-construct functional tissues (for a review, see [192]). Many embryos and living
organisms, even a few adult animals such as Hydra, can regenerate from an aggregate
of randomly mixed cells of different types [193, 194].

While a cell’s molecular constitution, such as its cytoskeletal structure and the
type and density of its surface adhesion molecules, are genetically controlled, its
physical properties such as its mass, volume and surface tension restrict its possible
motion. Cell migration mechanisms falls in two categories: short range interactions
where cells interact through direct contact, and long range interactions where cells
interact through the external environment. The former includes differential adhe-
sion, the direct cell-cell physical and chemical interactions depending on the cell
types, and mechanical transduction. The latter includes (1) indirect physical and
chemical interaction, e.g., production of extracellular “wetting” fluid or extracellu-
lar matrix (ECM); and (2) chemotaxis (motion in response to gradients of chemical

agents which are emitted by the cells).
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We now seek to understand how cells accomplish migration and sorting by study-
ing these interactions in a simple organism, slime mold amoebae Dictyostelium dis-
coideum. We focus our discussions on explaining cell sorting and patterning in the
mound stage of Dictyostelium, based on direct (differential adhesion) and indirect
(chemotactic) cell interactions. Section 7.2 introduces Dictyostelium discoideum.
Section 7.3 describes differential adhesion. We compare our simulation results with
experiments done with chicken embryo cells to validate the model. Section 7.4 in-
troduces chemotaxis and evidence for its role in the development of Dictyostelium.
Section 7.5 includes the experimental evidence on which the model is based, and
the description of the extended large-() Potts model. Section 7.6 presents the sim-
ulation results on the effects of these two mechanisms on pattern formation in the
Dictyostelium mound. Finally, we compare the Potts model to others, and point out
some possible directions for future development of the model towards more realistic

biological simulations.

7.2 Dictyostelium

One of the most widely used organisms to study relatively simple morphogenesis
is the cellular slime mold Dictyostelium discoideum. Dictyostelium exhibits many
general developmental processes including chemotaxis, complex behavior through
self-organization, cell sorting and pattern formation.

Unicellular amoebae Dictyostelium inhabit soil and eat bacteria. When bacte-
rial food becomes scarce, some cells, so called pace-maker cells, spontaneously emit
diffusing chemical signals of 3’5" cyclic adenosine monophosphate (cAMP), thereby
initiating an excitation wave which propagates outward as a concentric ring or a spi-
ral wave, as the surrounding cells relay the signal [195]. Individual cells aggregate
under the guidance of the cAMP waves by moving towards higher concentrations

of cAMP. The amoebae form streams when they touch each other and then form a

155



multicellular mound, a hemispherical structure consisting of about 10% — 10° cells
surrounded by a layer of slimy sheath which is chemically similar to extracellular
matrix in the mound [196]. The cells in the mound then differentiate into two ma-
jor types, pre-stalk (pst) cells (about 20% of the cells) and pre-spore (psp) cells
(about 80%) [197, 198]. Subsequently, the initially randomly distributed pst cells
move to the top of the mound and form a protruding tip. This tip controls all mor-
phogenetic movements during later multicellular development[199]. The elongated
mound bends over and migrates as a multicellular slug. The anterior consists of pst
cells only and the posterior psp only. When the slug stops, the tip (the anterior
part of slug) sits on a somewhat flattened mound consisting of psp cells (called a
“Mexican hat” from its appearance). The tip retracts and the stalk (formerly pst)
cells elongate and vacuolate, pushing down through the mass of spore (formerly psp)
cells [200]. This motion hoists the mass of spore cells up along the long stalk. The
mature fruiting body consists of spore cells sitting atop a slender tapering stalk.
The whole life cycle, shown in Figure 7.1, normally takes about 24 hours. We
focus on the mound stage, when the cells have formed a compact aggregate with a
layer of non-cellular sheath surrounding it so that no more cells can join the mound.
Once the cells have differentiated into pst and psp cells in the correct proportion,
how do the cells move and sort in the mound to form a protruding finger on the top
of the mound which contains only pre-stalk cells?

Two possible mechanisms which could govern relative cell motion are differen-
tial adhesion based on the different surface adhesivities between psp and pst cells,
and chemotactic motion of cells along a chemical gradient from persistence of the

diffusible signals which play a crucial role during cell aggregation.
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Figure 7.1: Life cycle of Dictyostelium. The individual cells are about 10um in diam-
eter. The fruiting body is about 3mm high. Aggregation starts 6h after starvation;
a tight mound forms at about 10h; tip formation finishes by 12A; culmination takes
6 hours from 18h to 24h [Courtesy of W. Loomis].
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7.3 Differential Adhesion

Steinberg [201, 202, 203, 204] suggested that the interaction between two cells
involved an adhesion surface energy which depended on the cell types through cell
adhesion molecules on the cell membranes. His differential adhesion hypothesis
(DAH) states that cells ergodically explore various configurations to arrive at the
lowest-energy configuration. Additional energy comes from the surface tension be-
tween cells and the extracellular medium. This energetics biases the otherwise
random movement of cells in aggregates, causing them to rearrange into patterns
with minimal surface energy.

Experiments in hydra cell aggregates showed evidence that differential adhesion
can dominate certain types of sorting [205]. Surface adhesivity is type-selective.
During the regeneration of hydra aggregates, ectodermal cells surround endodermal
cells which form a single cluster in the middle. The initial surface sorting is rapid
and slows in time, apparently logarithmically [205], suggesting that sorting is an
activated process. Glazier and Graner, using an extended large-() Potts model
with differential adhesivity, showed that differential adhesion with fluctuations can
explain a wide variety of experimental cell configurations [206]. Studies using chicken
embryo cells showed that the cells indeed performed a biased random walk, caused
by cytoskeletally driven membrane fluctuations [207, 208]. Both the chicken embryo
cell experiments and simulations confirmed that sorting under DAH is a diffusion

through a rugged free energy landscape.

7.3.1 Experiments

Cell sorting is the classic behavior of mixed heterotypic aggregates. Figure 7.2
shows an experimental observation of cell sorting of neural (light) and pigmented

(dark) retinal cells from chicken embryos [207]. This result resembles that reported
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in [192]. Initially, the dark cells are randomly dispersed throughout the aggregate
with some in contact with the medium [Figure 7.2(a), after 5h]. At a later time
[Figure 7.2(b), after 10h], dark cells have formed large clusters and are separated
from the medium by a monolayer of light cells. Later still, [Figure 7.2(c), after 72h]
the dark cells form a single rounded mass inside each aggregate which may or may
not be well centered.

A similar process occurs in a mixed aggregate of Dictyostelium cells. When cells
from the anterior (pst) and posterior (psp) parts of a slug are dissociated and mixed
in an aggregate in the right proportions, the two types of cells sort. Figure 7.3
reproduces the observations of Takeuchi et al.in [209]. Initially, Figure 7.3(a), at
2h, the dark (psp) and light (pst) cells are randomly mixed. Two hours later,
Figure 7.3(b), at 4h, light cells form clusters in the aggregate. Then, a layer of
non-cellular slime sheath forms around the aggregate which complicates the sorting.
Instead of light cells forming a single cluster inside the aggregate, the sheath seems
to attract the light cells to the surface, shown in Figure 7.3(c), at 6. Sorting finishes
when the light cells form a layer surrounding the aggregate, having maximum contact
area with the slime sheath, and the dark cells form a single cluster in the middle of

the aggregate, not necessarily in the center, as shown in Figure 7.3(d), at 8h.

7.3.2 Model

Simulations of cell sorting under differential adhesion started with cellular au-
tomaton models where each lattice site represents one cell which interacts with its
neighbors [210]. Later improvements included the long-range effects of surface ten-
sion [211], the topology of the patterns [212] and cell geometries and molecular
dynamics [213, 214].

Graner and Glazier [215, 206] extended the standard large-Q) Potts model to

include area constraints and type-dependent boundary energies to study cell sorting
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Figure 7.2: Sorting of an aggregate of neural retinal (light) and pigmented retinal
cells (dark) obtained from 10-day old chick embryos. (a) Aggregate 5h after mixing
of dissociated cells. (b) After 10k, the neural retinal cells form an external layer.
(c) After 72h, the neural retinal cells surround an internal dark core of pigmented
retinal cells. [After Mombach et al. [207]].
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Figure 7.3: Reconstitution of Dictyostelium pre-stalk and pre-spore cell aggregates.
Pre-stalk and pre-spore cells were dissociated from the slug stage. After indicated
times, pre-stalk cells first formed a cluster inside pre-spore cells (dark), then moved
to the surface of the aggregate. Except for the aggregate at 2h, the aggregates were
encased by slime sheath. [After Takeuchi et al. [209]. Copyright (©1988 John Wiley
& Sons Inc., used by permission of Wiley-Liss, a division of John Wiley & Sons,
Inc.].
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under DAH. The finite cell size can be modeled with a volume-dependent (or area-

dependent, in two-dimensional models) energy term [206]:

ngneral = / j(Tinsidea 7_outside)ds + Z fi(ai)7 (71)
cellsurface

cells i

where J (Tinside, Toutside) 1S the energy of a unit of cell membrane as a function of the
cell types Tinside and Touside- @S is a unit surface area. f; encodes all information
concerning bulk properties of a cell, e.g. membrane elasticity, cytoskeletal proper-
ties, etc.. We choose f; as a simple quadratic elastic function (see Equation 3.19),
with all cells of a given type having the same volume or area. Additional simpli-
fying assumptions include that the surface of each cell is isotropic, i.e., the energy
of a unit of cell membrane depends only on the types of the cells, and that the cell
types and surface properties remain the same for all the cells during the simulated
experiments. The configuration evolves by the standard finite temperature Monte
Carlo dynamics, Equation 3.2.

The milestone work of Glazier and Graner [215, 206] studied two-dimensional
cell aggregates: dark and light cell mixtures submerged in a fluid medium. Thus 7
assumes three values, for [, d and M, respectively.

The surface tensions can be defined in terms of the boundary energies [214], as
given in Equations refgammadl, gammadm and gammalm. These surface tensions
are not equivalent to a biological membrane’s internal tension, which appears as
part of the membrane elasticity, A. They represent the difference in energy between
heterotypic and homotypic interface per unit area of membrane [206].

T does not correspond to the real experimental temperature. Rather, it indicates
the amplitude of cell membrane fluctuations. Typically, in biological tissues, the cy-
toskeletally driven membrane fluctuations are much larger in amplitude than the

true thermal fluctuations. One simple example is that when a drug (cytochalasin-
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B) inhibits cytoskeletal fluctuations, the cell membranes appear essentially free from
fluctuations. Defining T as the effective fluctuation temperature for cells makes the
serious assumption that the cell surface moves as if it were driven by uncorrelated
thermal noise. At the time this model was proposed [215], no experimental evidence
supported this assumption. The model was based on its physical simplicity and
its similarity to magnetic materials. Only recently have studies shown quantitative
agreement between the simulation results from the extended Potts model and ex-
perimental results from chicken embryo cells [208, 216], supporting the idea that the
cell membrane fluctuations are thermal. More detailed quantitative research must
verify these assumptions and reveal the true underlying physics.

The model has two critical temperatures, 7,; and 7T.,. The energy required to
break a straight wall between cells determines T,;. As illustrated in Figure 7.4, on
a square lattice with fourth nearest neighbor interactions, the configuration energy
difference before and after the spin flip is AH = 12712 — 812 = 4J12. Therefore,
T.y ~ 412, such that this spin flip has a reasonable probability, exp(—AH /T.), of
occurring. Jq2 here can be either homotypic or heterotypic coupling. Below T,
cell membranes are too rigid and cells have straight boundaries and cannot crumple
enough to result in cell body movement. Each cell assumes shapes with boundaries
aligned in the low energy orientation closest to the required minimal surfaces, but
the pattern freezes in a metastable configuration. No sorting can occur. The second
critical temperature is that at which individual cells dissociate. When a spin which
is surrounded by only mismatched spins has a long expected lifetime, it can freely
detach from the cell and the cell falls apart. Thus T., is N Ji2, with N the total
number of neighbors for the spin. Approaching T,.,, the constraints that minimize
the total surface area weaken and cell membranes can stretch and crumple until

individual spins can detach from the bulk cell body and cells melt.
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Figure 7.4: Schematic of spin change on a two-dimensional square lattice with fourth
nearest neighbor interaction.

These critical temperatures differ for different cell types which have different
surface energies. In practice, the simulations run at a temperature high enough that
even the most rigid cell membranes (smallest coupling strength 7;;) can fluctuate,
yet low enough that the weakest cell membranes (largest coupling strength J;;) will
not break apart. In other words, max(T.) < T < min(T.).

In principle, spinodal decomposition defines a third critical temperature [206] at
which dark and light cells mix. The spinodal decomposition limit occurs when the
entropy and energy are of the same order. Higher temperatures weaken area/volume
constraints and the patterns coarsen. These limits, however, are above T,,.

This simple model, which includes only differential surface energies and an area
constraint, with isotropic cells and without detailed membrane or cytoskeletal prop-
erties, reproduces various observed biological phenomena, including complete and
partial sorting, checker-board, position reversal, and dispersal [206]. Figure 7.5

shows an example of cell sorting with dark cells more adhesive than light cells.
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Figure 7.5: Potts model simulation of cell sorting with differential adhesion. Dark
cells adhere to each other more strongly than light cells do: (a) 0 MCS, (b) 100
MCS, (¢)13500 MCS. [From Glazier and Graner [206]].
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7.4 Chemotaxis

Chemotaxis is the motile response of cells or organisms to a gradient of a dif-
fusible substance. It differs from chemokinesis in that the gradient alters probability
of motion in one direction only, rather than changing the rate or frequency of random
motion, as in bacterial motion.

During aggregation of Dictyostelium, some cells, so called pace-maker cells, spon-
taneously synthesize and secrete pulses of cAMP, creating a gradient of cAMP
around themselves. A neighboring cell responds to such a gradient with several
actions. It moves some micrometers up the gradient towards the source of cAMP
(the exact pathway between the membrane cAMP receptors and cytoskeletal mo-
tion is not yet clear) [218, 219], and it synthesizes and releases its own pulse of
cAMP, attracting neighboring cells. It then becomes refractory for a period of sev-
eral minutes during which it cannot move or respond to cAMP signals. Under most
natural conditions each cell amplifies the cAMP signal, which means that the cell
synthesizes and releases more cAMP than was present in the original stimulus. This
relaying results in cell-to-cell propagation of the cAMP signal [195]. Proper func-
tioning of this response requires a number of macromolecules: surface receptors,
adenylate cylcase to synthesize 3',5-cAMP from ATP; and both secreted and sur-
face phosphodiesterase to degrade cAMP to chemotactically inactive 5'—cAMP. The
concentration of cAMP ranges from 107% M to 107 M at the peaks of waves [217].
The phosphodiesterase is essential to prevent the extracellular cAMP from building
up to a level that swamps out any gradients.

Unlike differential adhesion, chemotactic cell motion is highly organized over a

length scale significantly larger than the size of a single cell.
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7.4.1 Experiments

Chemotaxis has been studied extensively for aggregating Dictyostelium amoe-
bae. Early experiments measured details of the spatial and temporal variations of
cAMP concentrations among aggregating Dictyostelium cells, and the velocities and
patterns of cell motion [217]. While cAMP is generally believed to be the chemo-
attractant that guides cell aggregation, attempts to prove its importance have failed.
One problem is the difficulty of directly imaging chemical fields. The typical method
is to infer concentration from other more easily observed phenomena. Dark-field
imaging visualizes chemical waves indirectly from the changes in light scattering
of cells during chemotactic cell movement. Figure 7.6 shows a dark-field image of
aggregating Dictyostelium cells on an agar surface. When suddenly exposed to a
cAMP gradient, cells first round up, then elongate towards the direction of higher
cAMP concentration, causing a different light scattering index from unexcited cells.
The white bands in the dark field image are the elongated cells, corresponding to
the wave front of cAMP signals. This technique works well during aggregation, but
poorly in the mound in which the cells pack tightly. Only recently has visualiza-
tion within the mound using dark-field images become possible, showing that the
waves propagate as concentric rings, spirals or multi-armed spirals depending on the
variety of Dictyostelium and experimental conditions [220)].

Instead of visualizing cell motion, one attempt to study the role of cAMP in
cell sorting in the mound involved controlling the concentration of cAMP via the
over-expression of secreted phosphodiesterase, lowering the cAMP concentration.
No tip formed with the over-expression, implying that the cAMP level was too low
to properly guide cells [221]; furthermore, exogenous cAMP could attract pre-stalk
cells to the mound base, also suggesting that chemotaxis to cAMP determines tip

formation. Supporting evidence comes from a mutant strain of Dictyostelium which
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Figure 7.6: A dark field image of aggregating fields of Dictyostelium on an agar
substrate. White bands are excited cells, corresponding to the wavefront of cAMP
waves. Note the signaling spirals and the onset of streams at the aggregation edges.
[Courtesy of H. Levine].
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deletes a pre-stalk specific, low-affinity cAMP receptor (CAR2) and cannot form
tips [222]. The idea that the cAMP wave detection by the cells switches from the
usual high-affinity receptor (CAR1) to one with lower affinity is consistent with
the phenomenology seen via the darkfield technique [223], with the crucial assump-
tion that these waves are related to cAMP. However, chemotaxis to other diffusible

chemicals remains possible.

7.4.2 Models

Models of Dictyostelium chemotaxis have almost exclusively dealt with aggrega-
tion. These models form two major categories: those that treat the cells as discrete
units and those which use a continuum description for the cell density. These models
have given some insight into aggregation but none addressed the whole spectrum of
problems.

The models developed by Parnas and Segel [224], MacKay [225] and Vasieva
et al. [226] fall into the first category. The first two of these are similar in that they
treat cells as black boxes which, when stimulated, release a fixed amount of cAMP.
They incorporate no description of signal transduction, cAMP production, or adap-
tation. The model of Parnas and Segel only deals with one space dimension and can
only address how the cells decide when to move and, in a very simplistic manner,
the direction of cell movement. MacKay’s model is two-dimensional and can repro-
duce the observed streams, competition between two pacemakers and spiral waves.
These models are a first step towards theoretical study of aggregation, but their
rules are not based on a mechanistic description of signal detection, transduction,
cAMP production and secretion. More recent modeling by Vasieva et al. omits the
diffusion of cAMP but uses a cellular automaton with rules for neighbor activation
to reproduce streams and self-sustaining sources of excitation. However, this purely

formal model has little relevance to Dictyostelium aggregation.
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The models developed by Levine and Reynolds [227], Vasiev et al. [228] and
Hofer et al. [229] fall into the second category. The Levine and Héfer models mod-
ified the Martiel and Goldbeter model [230] for cAMP production and signaling,
whereas Vasiev et al. used a modified FitzHugh-Nagumo model for these processes.
Several objections, however, can be raised for their local dynamics [231], especially
when ad hoc assumptions are needed to incorporate cell’s adaptation to chemical
concentration for chemotactic movement. The attraction of continuum models is the
ease of obtaining analytical insights with simplified local dynamics. The primary
results of these models relate to the apparent instabilities which cause streams.

We have developed the extended large-() Potts model as a hybrid discrete-
continuum model which treats the cells as individual units and describes the extra-
cellular cAMP by a continuum chemodynamics equation. Such a model can describe
signal transduction and adaptation and explore movement rules based on the intra-
cellular dynamics. In this study, however, we focused on cell sorting during mound

formation, and did not consider the detailed signal transduction dynamics [232].

7.5  Dictyostelium Mound Formation

7.5.1 Experiments

While intercellular adhesion is essential for Dictyostelium in the transition from
unicellular amoebae to multicellular stage [233, 234], whether it is directly involved
in the cell sorting in the mound is as yet unknown. Conceivably, intercellular ad-
hesion only passively keeps cells together while diffusible signals morphoregulate.
Alternatively, adhesive energy differences may drive cell motion while diffusible
chemical gradients may be absent or may merely enhance the process. Or does
proper tip formation require the collaboration of the two mechanisms?

The molecular basis of intercellular adhesion just before and during aggregation

has been intensively studied. The csA glycoprotein in particular, which mediates
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adhesion during aggregation, is one of the best defined cell adhesion molecules [233].
However, the cell surface components mediating cell adhesion during the mound and
slug stages and the potential role of cell adhesion in tip formation and morphogen-
esis have not received as much attention, because of the inherently more complex
nature of the multicellular stages. In addition, the prevailing notion is that pat-
tern formation and morphogenetic movements in Dictyostelium depend mostly on
diffusible chemical signals [221, 220].

However, some evidence suggests that pre-stalk and pre-spore cells types have
different homotypic adhesivity. Tipped aggregates are more difficult to dissociate
with EDTA than aggregation stage cells. When slugs form, pre-spore cells resist
EDTA dissociation much more than pre-stalk cells [235], and in an aggregate with
mixed pre-stalk and pre-spore cells, pre-stalk cells move to the periphery of the
aggregate [236]. These results strongly suggest that pre-spore cells are more cohesive
than pre-stalk cells. However, other lines of evidence suggest that pre-stalk cells are
more cohesive than pre-spore cells [237, 209, 238]. The work of Takeuchi [209]
(Figure 7.3) even suggested that the slime sheath may help pre-stalk cells to come
to the surface of the aggregate.

Dictyostelium cells in the mound can respond chemotactically to chemical gradi-
ents and therefore such gradients may help control their relative motion. Dark-field
imaging showed waves patterns in the mound [220] but failed to associate the im-
ages to three-dimensional distributions of putative chemical signals. Cell movement
analysis, by tracking the positions and shapes of single cells, has shown that cell
movement in mounds of the wild-type stain AX-3 is rotational, and measurements
of single cell velocities and changes in cell shape and trajectories show that cells
move faster in the mound than during aggregation [239]. The McNally group, using

three-dimensional optical sectioning microscopy, examined the distribution of move-
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ment in mounds of AX-2 [240]; no large scale rotation appeared, and cells moved in
a variety of manners. Pre-stalk cells move about 50% faster than pre-spore cells but
their paths are similar [241]. In the KAX-3 mutant, after some lag time, all cells
move rotationally and pre-stalk cells move to the surface of the mound, but no tip
forms [242].

As already mentioned, much current thinking assumes that the darkfield waves
in the mound correspond to cAMP (as they do during aggregation) and cAMP
chemotaxis dominates the measured motion. But, a recent report shows that Dic-
tyostelium development can be independent of cAMP as long as the catalytic subunit
of cAMP-dependent protein kinase is present [243]. In the acaA(PKA-C) mutant,
Dictyostelium development seems “near-normal” without detectable accumulation
of cAMP, suggesting that signals other than extracellular cAMP can coordinate
morphogenesis. Since our simulation applies equally to any chemo-attractant, these
findings do not affect our results as long as chemotaxis to some chemical exists. We
did not investigate other possibilities, such as a chemo-repellent or a more compli-

cated interaction with the slime sheath or the extracellular matrix.

7.5.2 A Model of Dictyostelium

Our model simplifies the biology, by assuming that:

1) All cells have differentiated to either pre-stalk cells (20% by volume) or pre-
spore cells (80%). Cells have fixed surface properties that do not change during
sorting and their volumes are constant.

2) The surface properties of cells are isotropic, neglecting cell polarity or mem-
brane curvature dependence. Hence, cells have uniform energy per unit surface
area.

3) As we do not explicitly consider extracellular matrix in the mound, cells

interact with their neighbors through direct contact. In principle, the different
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cell types might have different interaction energies with the outer boundary of the
mound, although no data is available.

4) A layer of sheath, which may have different contact energies with different
cell types, has formed around the mound before we start our simulations.

As described in Chapter 2, each lattice site contains a number ¢ corresponding
to the unique index of a cell, which has a type 7 and a volume v. Adhesive energy
resides on the membrane surfaces only, while cells have no internal adhesion energy.
The sheath around the mound and the substrate supporting the mound are also
represented as generalized cells, with particular properties and surface tensions. To
keep the aggregate from falling apart, the cells adhere more to each other than to
substrate or to sheath. As the cells do not grow or shrink during sorting, the target
volume, V, is constant and equal for both pre-spore and pre-stalk cells.

Savill and Hogeweg have used a similar model to describe the morphological
changes in Dictyostelium from aggregation to migrating slug [244]. Figure 7.7 shows
the time sequence of their simulated Dictyostelium. Pre-stalk cells are light and pre-
spore cells are dark. Cells aggregate into a mound which then falls on the substrate
and migrates like a slug. Notice that the mound and slug are random mixtures of
two cell types. They did not study cell sorting and tip formation in the mound.

We can treat chemical concentration as an effective potential energy, although
the chemo-attractant does not directly exert a force on the cell. Cells rectify trav-
eling wave signals to move only opposite to wave propagation [245]; in the model
the chemotactic response vanishes when the cells are in their (chemical) refractory
state.

The total effective energy of the mound is:

H = Z Z Jr(a;),'r(a;)(l - 50;%’) + A Z[UU - VU]2 + Z :U’C(;a t)a (72>
7 7 o i

)
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Figure 7.7: Time sequence of the aggregation, mound and slug phases of a simulation
of Dictyostelium. (a) Initial random mixture of prestalk (light) and prespore (dark)
cells on a substrate. (b) Cells start to stream into a mound. (c-d) Mound forms.
(e) Mound falls to the ground. (f) Slug migrates. [From Savill et al. [244])].
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where 7 is a neighbor of j with the index o ranging from 1 to N, the total number of
cells in the simulation. Surface tensions in terms of the couplings between different

cell types are:

\Z‘T + \77’ T/

’)/T,’T’ = \77',7" - fa (73)
Tr

Yoo = Jrm — DR (7:4)

where 7, . refers to the heterotypic surface tension between any pair of cell types,
and M refers to the medium (sheath or substrate).

The second term in the total energy (Equation 7.2) applies to the pre-stalk and
pre-spore cells only, confining cell volumes near a fixed value V,. The last term
is the effective chemical potential energy. C (;, t) is the local concentration of the
chemo-attractant, which is a function of time, ¢, and position, i. The chemotactic
response of cells derives from this term, in which g is the effective chemical potential.
The local chemical gradient effectively exerts a force on the part of cell membrane
that sees the gradient. If © > 0, a section of the cell membrane protrudes as a
pseudopod towards higher chemical concentration and in time the cells move up
the chemical gradient. If u < 0, cells move towards lower concentrations. Thus,
corresponds to the cell motility, which converts a chemical gradient into a velocity.
Cell motility has been extensively in Dictyostelium. Fisher et al. [251] studied cell
motility in a chemotaxis chamber which has stationary chemical gradients and found
that the speed of AX-2 cells is 3um/min at a cAMP gradient of 25nM /mm with
a midpoint of 25nM /mm. Soll et al. [252] developed a three-dimensional dynamic
image analyzing system which produces detailed information about cell motility and
morphology based on the three-dimensional paths of the centroid and the three-
dimensional contour of the cell. Their data show the cells moving at a velocity of
12 — 15um/min during natural aggregation, when the concentration of cAMP is

rising from 10 to 1000nM .
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We define the control parameter, the relative strength of chemotaxis and differ-

ential adhesion, as:

¢ = ,u/q/pszofpsta (75)

where Ypsp—pst = Tpsp—pst — (Tpsp + Tpst) /2 is the heterotypic surface tension between
pre-spore and pre-stalk cells.

The pattern evolves by the normal Potts model dynamics, Equation 3.2. In the
results that follow, Jpst substrate = Jpspsubstrate = 20. Since the substrate does not
participate in the spin reassignments, the value of Jeeii substrate Only sets the surface
tensions between cells and substrate for correct contact angles. The behaviors of the
cells are not sensitive to the exact value of A ranging from about 3 to 30 [206]. We use
A =10 to keep the cells compact and close to the target volume. Without chemical
dynamics, the amplitude of membrane fluctuations observed for chick embryo retinal
cells is about 1um for cells with a diameter of 5—10um. So we choose the amplitude
of membrane fluctuation to be T" = 10, which corresponds to a typical boundary
fluctuation of 1 lattice site for a cell of size 4 x 4 x 4 in the absence of chemotaxis.
Simulations, considering differential adhesion only, set the chemical potential p to
be zero, i.e., cells do not respond to chemical signals.

Due to the confusion in the literature on the relative adhesivity of pre-spore and
pre-stalk cells and the lack of current experimental data, we tested both possibili-
ties: Figures 7.8(b) and (d) show the simulation with pre-stalk cells more cohesive
than pre-spore cells (Jpsppsp = 15, Tpstpst = D, i-¢€., prestalk cells are more cohesive
than prespore cells, corresponding to Ypst—sheath : Vpsp—sheath = 0-38), whereas Fig-
ures 7.8(c) and (e) have the pre-spore cells more cohesive (Jpsppsp = 1.0, Tpstpst = 3,
corresponding to Ypst—sheath : Vpsp—sheath = 2.6). Experiments measuring the surface

tensions of chick embryo tissues have found Yiver : Yheart = 4.3dyn/cm : 8.3dyn/cm =
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0.52 [246]. Our choices of surface tensions are biologically reasonable. We have also
varied whether or not the pre-stalk cells have a preferential interaction with the
sheath boundary to see the extent to which this hypothesized mechanism might be

necessary to reproduce sorting patterns.

To incorporate chemotaxis, we set up an artificial two-dimensional chemical tar-
get pattern with a source located in the center column of the mound. The source
(pace-maker cells) radiates chemical periodically outwards at a constant speed, giv-

ing rise to a concentration field:

C,(r,t) = CpoelmrTu=1l /. (7.6)

where r is the distance from a site to the center of the horizontal plane where the
site is located, and wu is the traveling velocity of the chemical wave. The choice of
chemical field is somewhat arbitrary, but it leads to waves which are consistent with
the simplest interpretation of the circular darkfield waves seen in the AX-2 mound.
We have tried to replace this pacing wave with a single pacemaker cell on the top
of the mound; although we have not exhausted the parameter space, we have had
no success in making a tip as yet. In the absence of experimental data about the
three-dimensional distribution of chemo-attractant in the mound, this assumption
is reasonable [247].

The cell’s chemodynamic cycle follows that used in Kessler and Levine [248]. The
cells may be quiescent, active or refractory (an enforced period following an active
period when cells are immune to chemical signals). Once activated by a chemical
signal (induced by a temporal chemical gradient above a threshold), cells secrete a
fixed amount of the same chemical (relay) and move chemotactically toward higher

chemical concentration.
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The chemical diffuses within the mound and on the surface of the substrate, de-
cays due to proteolytic degradation (similar to that of cAMP by phosphodiesterase),
and is secreted by the pacemaker and active cells. So the chemical dynamics is:

oC

o = DV?C — BC + Cy + Cy, (7.7)

where D is the diffusion constant and [ is the rate of degradation. Cj is the secretion
by active cells and C), is the auto-catalytic pacing field given in Equation 7.6. All
simulations used the following parameters for the chemical dynamics: D = 5,05 =
0.5,Cy = 50, ¢, = 0.6,u = 1.05, most of which come from Kessler and Levine [248].

We simulate pure chemotactic motion by letting the surface tension for pre-spore
and pre-stalk cells be the same, so the model does not distinguish between the cell
types.

Some experiments suggest that pre-stalk cell respond more strongly to a chemo-
attractant than pre-spore cells [249]. Can differential chemotaxis to some agent
play a significant role? We incorporated this observation by letting u have different
values for different cell types. However, the simulation results were independent of
this differential chemotactic response for relative p differing up to 50%. Therefore
the experimentally observed difference in response is probably not significant for cell

sorting in the mound.

7.5.3 Simulation Results

Figure 7.8(a-1) shows a vertical cross section of the hemispherical mound at time
zero, sitting on the substrate, surrounded by the slime sheath. Figure 7.8(a-2) is
the corresponding three-dimensional surface view. Prestalk cells are red and pre-
spore cells blue. Black represents the boundaries between cells (cell surface pixels).
The mound contains about 500 cells. 20% of them are pre-stalk cells, randomly

distributed in the mound. If both cell types interact equally with sheath, the more
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cohesive cell type should cluster inside the other cell type. Figure 7.8(b) shows
that when pre-stalk cells are more cohesive, they form clusters inside the pre-spore
aggregate. Figure 7.8(c) shows the opposite case when pre-spore cells are more
cohesive: over long times, pre-stalk cells are “squeezed” to the surface as the pre-
spore cells cluster to form a single aggregate, with small numbers of pre-stalk cells
trapped inside. Because cells extend pseudopods when they move, their surface
areas increase, increasing the number of black pixels in the cross section views. So,
pre-stalk cells can sort to the surface without any preference for the surface, as long
as pre-spore cells are more cohesive; the experimental signature of this mechanism
would be clusters of pre-stalk cells at the surface which would not spread into a thin
layer covering the whole mound. Neither case forms a tip.

If pre-stalk cells are much more adhesive to sheath then pre-spore cells, as
Takeuchi et al. suggested [209], pre-stalk cells would move to the surface of the
mound to minimize the contact area between pre-spore cells and sheath, regard-
less of whether they are more or less cohesive than pre-spore cells. For pre-stalk
cells more cohesive (shown in Figures 7.8(d-1,2) at 2000 MCS), pre-stalk cells move
slowly to the surface of the mound, leaving some small pre-stalk clusters behind;
no tip forms. If the pre-spore cells are more cohesive than pre-stalk cells (shown in
Figure 7.8(e) at 200 MCS), more pre-stalk cells appear on the surface, with some
small clusters of pre-stalk cells left behind within the bulk of the mound, and again,
no tip forms. The only difference we observed between the cases is that cells come
to the surface more slowly in first case, which makes sense. If pre-stalk cells are
more cohesive, they tend to cluster. Since membrane fluctuations drive the cell
motion, clusters diffuse more slowly than single cells. The difference between these
possibilities could be studied experimentally by checking whether or not pre-stalk

cells do in fact tend to form small clusters before they come to the surface.
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The results that follow assume that the best current guess about the the true
situation in Dictyostelium is the parameter set corresponding to Figure 7.8(e). That
is, pre-spore cells are more cohesive and they weakly prefer the surface. This set of
assumptions leads to the most rapid and most robust (in terms of varying the other
parameters) sorting of the pre-stalk cells to the mound surface. Even in this case,
though, no tip forms.

The simulated patterns which develop under differential adhesion resemble those
seen in both carB [222] and tagB [250] null mutants, which are likely to have chemo-
tactic defects. Pre-stalk cells form a thin surface layer on top of the mound but never
form a protruding tip. If those mutants somehow interfere with chemotaxis (either
by deleting a relevant receptor or, for tagB, by eliminating a subclass of cells which
may be involved in initiating the chemical signal), these findings would be consistent
with our model dynamics.

Including chemotaxis, an apical tip forms. Figure 7.9 shows a typical initial
condition for simulations with chemotaxis: (a) shows the three-dimensional surface
plot of the mound. Color codes indicate the different states of cells: green for
quiescent, purple for active and yellow for refractory. At time zero, all cells are
quiescent (green). (b) shows the cell type distribution on the surface of the mound:
blue represents pre-spore cells and red, pre-stalk cells. (c) is a vertical cross section
through the mound, red (pre-stalk) cells are randomly distributed. (d) shows the
chemical concentration (viewed from the top) at the surface of the substrate, which
is zero initially.

Figure 7.10 shows the pattern after 2000 MCS. A tip begins forming at the apex

of the mound and the pre-stalk cells move to the surface.
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Figure 7.8: Sorting with differential adhesion only. (a-1) A vertical cross section
view of the mound at time zero. About 20% pre-stalk cells (red) are randomly
distributed among pre-spore cells (blue); cell surfaces are colored black. (a-2) A
three-dimensional surface plot of the mound at time zero. (b) A vertical section view
and a surface plot of the mound with pre-stalk cells more cohesive than pre-spore
cells. Both cell types have the same adhesivity with sheath (Jpsppsp = 15, Tpst pst =
5, i.e. pre-stalk cells five times more cohesive than pre-spore cells, Jsp sheath =
Tpst,sheath = 10), at 20000 Monte Carlo steps (MCS). (¢) Same as (b) but with pre-
stalk cells less cohesive than pre-spore cells (Jpsppsp = 1, Tpstpst = 3y Tpsposheath =
Tpst sheath, = 10), at 6000 MCS. (d) A vertical section view and a surface plot of the
mound with pre-stalk cells more adhesive to sheath than pre-spore cells (Jpst sheatn =
10, Tpsp,sheath, = 25, i.e. pre-stalk cells are 2.5 time more adhesive to sheath than
pre-spore cells). Pre-stalk cells are more cohesive (Jpsppsp = 15, Tpstpst = D, i.e.
pre-stalk cells are three times more cohesive than pre-spore cells), at 2000 MCS:
pre-stalk cells move to the surface of the mound, leaving some small clusters of pre-
stalk cells in the bulk. (e) Same as (d) but with pre-spore cells more cohesive than
pre-stalk cells (Jpsppsp = 1.0, Tpstpst = 3, i.€., pre-spore cells are three times more
cohesive than pre-stalk cells), at 200 MCS.
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Figure 7.8: cont.
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Figure 7.9: Initial configuration for simulations with both differential adhesion and
chemotaxis (Jpsppsp = 1.0, Tpstpst = 3.0, 0 = 20). (a) A three-dimensional surface
plot of the mound showing different states of the cells: green represents quiescent,
purple active, and yellow refractory. (b) A three-dimensional surface plot of the
mound showing cell type distribution: pre-spore cells are blue and pre-stalk cells
red. (c) A vertical cross section of the mound showing cell type distribution: pre-
spore cells are blue and pre-stalk cells red. Cell surface is black. (d) A projection
from the top, of the chemical concentration on the surface of the substrate. The
chemical field is zero at time zero.

Figure 7.11 shows typical evolution in the mound with both mechanisms present.
As time progresses, the tip grows taller and taller. Prestalk cells sort to the surface
of the mound and in particular, make up the majority of cells in the protruding
tip. This sequence is consistent with development in strains such as AX-2 for which
our chemical dynamics is a possible caricature.  As we adjust the control param-
eter ¢ to tune the relative strength of chemotaxis to differential adhesion, we see

that the pattern formation (Figure 7.12) results from the competition between the
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Figure 7.10: The same mound as in Figure 7.9 at 2000 MCS for simulations with
both differential adhesion and chemotaxis.
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Figure 7.11: Vertical section views of the evolution of a mound (Jpsppsp
L, Tpstpst = 3, po = 20). Numbers show time in MCS.
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minimization of adhesion energy (differential adhesion) and cell movement towards
higher chemical concentration (chemotaxis). Stronger chemotaxis produces a large
tip more rapidly, but the tip contains both pre-stalk and pre-spore cells, with no
sorting of cell types. Chemotaxis only, when pre-stalk and pre-spore have the same
adhesion energy, corresponds to ¢ = oo. Only within a certain range (5 < ¢ < 8)
can we see a tip containing pre-stalk cells only. For ¢ = 6.7, the maximum velocity
of cell motion is about 1.5 lattice sites per MCS or 4 cell diameters per 10 MCS,
measured from the center of mass of cells. If we equate 20 MCS to 1 minute in real
time, the cell velocity corresponds to roughly 16um/min, as observed experimen-
tally by Soll et al. [252]. This timescale in turn makes the sorting time about 100

minutes, which is realistic.

To provide experimentally verifiable quantitative results, we measured the size
of the tip as a function of time for a series of relative strengths. Figure 7.13 shows
that all the tips grow linearly in time, larger chemical potentials corresponding to
faster tip growth. Next we measured the fraction of contacting surface between pre-
stalk cells and sheath to indicate the degree of cell sorting to the surface. Shown in
Figure 7.14, larger chemical potential results in somewhat faster but less complete
sorting. When ¢ = oo, indicating pure chemotaxis, 7.e. with pre-spore and pre-stalk
cells having the same surface tensions, no sorting to the surface was observed. Notice
that the slopes of the pst-sheath interface area are steeper for larger ¢ before 1000
MCS, suggesting that, at short times at least, chemotaxis could enhance the speed
of sorting. Again, the degree of surface sorting is easily measurable in experiments.
Thus the experimentally determined rate of growth and degree of sorting will de-
termine ¢. Of course, in real Dictyostelium, the tip does not grow indefinitely. We
do not know when and how the growth stops. We focus on the sorting mechanisms

only.
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Figure 7.12: Vertical section views of the mounds at 2000 MCS for different relative
strengths of chemotaxis and differential adhesion. Numbers show the values of the
control parameter ¢. ¢ = 0 corresponds to pure differential adhesion, ¢ = oo to
pure chemotaxis.
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Figure 7.13: The evolution of tip size (fraction of cells in the tip) as a function of
time for different ¢.
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Figure 7.14: The fraction of pre-stalk cells in contact with sheath as a function of
time for different ¢. ¢ = oo corresponds to the case of pure chemotaxis, with
pre-stalk and pre-spore cells having the same surface tensions.
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In conclusion, the simulation results suggest: In the mound stage, if only differ-
ential adhesion regulated cell sorting, pre-stalk cells would come to the surface of
the mound but no tip would form. In other words, differential adhesion alone cannot
explain the sorted tip in the mound. Chemotaxis of cells to a diffusible chemical can
form a tip but the tip consists of both pre-stalk and pre-spore cells: no sorting can
be accomplished by chemotaxis alone. Only the competition of both mechanisms
allows the cells to form a tip consisting of pre-stalk cells only. Similar methods can
be used to study strains such as KAX-3 which have “pinwheel” waves, or to consider
alternative mechanisms such as the possibility of a chemo-repellent emitted by the

pre-spore cells.

7.6 Cellular Automata

Finally, we comment on the cellular automaton (CA) approach for modeling
cell-cell interactions.

Cellular Automaton representations of biological cells typically employ one au-
tomaton per cell which interacts with the nearest and maybe some higher order
neighbors under some local rules. This technique has several disadvantages, for

example:

e Cells have a fixed size.

Cells have no shape.

Lattice effects can influence dynamics.

All cells interact with a fixed number of neighbors.

Time and space are highly discretized.

Not all of the above points will be important or affect a model’s dynamics but they

might play a significant role in the observed behavior.
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A single-automaton cell model can model collective cell motions and global pat-
terning, but can not model behaviors that require information on cell shape, size or
cell membrane motion. A multi-automaton cell model is necessary to model cellular
level activities, such as cell membrane fluctuations or cell growth.

Agarwal [254, 255] recently introduced a “cell programming language” in which
a collection of connected squares represents a “cell.” The cells can perform global
functions such as growing, dividing, rounding, etc.. However, an inelegant aspect
of this model is that before a cell can perform any function it must recompute its
neighborhood to take into account of any changes that have taken place since it was
last updated.

The extended large-@Q) Potts model is more elegant. Starting from cell sorting
through differential cellular adhesion, the model can be easily extended to include
growth, cell division etc. on the subcellular level. It then becomes a useful tool
for modeling cell-cell interactions and possibly self-organized complex behaviors.
Simply varying the values of the adhesion energy can simulate many different types
of behaviors, including engulfment, cell dispersal and cell sorting.

Cell growth can be modeled by slowly increasing the target volume, V', of a cell
of volume, v, (for example when a cell consumes some nutrient). Because v remains
close to V, the cell’s volume will slowly increase. Cell division occurs when a cell’s
volume (or surface to volume ratio) reaches a threshold. Then the sites in one half
of the cell are assigned to an, as yet, unused identification number (spin). Mombach
et al. [256] simulated two-dimensional tissue growth and mitosis using the large-Q)
Potts model. Instead of controlling the target areas, they allowed the cells to grow
as in normal diffusional coarsening, and then divided the cells whose area/perimeter
ratio exceeded a critical value by introducing a new wall along the least diameter. As

discussed in Chapter 3, target-volume (or area, in two dimensions) mediated growth

193



can separate the diffusion and relaxation timescales. For biological cells, growth is
much slower than relaxation, and is determined by more complex mechanisms than
the pressure-difference driven diffusion of soap froth. Therefore, target-volume-
mediated growth is more appropriate for biological cell growth. After cell mitosis,
the daughter cells can inherit the parent’s properties with or without mutation.

Gravity or chemotaxis can be modeled as a positive bias in the probability of
cell motion in a given direction. Chemodynamics can be modeled by a set of dif-
ferential equation for the diffusion and production of a chemical (e.g. cAMP in
Dictyostelium), which can be coupled with the cell’s motility to make the cell mi-
grate along chemical gradients towards higher or lower concentrations.

As an example of growth and division rules, we can look at two-dimensional
diffusion limited growth of bacterial cells. Bacteria can be modeled as cells of a
single cell type that adhere to each other and do not move chemotactically. Start-
ing with only one bacterium and a sparse distribution of nutrients represented as
independent particles, the bacterium target area, A, increases by a certain amount
each time the bacterium consumes a nutrient particle. When the bacterial area a
reaches a threshold value the bacterium divides in half along its axis of smallest
moment of inertia. For low growth rate per unit nutrient we expect fractal struc-
tures, resembling diffusion limited aggregation (DLA); for higher rates we should
find more compact structures. Other extensions could include random walks and
chemokinesis [257] and mutations for selection of growth strategies [258]. Varying
cell motility and nutrient concentration may reproduce a morphology diagram like
that first observed by Mastushita et al. [259].

Coupling cell growth, division and death to nutrient diffusion can model the
concentric shell structure of spherical avascular tumors [59]. Cells in the outer shell

receive sufficient nutrient to grow and divide normally. Limited nutrient supply
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results in quiescent cells in the middle shell which are alive but do not grow or
divide. The center of the tumor, where the nutrient concentration is below the
critical level to sustain life, consists a core of dead cells.

If we couple the growth, division and death of cells with chemotaxis to randomly
appearing patches of food sources which secrete a diffusible chemoattractant, we
can examine which cell strategies are selected in this environment. If we evolve the
strength of the adherence/repulsion between cell species, we can model selection
favoring those cell types that repel themselves from other cell types. By dispersing,
a small population of repelling cells cover more area than an adhering population
and hence are more likely to encounter chemoattractant or nutrients.

The Potts model also makes some experimentally testable predictions: cells in
aggregates move faster than when alone [244]; cells do not sort without differential
adhesion even with differential chemotaxis [232]. The sorting of cell types can be
partially or completely due to differential adhesion between the cell types.

The elegance of the Potts model comes from its simplicity: all interactions and
constraints are formulated in terms of effective free energies. It performs localized
minute adjustments to cell membranes to minimize the total free energy. We believe
that this modeling approach may be useful in examining and explaining behavior in
many cellular structures where cell-cell adhesion plays a critical role in the formation

of patterns.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

We have extended the large-() Potts model and applied it to cellular pattern

formation in foams and living organisms.

8.1 Grain Growth

In two-dimensional coarsening, the growth of a single topological defect in a
homogeneous isotropic lattice reaches a special scaling state with time invariant
statistics but no length scale change. The deep question: is there a unique stable
scaling state, however, remains open. A promising advance may lie in the recent
interest in persistence, i.e. the fraction of the system frozen in its initial state. An
experiment on soap froth [260] and a mean field model [261] have shown that the
area of regions that do not change during coarsening (survivors) shows power law
scaling in time. The source of this new scaling is not yet clear, but it may shed
some light on the universality of the scaling state.

Widely spaced topological defects can cause abnormal grain growth, without
strong surface energy anisotropy. Experiments and other models have confirmed
this result [262, 264, 263, 101, 102]. We know that a disordered cluster evolved from
one single defect has a diverging topological distribution. Competition among more
topological defects should confine the distribution. As the density of topological
defects increases, the topological distribution at long times tends towards the same

scaling distribution as normal coarsening. At what density of defects does abnormal
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coarsening becomes normal? In the dry limit, two-dimensional coarsening scales as
<7 >~ t1/2, In the wet limit, the growth law is < 7 >~ t/? (Ostwald ripening). Is
the transition between these two scalings smooth; i.e. what is the growth kinetics
for intermediate wetness? These two questions can be answered with detailed Potts
model simulations.

We have only considered coarsening due to gas diffusion without wall breakage
(or film rupture). Wall breakage causes bubble coalescence and complicated wall
and vertex motion, resulting in different scaling behaviors which are only described
by “semi-empirical” rules [55, 263].

It is worth noting that linear problems like two-dimensional coarsening involving
energy minimization subject to constraints can result in notably complex patterns
and behaviors, for which we have no fundamental theory yet.

All the above questions can be asked in case of three-dimensional foams. Both
theoretical and experimental studies for three-dimensional coarsening are still pre-
liminary. We need large scale simulations, and experiments offering full three-

dimensional information over long evolution times to provide convincing answers.

8.2 Foam Drainage

In three-dimensional wet foams, liquid flows through the Plateau border net-
work of bubble film junctions until gravity balances capillary effects, resulting in a
spontaneous tendency for the foam to separate into two distinct bulk phases.

Our model reproduces this behavior. In ordered foams, liquid profiles for free
drainage and forced drainage agree with both experimental data and analytical
calculations. For pulsed drainage, the lattice size limited simulations. We used a
sample that was only 1/20 the length of the experiment, thus the simulation only
covered the initial stage of the experiment; the simulated pulse velocity was constant

1/2

while experiments show a velocity proportional to ¢t='/¢. This defect can be easily
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taken care of by running on a much larger lattice. Moreover, the simulations can
study regimes beyond current experiments and theory and predict new phenomena.
In disordered foams or when coarsening takes place over the same time scales as
drainage, the interface between wet and dry foam is no longer sharp. The onset of
wetting front instability calls for further study. The flow of the liquid then resembles
flow in porous media, only with the random network evolving in time.

Current segmented-ac-capacitance measurement is essentially one dimensional,
only resolving the averaged liquid fraction at different vertical positions in the foam.
MRI can provide averaged one-dimensional profiles, two-dimensional sections and
full three-dimensional images to study the shape and stability of the wetting front.

The drainage equation assumes non-slip boundary conditions for the micro-
channel flow in the Plateau borders, which justify the assumption of Poiseuille flow.

Kraynik [142] argued that in most cases this assumption is true because the inequal-

ity:

Ns > 1077<I>l1/27“ (8.1)

holds. Here n and n, are the bulk and surface viscosities, r is the radius of curvature
of the Plateau border and ® = ®(x,t) is the liquid fraction. This inequality is
reasonable on dimensional grounds but requires more analysis. Experiments with
foams of different bulk and surface viscosities would be valuable.

Experiment, theory and simulation have all focused on fairly dry foams. Wet
foams need attention. Experiments suggested a departure from the expected & o
V'V behavior for high flow rate, V, which was attributed to the accumulation of lig-
uid in the expanded Plateau borders [129]. Is drainage in the wet limit significantly
different from the predicted behavior?

The Potts model simulations have not only pointed out a new direction in the

theoretical study of foam drainage, but potentially can extend to problems involv-

198



ing many interacting mechanisms and complex boundary conditions, in particular,

biochemical reactions coupled with flow in porous media.

8.3 Foam Rheology

We have studied the dynamics of local topological rearrangement in two-dimensional
foams. Since topological rearrangements (T1 events) are non-local and in disordered
structures T1 events are not the same, we have considered the stored energy and T1
events separately. We predicted three different types of hysteresis in the mechanical
response of foams under periodic shear, corresponding to elastic, viscoelastic and
viscous-fluid-like behavior.

The unique rheology of foam is essentially independent of the properties of the
foam’s liquid composition except for its viscosity but sensitively depends on the
polydispersity of the foam structure. We have related the macroscopic mechanical
response to the microscopic topological rearrangement at the bubble level. We have
shown that as the structural disorder increases, the yield strain decreases from a fi-
nite value for an ordered foam to zero for a very disordered foam; also the topological
rearrangements become more correlated in time, with their power spectra chang-
ing from white noise towards 1/f noise. The spatial correlation of the topological
rearrangements remains to be studied.

Avalanches of topological rearrangements release stored energy and stress, but
single T1 events only locally reduce bubble elongation. Also, instead of energy
dissipation (the derivative of the total energy), the power spectra of the total stored
energy exhibit the same 1/f trend as the T1 events. Though we have tried to draw
analogies with more familiar models with 1/f power law behaviors, we do not yet
understand the reason for the 1/f spectrum for the stored energy.

While we have not yet derived the explicit dependence of foam viscosity on

the Potts model parameters, we have proposed several methods to determine the
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effective foam viscosity. Separating the effects of topological rearrangement and film
visco-elasticity may help link the model parameters with the viscosity coefficient.
We have focused on the dry foam limit. Experiments have found that the liquid
concentration changes the rheological properties of foams dramatically. Including

different liquid fractions in the current model would be valuable.

8.4 Cell Sorting

For biological cells, we have developed a cellular level model to study the mecha-
nisms of cell migration and sorting during tip formation in the Dictyostelium mound.
Certain evidence in the literature points to differential adhesion as the mechanism for
sorting pre-spore and pre-stalk cells, while other observations suggest that chemo-
taxis plays an important role. We have shown that differential adhesion is sufficient
for segregation of the two cell types, but tip formation requires chemotaxis. Only
when both mechanisms work in concert can the tip form with the cell types sorted
correctly. The significance of these results, however, hinges on whether the simu-
lation parameter values are physiologically relevant. We can relate parameters to
physical parameters that are in principle measurable in experiments. But since no
experimental results are available for some of the parameters, e.g. the surface ten-
sions of the different cell types, we can only claim that the values we have chosen are
biologically reasonable by comparing them to those of chicken embryo tissues, where
such measurements have been done. We have suggested a series of new experiments
and eagerly wait for experimental verification.

Finally, the large-Q) Potts model and its extensions have proven to be very pow-
erful and flexible in modeling cellular structures where surface energy minimization
is important. Nevertheless, the basic assumption of the model is that the kinetics
can be described by Boltzmann thermodynamics. In some situations the assumption

may not be true.
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