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Abstract: Swarming, a collective motion of many thousandsaeifs, produces colonies
that rapidly spread over surfaces. In this papeintreduce a cell-based model to study
how interactions between neighboring cells fadditswarming. We chose to study
Myxococcus xanthus, a species of myxobacteria, because it swarmsdlyapnd has well-
defined cell-cell interactions, mediated by typepii and by slime trails. The aim of this
paper is to test whether the cell contact intepastithat are inherent in pili-based S
motility and slime-based A motility are sufficietd explain the observed expansion of
wild type swarms. The simulations yield a constat¢ of swarm expansion, which has
been observed experimentally. Also the model ie &blquantify the contributions of S
motility and A motility to swarming. Some pathogeracteria spread over infected
tissue by swarming. The model described here magl sbome light on the colonization

process.



Synopsis

Many bacteria are able to spread rapidly over thdase, using a strategy called
swarming. When the cells cover a surface at higisitieand compete with each other for
nutrients, swarming permits them to maintain rapwivth at the swarm edge. Swarming
with flagella has been investigated for many yearg] much has been learned of its
regulation. Nevertheless, its choreography, whickomewhat related to the counter-flow
of pedestrians on a city sidewalk, has remainedivadu It is the bacterial equivalent of
dancing toward the exit in a crowd of moving bodieat usually are in close contact.
Myxococcus xanthus expands its swarms at 1.6 pm/min, about a thied dpeed of
individual cell gliding over the same surface. Eaell has pilus engines at its front end
and slime secretion engines at its rear. Usindittoevn mechanics of these engines, and
the way they are coordinated, we have developezlldased model to study the role of
social interactions in bacterial swarming. The masl@ble to quantify the contributions
of motility engines to swarming. It also shows thratroscopic social interactions help to

form the ordered collective motion observed in snsar



I ntroduction

Bacterial swarming, a coordinated motion of mangtéaal cells, facilitates their spread
on the surface of a solid medium, like agar [1]aBwing may have evolved to permit the
bacteria in a colony to expand their access tdents from the subsurface and to oxygen
from above. When the surface is a tissue in a hiest, pathogenic bacteria swarm to
create a biofilm and to spread the infection. Swiagris observed in cells that are
propelled by rotating flagella [2], by the secratiof slime [3], and by retracting type IV
pili [4, 5]. Bacterial swarming has been studiedugtitatively in the modeling context of
self-propelled particle systems [6, 7, 8]. Most misdsuch as those f@&acillus subtilis
and Escherichia coli (see [8] for a review) are based on long-rangtileelinteractions
facilitated by chemical gradient or nutrient leyehemotaxis). However, myxobacteria
show no evidence of long-range communicating systenguide their collective motion;
they have only local contact signaling and useaddoteractions between neighboring
cells for swarming [9]. How interactions betweelic&cilitate swarming is still an open
guestion.Understanding this question might shed light ongbk-organizing process in
bacteria, when they spread as a biofilm in an tefédissue and when they develop
multicellular fruiting bodies. In this paper wesdebe a new cell-based model and study
the effects of social interactions between celgjuding the interaction mediated by
slime trails and by type IV pili, on swarming. Typé pili are found at one pole of a

wide range of bacteria, including many pathogeas ¢huse plant and animal disease.

We chose to examiniglyxococcus xanthus, because it swarms rapidly, has typical type
IV pilus engines at the front end of cells, hasnslisecretion engines at the rear, and
coordinates the two engines with each other. Ithees studied for more than a century;
numerous swarming mutants have been identified dwadacterized. Myxobacteria are
commonly found in cultivated soils, where they feedother bacteria. On the surface of
nutrient agar, they swarm away from a point inooylgpreading outward at a constant
rate for two weeks. Although the bacteria are gngnvand in fact they must grow to
swarm), 90% of the swarm expansion rate is duediility and to interactions associated



with motility, as shown by the low spreading rafenon-motile mutants [10, and Figure
1].

Figure 1. The cell distribution patterns of young swarmsviyfkococcus xanthus (DK1622) and

its two types of motility mutants photographed afté hours incubation (Reproduced from [11]).
The letters A and S denote the two motility systerinsl. xanthus (see text for details). All four
strains grow at the same rate in an aerated limgdium, but their swarms expand at different

rates.

Individual M. xanthus cells are rod shaped, roughly 5 micron in lengtti @5 micron in

width. They have two types of molecular motors thaivide the thrust necessary for
their gliding movement over a surface [9]. At teading end of the cell are retractile
type IV pili, long and thin hairs responsible fon®tility. When a cell is close to a group
of other cells, the cell's type IV pili can attatththe fibrils, which cover the surface of
the neighboring group of cells like a fishermarét. After attachment, the pilus retracts,
and the retraction force pulls the piliated celivfard, while the group hardly moves.
This pilus-mediated interaction produces many asgtrimcell clusters that often have
tips that are pointed at one end (arrowhead shagedl)is characteristic of S-motility.
Arrowheads can be seen in théSApanel of Figure 1. S motility is found among

pathogenic Neisseria and Pseudomonas, whereatléldwitching motility [4, 5].



e Figure 2. Picture of a rectangular section of a
*VA",\:’)‘ typical, swarm edge of wild typ®l. xanthus
\(tff\){ strain DK 1622 (AS"). Several small

Z peninsulas project outwards from the edge of
the swarm. The inset is a higher magnification
view of a segment of a typical swarming edge
in which single cells and clusters of cells are
evident. The inset was taken from a different
but similar experiment. Dense clusters of cells

(darker shades of gray) are evident in both

pictures.

At the trailing end of myxobacterial cells are seddnundred pores, from which slime is
secreted. There are roughly 150 pores scatteredtibeesides of the cell, also secreting
slime, that becomes a thin layer, protecting thié fcem lysis by cell-wall digestive
enzymes being secreted by all the cells [3]. Boih lateral and the polar slimes are
thought to be the same polysaccharide that isghaktmotility; hereafter simply referred
to as slime. Importantly, slime is completely disti from the fibril polysaccharide that
serves S motility [11]. Slime secretion from thamr@ushes the cell forward, leaving a
trail of slime behind the cell [3, 12] and genargtmovementsalled A motility. When

a moving cell encounters a slime trail, it tetml$urn through the acute angle to follow
the slime trail. When an A motile cell collidestiwihe side of another cell, the pushing
of the slime engines at the rear causes the cblthwis flexible, to bend. The colliding
cell thus reorients parallel to the other cell,daroing a side-by-side cluster of cells. Such

clusters are transient because the two cells dadiwgre and often slide past one another.

The A and S motility engines, which are located@tosite poles of the rod-shaped cells,
have engine-specific social interactions. Duringveroent, a cell’'s polarity reverses

regularly every 10 minutes or so [13, 14], and re&kis required for swarming [15, 16].

A wild-type cell (A'S") expresses both A and S motility” & mutants express only A
motility, while those with S motility but no A mdity are called AS" mutants [9].



Because wild type and & mutants are self-propelled by A-motility engines, a
comparison can expose the social interactions speaithe type IV pili. In both cases,
individual cells are observed to move, stop, anderagain, sometimes slightly changing
direction and regularly reversing [3]. To investgdhe coordinated motion withill.
xanthus swarms, culture droplets of each mutant were plame agar plates, and the
swarm expansion rates were measured [10]. Figsteo®/s the edge of a typical swarm
of wild type (A'S") cells. It is observed that swarm expansion regasin constant until
the swarm covers the entire surface available [ expansion rates for various initial
cell densities in K-S unitsvere measured and plotted against the cell deasifhe fitted
functions of expansion rate data for the threetgpks are shown as solid lines in Figure
3. To a first approximation, the velocity of indivial cells, when they are moving, is the
same for Smutants (AS) and wild-type (AS") cells, about 4 um/min, but their swarm
expansion rates are different [10]. Thé&SAmutant swarms with a maximum rate of 0.7
pm/min. Surprisingly, when S motility cooperatesthiwiA motility in wild-type M.
xanthus (A*S"), the maximum swarming rate is 1.6 pm/min, aba@tfald larger than
that of A’S or of A'S' ([10], as shown in Figure 3).

Previously we used a lattice-based model to studgolmacterial fruiting body
development after starvation [17, 18]. Swarmindhvaitifficient nutrient supply has been
studied using a continuous model in the form otighdifferential equations (PDE) [19].
The effects of engine mechanics and cell shape aveo be taken into account.
Recently, we introduced a simplified off-latticeshastic description of swarming [20],
and herein add our current understanding of engiaehanics to investigate swarming

and the role of social interactions.

1 K-S unit, or Klett-Summerson unit, is a measuretmancell density in suspensions [10]. A
sample of cell suspension with 100 K-S units hagr@pmately 4x 10° cells/ml. Using the
experimental data in [10], we find that 100 K-Stariorrespond to a close-packing arrangement

of cells in a two dimensional area.



181 . . . Figure 3. Fitting curves of spreading rates of

o wild-type (A'S") myxobacteria and motility
mutants (reproduced by using data from [10]).
The dots are experimental data points. The

fitting functions are: for wild-type (28", f(x)
= at+b*exp(-x/c), with a = 1.55+/-0.06, b =
1.41+/-0.10, ¢ = 56+/-10; for & mutant, g(x)
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08 ] ) o = b*(1 - exp(-x/c)), with b = 0.46+/-0.02, ¢ =

184+/-27. The density is in K-S units and the

expansion rate is in micron per minute.
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This paper is organized as follows. We start bycdeig the model of cell behavior and
social interactions. Then we present the simulatesults, and compare them with the
experimental observations. We demonstrate a canstenof swarm expansion and show
that the model accounts for the significant diffee in swarming rates between wild-
type and AS myxobacteria arising from the loss of S motilitye also study in detail

the order of collective motion in myxobacterial sma. A detailed description of the

computational model is given in the Methods section

M odel of cell behavior and social interactions

The motion of individual cells

In this paper we focus on the collective motioradarge number of cells in a swarm of

high cell density, taking only the local, contactghiated interactions between cells into



account. We represent each cell as a string of tesdn two-dimensional space,
following our earlier work [20] (Figure 4). The uec pointing in the direction from the

tail node to the head node represents the orientaif a cell. We define an energy
function (Hamiltonian) for the node configuratiohacell body and use it to constrain
the cell length and the cell shape to a certaigeaihe active motion of an individual

cell is then modeled as follows. After the head e®in a particular direction, a Monte
Carlo approach [21] is used to reconfigure posgiai other nodes in an attempt to
minimize the Hamiltonian (see Methods). This allothe cell body to bend and to
change its length by random fluctuations, whicHett the experimental observations
[22].

Head node

Tail node e ’

Figure4. The cell body of a bent cell is represented bp&as (solid black dots). The cell has a
length to width ratio of 10:1.

As mentioned in the introduction, the measured aigtes of individual cells vary over a
wide range, but the average velocities 662and A'S’ cell types are similar. To a first
approximation, we take the cell velocity to be ¢ansand the same for wild type' &

and A'S cells, with a magnitude of gm/min [10]. The direction of cell movement is
determined dynamically by the model, which takesititeractions between neighboring

cells into account.

Frequently cells reverse their motion by 180 degrdeeversals are regulated by an
internal biochemical clock that is not be affectey collisions or other interactions
between cells [15, 16]. We model regular reversélsell motility engines by switching
roles of head and tail nodes in accordance withngernal clock (see Methods). The
swarming efficiency (the ratio of the swarm expansrate to the speed of individual
cells) of myxobacteria primarily depends on souigractions between neighboring cells.

The expansion rate of a swarm without social imgras, would be zero since the cells



would move back and forth equally without any nispthcement in the long run. Social

interactions help a swarm of reversing cells teagr

Social interactions between neighboring myxobacterial cells

Social inter actions between cells

Ideally, interactions between all the more thahddlls in a swarm would be considered,
but that is not possible. Instead, we try to idgnfior each cell a neighborhood within
which a majority of its interactions are expectedé found. Social interactions arise in
S-motility when the type IV pili of one cell attatt the fibrils that surround other cells.
Social interactions arise in A-motility from thentiency of a cell to follow the trail of
slime left by another cell, and from collisionsween cells that cause a moving cell to
stop and its engines to stall, or that cause atoelthange its direction. Using the
experimental data of Figure 3, an area of intevacfor each cell type, /8, A'S', or
A’S', was defined as the statistically averaged areanaa cell within which most of its
social interactions occur. The interaction areasewaken to be proportional to the
inverse of parameters in the exponential term @ formula obtained when an
exponential curve was fitted to the experimentdhda Figure 3. Fitting functions are
specified in the legend to Figure 3. Each curveasgnts the observed swarm expansion
rate as a function of the initial cell density bétculture. The interaction area for wild-
type cells was found to be smaller than the suth@fnteraction areas of thé & and A

S" mutants. We suggest that this unanticipated fopdiesults when both engines are
working because the two engines on a wild-type adInot statistically independent but

are constrained by the structure of a cell to prape the same direction.

Pilus-mediated interactions depend on the dynawfigslus retraction [23] and on the
spatial distribution of the fibrils to which thelys tips have attached [24, 25]. Although
these factors are mechanically complex and nougderstood in detail, the interaction

has straight-forward effects. Pilus retraction pdeg a driving force for cell movement



that happens to be large, several times larger tirariorce developed by muscle acto-
myosin. And, because the force is almost nevercgicealong the cell’'s long axis, the
force tends to re-orient the direction of glidinBecause we are confined by the
approximation that isolated cells move with constgpeed, we need only consider the
reorienting effect of pilus retraction. No effect cell speed is considered, except that it
drops to zero when one cell collides with anoth@ssmuch as the fibrils tend to bundle
groups of cells, as will be described below, thrgdasize of the cell cluster prevents a
significant reorientation of the bundle; only trelavhose pili have attached is reoriented.
We model the reorientation effect of pilus-mediatateractions as driving the local
alignment of cells (see Area | of Figure 5 and Melf$). Although we represent the
interaction area by a rectangle, a circle, or somegular domain could have been
employed. The important quality of an interactioantin is its area. That area is
proportional to the probability that a cell hasiateraction. Swarms of wild-type cells
cover a larger area than those ofSAor A'S" mutants, which is evident in Figure 1.
Moreover, the peninsulas are more dense with tedisare well aligned side by side, as
evident in Figure 9, below. Both effects illustragorientation due to pilus-retraction.
Cell clusters tend to be narrow in the case of & Mutant and wide in the case of wild-

type bacteria.

A-motility engines at the rear of the cell pusfoitward in the direction of their long axis.
A-motility also produces slime trails, and celladeto follow them due to the adhesion of
newly secreted slime to the older slime in thel.tfele resulting alignment of the slime
polysaccharide chains also reorients the direatiogliding. Slime trails are represented
in the model by the paths that were taken by thedealls to have passed through Area II
(Figure 5). Further details are given in the sliomentation field described in the
Methods. Rod-shaped A-motile cells, which are puglat their tail ends, tend to form
parallel arrays if they collide or come into clasmtact with each other. These effects are
illustrated in Area Il of Figure 5 and are elabethtn Methods. Alignment results from
inelastic collisions between cells that change rthaiientations. More generally,
alignment in regions of high cell density arisesorgpneously from the physical

clustering of self-propelled rods [26].

10



For wild-type cells, we first model A and S motjlitindividually. Then, we combine

them under the approximation that isolated cellvenat a constant rate, as described
above. The persistent active motion is taken téeteby the head of the cell, no matter
which engines are functioning. Finally, we modd th-orientation due to pilus retraction

and to the alignment of A-motile cells with the&ighbors, or with the slime field.

Figure 5. Diagram showing the two types of social intexatsi for a cell (black). Although the
pilus length varies with extension, retraction @rdakage, most pili are of order of one cell
length [27]. Area | represents pilus-cell interantiarea. Its sides are taken as the average pilus
length If either the head or the tail of another celldalithin this area, it can be contacted by pili
from the black cellArea Il is the corresponding interaction areaZamoatility. A bent gray cell

in direct contact with a dark cell illustrates thending and alignment due to collisions between
cells. Slime trail following is illustrated by tfai(light grey shaded area) inside of the Are&\.
artificially low cell density has been used in Rig to clarify the several interactions. In regalit

many cells are adjacent to each other within theraation area.

Results

Swarm expansion

To test the consistency of the model, we simuléitedmotion of cells near the edge of
the swarm, and studied the expansion of the swaltmough M. xanthus swarms consist

of many millions of cells, the radial symmetry ofwarm, makes it possible to consider a

11



small rectangular sector of the swarm (Figure R)rectangular area of 200 microns by

200 microns (Figure 6) was convenient.

To compare the simulation with experimental measergs (shown in Figure 3), we
considered that growth in the center of the swaas driving a net radial outflow of cells
from their center [15], and that the swarm was exlpag at a constant rate. A constant
cell density near the swarm edge was observed iexpetally as the edge moved out
[10]. Skipping the early transient phases, we startsimulation after the steady state has
been reached. Although cells in the initial area ariented in all directions, the

orientations are radially symmetriBoth conditions apply to the Initial Area of Ceiis

Figure 6.
d ,Initial Area of Cells Figure 6. The simulation domain. Periodic
T o W"“”; E boundary conditions are used at sides a and c,
3 while reflection boundary condition is
a = = imposed at side d (see Methods). Cells at a
-‘-; g . density of 50 K-S units are shown randomly
= = distributed in the initial area. Their initial
cvé % orientations are chosen in accordance with the
,§_:-‘ E distribution function described in Methods,
equation (12).

b (200 umX 2001 m)

Denoting cell density ag(r, ) and the radial density &r), due to the symmetry and

the steady state we have:

P(r)= Jozn p(r,0)rd@d = Constant (1

This shows that the cell number flux across theeloloundary of the initial area (or the

increase rate of total cell number in the wholewation domain) is linearly correlated
with the colony expansion rate in Figure 3. We glalte the cell number flux rather than

expansion rate directly. Therefore, we do not haviencrease the simulation domain or

12



the total number of simulated cells. Further dstadf the simulation setup,
implementation of the algorithm, and the choiceparbimeters are described in Methods
and Table 1. Simulations show formation of longstdus (peninsulas) in both"& and

A’S cases (see Figure 7 (a) and (b)), which was obdexxperimentally [10].
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Figure 7. (a) and (b) are pictures of the edges of th& And wild-type (AS") swarms
respectively, after 200 minutes of simulation. ghpws linear increase in the number of cells in
the simulation domain with time. The red lines &est fits of simulation data with slopes

indicated in the plot.

Simulations were performed for cell densities raggrom 2 to 200 K-S units, and linear

increase of cell number was observed in all caseskample see Figure 7 (c)). This
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implies that the cell number flux is almost constdaring the whole swarming process
for a given initial cell density, in full agreememtith experiments [10]. Figure 7
corresponds to an initial density of 50 K-S unitijch is a near saturation density for the

rate curves of Figure 3.
Comparison of A'S" and A™S swarm rates

We have calculated linear fits for the cell numbmerease data at various cell densities,
and taken the slopes to be the average cell nufhbers, as shown in Figure 7.c. The
results for both AS" and A'S cells are plotted against cell density in Figuréap We
found that the cell number flux of the wild-type &) is greater than that of the'®&
mutant at all cell densities. At densities highert 50 K-S units, the cell number flux for
A’S'is 2-fold larger than the /5.

To see this effect more clearly, we fit the averagd number flux data into the first
order exponential decay function, which is simtiathe function used in Figure 3 from
[10]. The fitting functions for wild-type AS" cells and AS mutants are found to be
f(x)=5.6-6.6*exp(-x/32.1) and g(x)=2.8-3.1*exp(-9¥2) respectively. The ratio of these
two fitting functions is plotted against cell deress in Figure 8 (b). It is equivalent to the
ratio of colony expansion rates since the cell nemflux is linearly correlated with the
expansion rate. The ratio first increases and gwnrates around 2 for cell densities
higher than 50 K-S units. Experimental data shdves the AS' rates are 2 to 2.5-fold
larger at cell densities higher than 50 K-S uritigre 3). Therefore, our result shows a
significant difference in swarming rates betweetdwype and AS, arising from the

contribution of S motility that agrees with expeeint.

Collision occurs in the model, whenever the headrd@ cell overlaps the area occupied
by another cell. At this point, the moving cell gt is not permitted to glide on top of
the other cell. As a consequence, at high celsities the movement of individual cells
is reduced. In reality cells do glide over eacheotiiReduction becomes significant above

100 K-S units, because at 100 K-S unit the aveaaga occupied by an individual cell is

14



close to the area of a cell body (i.e., the aredosely packed with cells). In practice, due

to the tendency of cells to cluster, cell movemsmeduced beginning at concentrations

of 60 K-S units. This effect explains the decreamseell flux observed at higher cell

densities (>60 K-S units) for the wild-type in Figu8 (a). The decrease results in a

smaller value of maximum ratio (about 2 fold, seguFe 8 (b)) than experimental data

(about 2 to 2.5 fold).

Ratio of Average Cell Number Flux

Average cell number flux

(A+S+to A+S-)

D
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L . . L . L . L .
20 40 60 80 100 120 140 160 180 200
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(b)

Figure 8. (a) The average cell number flux data from 3uation runs with error bars indicating

standard deviation. The red dots and black squadisate results for wild-type cells and &

mutants respectively. (b) Plot of the ratio ofifigf functions f(x)/g(x) against cell density.
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The swarming of A'S"” mutants

Comparing the three curves of Figure 3 shows glgadt S motility contributes to the
swarming of wild-type (AS') cells. Figure 3 also shows thafSA swarms expand
without help from A maotility, although the rate expansion is less than 1/3 the wild-type
at every cell density. With these data in minduazte takes shape: how are pili able to
support expansion of an'® swarm when there should be no fibrils, to which tipe

IV pili might attach, beyond the edge of the swarrifie surface ahead of the swarm
edge never had cells upon it. Must the belief thktattach to fibrils before they can
retract be abandoned? This section describes @m@tto solve the puzzle by examining
the evidence that pili bind fibrils specificallyy loffering a mechanism whereby specific
binding and retraction can bring about the expansican AS" swarm, and by testing the

mechanism proposed.

Figure 9. Panel A. A scanning EM image of the network bfifs that covers the cell surfaces
and the space between them, from [32]. Slime iser@tent in this image; it appears as part of
the cell's surface seen beneath the fibrils. PBnélhase contrast image of the cell distribution at
the edge of a young 8" swarm that is expanding to the right. Oldé®’Aswarms stop expanding
when their edge becomes smooth and many layers @eepvhite scale bar is 50um long.

Evidence for specific binding includes the obsdorathat AS" cells move only when
they are within a pilus length of another cell [PB]. Figure 9A shows that fibrils are
present in profusion, and that they envelop clgstéradjacent cells. Although only half

of the fibril mass is polysaccharide (the othelf imlprotein [24]), several experiments

16



have revealed that removing the protein has naedie pilus binding [24, 25, 29, 30, 31].
Evidently,M. xanthus pili bind fibril polysaccharide.

Therefore, side-by-side clustersMf xanthus cells, like the peninsulas in Figure 9B, are
viewed as a bundle that is enveloped by an eléistierman’s net formed by association
of polysaccharide fibrils that the cells have seteBundling of cells by fibrils offers an
explanation for the pointed shape, which A-S+ peuligis tend to have. The points aim
away from the swarm center (Figure 9B and [10, ,3a8id in the general direction of
swarm expansion. The shape and orientation of éhepula tips suggest that cells at the
tip of peninsula have been pushed into their pmsist the tip. Consider a cell within the
body of the peninsula that happens to be movingtdwvhe tip of the peninsula. This cell
will have projected its pilus forward and attachietd the fibril network on cells ahead of
it and closer to the tip. Retraction of that pitaild pull the cell forward and upward to
add a new layer of cells to the peninsula. Indesukt peninsulas have a second (or third)
layer near their tips, which are evident in FigB: On other occasions, retraction would
pull the piliated cell right up to the end of aldelthe bottom layer that lies just ahead of
our piliated cell. Recalling the description of Aotility in the Introduction, each cell is
also covered by the slime polysaccharide, whichegte them from autolysis. Since the
network of fibrils that envelops cells of a penilessbundles them, both the elasticity of
the fibrils and the cohesion between the slime dyacent cells would tend to prevent
their separation, by wedging action of the rounded of the pushing cell, from cells to
their left and right in the tip of the peninsuleorGequently, complete retraction of the
pilus would cause the moving cell to push the melhe peninsula that is immediately
ahead of it. The pushed cell might slide forwardiletadhering through its slime
covering to the cells on either side. Localizedislj would be reflected in a sharpening

of the tip contour to a point, as observed (FifiBé.

The hypothesis of pushing by S-motile cells wagetédy analysis of 7 time-lapse
movies of the advancing edges ofSAswarms, each movie of 1 to 3 hours duration.
Figure 9B is a single frame from one of the movlashat frame numerous single cells

and many peninsulas of various sizes are evidaver@l observations relevant t6SA
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swarming could be made from the movies (Key andsé&miunpublished). First, almost
all of the many thousands of cell movements wetedowithin clusters of 10 or more

cells. No isolated cell moved significantly, unlege cell was within pilus-striking

distance of another cell. This shows that the catés moving with S motility alone.

Second, although the peninsulas either elongatesbeed forward, the translocation rate
was much less than the rate of individual cell nmoget in the same field. A lower rate
correlates the peninsula’s advance to its beinghguaisfrom behind, because the
hypothesis has the pushed cell sliding past itghteeirs in the peninsula. The sliding
friction would decrease the rate of advance. Fnalie movies show many examples of
individual cells, which appear to be moving mordess randomly, behind an arrowhead
or a peninsula. Individual cells advancing towadnd tear edge of the peninsula could
have pushed it. A quantitative analysis of cell eroent in the movies will be published

separately, but this qualitative analysis suppoutshing.

Social interactionsresult in higher order of collective motion

In previous sections we have shown that our moaiekécial interactions is consistent
with experimental results at the level of indivitlgells. In this section we investigate
how microscopic social interactions facilitate swarg at population level. We
demonstrate that social interactions lead to areas®e in the order of collective motion,
which is strongly correlated with swarming effioogn We start by introducing an order
parameter to characterize collective motion of é&aat in swarms with complex

clustering patterns.

After analyzing experimental data and taking intocaunt regular reversals of
myxobacteria cells, we define the most orderece stat follows: all cells move side by
side in close contact with each other in the samepposite direction. The collective
motion is considered purely non-ordered when eithree of the following criteria is
satisfied: (1) the orientations of neighboring setif any given cell are random (or
uniformly distributed); (2) any pair of cells is iveeparated so that cells are not in direct

contact.
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Vicsek et al. [34] used the average velocity asoba order parameter for analyzing the
motion of self-propelled particles. However, myxotegia cells reverse regularly and two
opposite directions should be considered as beguivalent to each other. There are
always cells moving in the direction opposite te tiet motion of the whole cluster in
most cell clusters in experimental movies. Alsoshewn in the inset of Figure 2, the
swarming pattern often exhibits localized clustefs aligned cells with different

orientations of motion and one would need to taseall order into account when
measuring global order of motion. Therefore, therage velocity is not the best way of

measuring the nematic order in myxobacteria swarms.

We first define two local measuring componentsésaiibe the local orientational order
and positional order of a given cell, denoted¥aand P respectively. For a given dell

(k=1,2...M, M is the total cell number) we choose thetangular domain (of areg,)

illustrated in Figure 10 as the local measuring dom(one cell length by two cell
lengths), centered at the center of mass of a Wéd.then measure the total area S
occupied by neighboring cells within the local measy domain and define the local
positional order as the following:
P:{SK/SO, it S <(S/2)
g ifS.> 6§, /2)

Local order
measuring
domain

X

Figure 10. Local measuring domain
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We record the orientationd, withj =1,2,..n of the neighboring cells with either head

node of tail node inside the local measuring domira way used in equation (11) in
Methods. Then the angles between these orientataond X-axis in Figure 10
0, withj=1,2,.n, and; 0 [07 are calculated. If celk has no neighbor§<0), we
define¥ as 0. Otherwise, the local orientation order fiancts defined as follows:

D -d

=—_k "0 N
Yo @3
. — o _ Om
with @, = TV, l)n/2 I; p( ‘éz 8 ) 4
I,m=1,..n
— 1 _| Ra/n _ i /n
and CDO_—(n—l)n/Z Zn; expé | é gm ) (5)
I,m=1,..n

@, determines how ordered the distribution &f's is. The most ordered state

corresponds to the case wherfalk are equal and, has a maximum value of ®, is
rescaled to the range of [0, 1]. Therefore, indhge of uniform (random) distribution of

g; the local orientational order functiod, equals to 0. In the most ordered state all

0;’s are equal andV, is equal to 1.

Finally, we combine both the local orientationatl@r and positional order components
from equations (3~5) to define the global orderapzster for the collective motion of
myxobacteria:

M
a=13y, 6
M T
where M is the total number of cells.

The order parameteR2 has been specifically designed for myxobactenahraing.
Figure 11 shows values @ for the simulation ofswarming near colony edge with

initial cell density 50 K-S units. We find that teder of collective motion in both’&"
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and A'S swarms steadily increase and thdSAcells achieve a much higher (about 2-
fold) order than AS cells.
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Figure 11. (a) Plots of the order paramet@ for the simulation of swarming near colony edge
with initial cell density of 50 K-S units. (b) Plof the ratio of global order parameters forSA
and A'S swarms.

Further, we look at the order of cellular motiorthve inner area of myxobacteria colony.
In Figure 12 (a) cells are randomly distributedaisquare area of size 167 microns by
167 microns with a density of 50 K-S units. All malary conditions are periodic. This is
different from the previous simulations for celksan the colony edge, because we do not

assume any more a pre-organized orientation disitoi of cells.

Figures 12 (b) and (c) are the simulation pictafsr 3 hours for AS mutant and wild-

type (A'S") swarms respectively. We see that the pattern’& mutant exhibits lower
order, while wild-type (AS') cells form large clusters oriented in variousediions.

Plots of the parametdl are presented in Figure 12 (d). Again we seettie@brder of

motion in both AS" and A'S cases increase with time, whilé & cells achieve a much
higher order than 25 cells.

Therefore, we demonstratbat social interactions lead to an increase indfder of

collective motion. Type IV pilus-mediated interacts increase the order much greater
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than social interactions associated with A-motilityhis is consistent with the
experimental findings by Pelling et al [35], whosebved higher order patterns within

wild-type (A'S") swarms in comparison with motility mutant swarms.
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Figure 12. Simulations of cell motion deep inside the swagnoolony. (a) Initial random

distribution of cells in a square area of size fé@rons by 167 microns at the density of 50 K-S
units with periodic boundary conditions. (by$Amutant swarm after 3 hours of evolution. (c)
wild-type (A'S") swarm after 3 hours of evolution. (d) Plot of tiiebal order paramete® for

the simulations of wild-type (/") and A'S mutant swarms.

Comparison of Figure 11(b) with the ratio of cellnmber fluxes (Figure 8.b) indicates
that the order of collective motion strongly coateks with the swarming efficiency. We

suggest that higher order of motion results in greswarming rates as observed in wild-
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type myxobacteria experiments. It explains the iorigf the significant difference in
swarming rates between wild-type an8SAmyxobacteria arising from the coupling of S

and motilities.

Discussion

We have developed an off-lattice cell-based contjmutal model to study the role of
social interactions in bacterial swarming. The niadestochastic and it is based on
detailed description of the bacterial motility emgg and their regulation. The model
demonstrates how social interactions facilitatetdréal swarming, and provides an
explanation to the significant difference in swargirates between wild-type and$
mutants arising from the effects of S motility. Guimulations indicate that the order of
collective motion strongly correlates with the smarg efficiency, which provides a
connection between microscopic social interactiam&l population-level swarming
behavior.

The model is two-dimensional and provides a verydgapproximation for the bacterial

behavior near the edge of the swarming populattowever, in experiments at higher
densities cells were observed to glide on top ohesdher, resulting in multiple cell layers

just behind the edge of the swarm. As discussdgesults section, the two-dimensional
nature of our model causes slight decrease inneetiber flux at higher cell densities

(>60 K-S units) for wild-type myxobacteria (Figu8ea), and results in a smaller value of
maximum ratio (about 2 fold, see Figure 8.b) thapeeimental data (about 2 to 2.5 fold).
A three-dimensional extension of the model will @vsuch affects, and allow us to study
cell clustering inside of a swarm as well as duringting body development under

starvation [17, 18].

We did not quantitatively study the motion of mutawith impaired A motility (AS'

mutants) in this paper. As discussed in ResultiosgcA'S' cells only have persistent

active motion when they are within a pilus lengthother cells so that the type IV pili
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can attach to the fibril materials on the surfacksther cells 33]. Wild-type and AS
mutant both have A-motility that can produce péesis active motion. The only
difference between wild-type and"®& mutant is the effects of S motility, so it is more
convenient to take wild-type and"& mutant as the modeling systems. By comparing
their movements, we could investigate the roleilofsgcell interactions during swarming,
which was one of our aims. In Results we have prtesea qualitative analysis of &
swarming, which demonstrated that the pushing df geear the swarming edge can
explain the expansion of ‘& swarms. Preliminary simulations with the pushing
mechanism show qualitative agreement with experinmeterms of peninsula shape and
cell ordering (data not shown). Quantitative mauglof AS" swarming dynamics will

require more knowledge of the distribution and naeatal properties of the fibril.

When studying the effects of social interactions,have related the swarming efficiency
with the order of collective motion. This may prdeia novel perspective on quantifying
the condition of bacterial swarming. Further expemtal investigation of this concept

will rely on advances in microscope and image psicgy of microphotographs. Such
experiments require very-high-resolution imagingttban cover large areas of a live
bacterial colony [36]. We defined an appropriatdeniparameter, which characterizes the
combined local orientational and positional ordédot limited to the case of

myxobacteria swarming, the order parameter provaleguantitative measurement of
collective motion in nematic biological systems weniocal interactions play a dominant

role.

We have shown that social interactions mediatedypg IV pili, when coupled with
active motion, have an alignment effect on neighmgpcells and significantly facilitate
swarming. Many pathogenic bacteria swarm withieabéd tissues and have type IV pili
as virulence factors. It is likely that the ascehProteus mirabilis up the urinary tract is a
result of growth and swarming with flagella [37]mdarly the spreading of Neisseria in
infected tissue is related to swarming with typepil\f since those pili are necessary for
virulence [38]. The bacterial swarming model ddsedliin the paper may therefore shed

light on the colonization and infection procesgpathogens.
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M ethods

Modeling the cell body
In the model each cell is represented by a flexslrieg of nodes (Figure 4) consisting of
(N-1) segments, each of length r. There are (Ni)les 6; between neighboring

segments. For each cell we define the followinggnéunction (Hamiltonian):

N_

1 N-2
H :ZKb(ri _ro)2+ZKe‘9i2 (
i=0 i=0

The first term in equation (7) is the stretchingmyy determined by the cells’ length. The

second term is a bending enerdgy, and K, are stretching and bending dimensionless

coefficients, analogous to the spring constantdHaoke’'s Law. They determine the
extent to which the segment length and angles lbange in the presence of fluctuations,

respectively. They are the same for all segmentdsaayles.r, is the target length of a
segment. In our simulations we choose the numbaondés N=3 (Figure 4), so thgts
2.5 microns (half cell length)K, and K, are set at 5 and 2, based on experimental

observation that cells do not change their lendtt but can bend rather easily.
Modeling cell movement and social interactions

Let’s denote the dark cell in the center of Figtras cellk. In the absence of cell-cell
collisions, the velocity direction of cétlis determined by three contributions: A-motility

direction, orientation from slime trail and orieti@ from type IV pili.

A motility direction. The cells secrete slime (polysaccaride) from thalrend, which
expands as it leaves the cell body and pusheselhdicectly forward [12]. We model
this motility by trying to orient the cell alongsitlong axis, which is the tail-to-head

direction. Corresponding term in formulae belowlémnoted a§\<. Small deviations from
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the direction of long axis are observed [10]. Thlismodeled using a Monte Carlo

reconfiguration algorithm.

Orientation from dslime trail. When a moving cell encounters a slime trail, itdemo
turn through an acute angle to follow the trail. \Wefine a two-dimensional slime-

orientation vector fieldlime(i") which records the slime trail orientation as ateec

assigned to each positibn This vector coincides with orientation of a celatlpassed
throught most recently. We make a simplifying assumptioralbforientation vectors
having unit length. Once a slime trail is laid doampositionr, it will be cleared after

the slime aging timeJ

Orientation from type IV pili. As discussed earlier in section “Model of cell &elbr
and social interactions’type IV pilus-mediated interactions are assumedalign
neighboring cells. For a particular ck&|]lwe average the orientations of its neighboring
cells within the pilus-cell interacting area (Figub, Area 1), and define this averaged

direction as the contribution of pilus-mediatecenactions to the head velocity direction

of cellk. This term is denoted &s.

Cell velocity direction. When there are no collisions between éedind its neighbors,

the direction of its head velocity (denoted\a$r,,)) is determined by the sum of A-
motility direction, orientation from slime trail drorientation from type IV pili:
L A + B Elimer)+yS, . \
V,(7,) = C LA ASIMAn) * /I8, @

a (A, + BL8lime(r,) +y (8]

o (rko_rk(N-l)) )

=0 ; (9, A-motility direction)
‘(rko - rk(N—l))‘

- <cosf >et< sing >e
S =n L — b (10, @entation from type IV pili
<CosY, > e+ < sing, > e
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In equation (8) C is a constant cell speed (4 mistminute);a, p andy are parameters
representing the relative strength of each motiiggm. Denominators are used in all
equations for normalization . The experiments saggeat the forces generated from A
and S motility are nearly the same, approximat&@ gN [9, 12]. For an 2" cell we
choosen=y=1.0 and for an AS mutant we choose=1.0 andy=0. The strength of slime
orientation effect is set g5-0.5. Note that the slime-orientation vector figlthe(r) is
recorded in a discrete two-dimensional lattice hdattice site having a slime-orientation
vector. Slime trails interact with the newly seeceslime, not with the head of a cell. We
analyze slime-orientation vectors at the lattidessicovered by the front half of a cell
body, and take the direction, which occurs mogjdently, as slime-orientation direction
to be followed by the cell. It is denoted sliame(F, ) in equation (8).

Equation (9) determines cell orientation, whiclthis direction from the tail nodemN_l))

to the head nodef],) and which is considered as the A-motility direnti In the

equation (10N denotes the total number of neighboring cellshef ¢ellk. We multiply
the expression by the factor mbecause we think that type IV pili have a strorgfésct
on the direction of motion of the head node (p# kbcated at the head of a cell) and that

this effect depends on the number of neighboririg.cBermscosd, andsing, are thex
andy components of the orientation vecté[ of the j-th neighboring cellThese vector
components are then averagedcpsd; > and<sing, >) and are taken as theandy
components of the average directien.and _éy denote unit vectors alongandy axis.

We model the alignment in such a way that cellerarwith their neighbors to the acute
angle. That is, if the dot product of the tail-tead directions of celk and its j-th

neighbor cell is negative, we choose opposite tioe¢o Aj as its orientation. Therefore,

we have:

_(Ajl(’ Sirﬂj:_(&‘jz,;
A ), sig, = @, ). (11

If A+ A <0, cosb,
If A A,

>0, cosej
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This approach is different from that taken by Vicset al [34]. The alignment is
determined through acute angles because we usergatitations instead of velocity

directions.

Collison-resolving algorithm. When the head node of céllcollides with the body of
cellj, this collision is resolved as follows:
1. Calculate distances between the head node dk eelll two end nodes of c¢ll
2. If one of these distances is less then a cell widttoose at random a new
direction such that dot product of new directiorceli k and orientation of cejlis
positive, and move;
3. Else take the average direction of both celésdj as the new direction and stall
until next time step. (The same method is usethénabove alignment algorithm

of type IV pilus-mediated interactions.)

Reversal of gliding direction. Each myxobacterial cell reverses its gliding dikact
every 10 minutes or so. (Reversal periods of mygte follow a distribution with an
average of about 10 minutes.) For simplicity, weoade the reversal periods in
accordance with binomial distribution from 5 minut® 15 minutes [39]. Each cell is
assigned an inner reversal clock and a “countdr& ihitial values of the clock “counter”
are assigned at random. At each time step of alaiion, the value of “counter”
increases by a unit of time. Cell reverses whenwvtidae of its “counter” reaches the

value of the reversal period and the “counter&iset to zero.

Simulation of swarming near the colony edge

Simulation setup. The simulation domain is chosen in the form aanegke 200 microns
by 200 microns (Figure 6)n simulations a unit of length is equal to 1/6 mitand one
time step is equal to 1/5 minute so that the ing&l length (5 microns) is equal to 30

units of length and cell width (0.5 micron) is 3itsn As mentioned in the text, we
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approximate that myxobacteria move at the consipaed of 4 microns per minute so

that in the simulations a cell moves a distance whits each time step.

Initially cells are distributed within the “Initighrea of Cells” (see Figure 6). Cell centers
are distributed at random, but cell orientatiorss @istributed around the radial direction

in accordance with the normalized distribution fimef(x) with a peak atrz/ 2)

f(x) = (7/2)° Jx(r-x) ¢

From experimental observations it follows that eadly rate of swarm expansion is
reached only when most cells behind the swarm edgeat themselves outwards along
the radial direction. Ideally, one would need toa$e the initial orientation distribution
f(x) according to the experimental data measured didfgmning of the steady swarming.
However, due to the lack of such data, we seleetitfitial orientation distribution
function f(x) in such a form that most cells initially point watrds from the swarming
edge. Cell growth and division are included in owwrdel as maintaining the average
density in the simulation domain near the edge.

Algorithm implementation. At each time step we implement the following seaeecof
operations for each cell:

(1) Check the “counter” of inner reversal clock atetide whether to reverse polarity
of the cell or not. Then calculate the velocityediion of the head node according to
the model for motility systems. If no collision ars, move the head node at a
distance of 5 units; otherwise use the collisicspheing algorithm to resolve the
collision.

(2) Apply Monte Carlo algorithm to re-configureetipositions of other nodes of the
cell. Use procedure used in [20]. After moving thead node to a new position,
repeat the following operations for (integer par2dbN) number of steps (N is the
number of nodes per cell):

(). Choose nodeat random and move it in the direction from notie node(i-1)
at a distance of 5 unit lengths;
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(ii). Calculate the energy changé= due to the relative position change of the
nodes. Use Metropolis algorithm [21] to determine &cceptance probability for

the positional change of a node:

1, ifAE<O;

P(AE) = I
(A5) {e‘AE’”, if AE >0 (

(3) Record slime-orientation vectors in the end of individecell movement at all

positions passed through by the cell.

After all cells move, calculate the cell number flux throdiga boundary into the free
space and add the same number of cells into the initaltardeeep the cell number in the

“Initial Area of Cells” constant. Table 1 provides valuésnodeling parameters.
Appendix
Parameter rangesfor the model of dimetrail and sime guidance

Our model depends on two parameters characterizingegiep of the slime trail: the
slime aging time J and the relative strength of slime guidance. In this seatien
describe simulation results for different ranges of tipgsameters to test the robustness
of the model.

The slime aging time (Ts) is defined as the lifetime dfmaestrail during which it has the
ability to guide the motion of a bacteria. We used a valu€®fminutes in our
simulations. In the following figure (Figure 13), we simuldte swarming of wild-type
and A'S mutant at the density of 50 KS unit (the same simulatdmpsas in Figure 7),
and varied Ts from 10 minutes to 200 minutes (the whoie span of the swarming
simulations). We make linear fits for the data points and tlradl the value of Ts has

little effect on simulation results (the cell number fluxiisTis because slime guidance is
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primarily a local effect, and slime trails will be washed bytother cell’s slime at short
times when the cell density is high. Therefore, the paemies is quite robust for the

results in Figure 8(b), which is the main validation of model.
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Figure 13. The dependence of cell number flux on the slimagtime.

The relative strength of slime guidance is modeled by #ranpeterl in equation (8).
We used a value of 0.5 in the simulations (see Methbldse we varie@ from O to 1.5,
and calculate the cell number flux in swarms of wild-tgmel AS mutant type at the
density of 50 KS unit (the same simulation setup asgarEi7). The simulation data is
plotted in Figure 14 along with the linear fits. We find thatthe slime guidance effect
gets stronger, the cell number flux increases. It inceealightly faster in case of &
mutants than in case of wild-type cells, with the slopeag6i33 and 0.19 for /&
mutant and wild-type cells respectively. This result sutggdet as the effect of slime
guidance gets stronger, the local alignment of cellstlaa@rder of collective motion are
both increased. However, this does not affect thelteegn Figure 8(b) much, since the
increase of cell number flux in case ofS\mutants is only slightly faster than that in
case of wild-type cells. The ratio of two fitting functionsneens bigger than 2-fold till
=18.5. This demonstrates robustness of our model megpect to theelative slime

strength(see Figure 8(b)).
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Figure 14. The dependence of cell number flux on the relatlirae strength.

Acknowledgments

The authors would like to thank Nan Chen, Gennady Margnd Matthew Rissler for

helpful discussions.

Author contributions. DK formulated biological questions and provided experimenta
data. MA, YW and YJ designed the off-lattice stochastiodel. YW performed
simulations and, with MA, YJ and DK, interpreted the resoft¢/, MA, YJ and DK

wrote the paper.

Funding. MA and YW acknowledge support from the National Sceerundation
CCF-0622940. YJ was supported by the U.S. Departmeiiinergy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA263DK was supported by

GMO023441 from the National Institute of General MedicaéBces.

Competing interests. The authors declare that no competing interests exist.

32



References

1. Singleton P, Sainsbury D (2001) Dictionary of miwotogy and molecular biology.
Wiley, Chichester, UK.

2. Harshey RM (1994) Bees aren't the only ones: ri@img in Gram-negative bacteria.
Mol Microbiol 13:389-394.

3. Yu R, Kaiser D (2007) Gliding motility and polarized slirsecretion Molecular.
Microbiol 63:454-467.

4. Mattick J (2002) Type IV Pili and Twitching Motility. Awn Rev Microbiol 56:289-
314.

5. Shi W, Sun H (2002) Type IV pilus-dependent motilityd ats possible role in
bacterial pathogenesis. Infect Immun 70:1-4.

6. Helbing D (2001) Traffic and related self-driven wygarticle systems. Rev. Mod.
Phys. 73: 1067 — 1141

7. Czirok A, Ben-Jacob E, Cohen I, Vicsek T (19g6ymation of complex bacterial
colonies via self-generated vortices. Phys. Rev. E 54781-1801.

8. Ben-Jacob E, Cohen |, Levine H (2000) Cooperatiedf-asganization of
microorganisms. Adv Phys 49: 395-554

9. Kaiser D (2003) Coupling Cell Movement to Multicellulare\i2lopment in
Myxobacteria. Nature Reviews Microbiology 1:45-54

10. Kaiser D, Crosby C (1983) Cell movement and itsrdioation in swarms of
Myxococcus xanthus. Cell Motility 3:227-245

33



11. Hodgkin J, Kaiser D (1979) Genetics of gliding motility Myxococcus xanthus
(Myxobacterales): two gene systems control movement. G Genet 171: 177-
191.

12. Wolgemuth C, Hoiczyk E, Kaiser D, Oster G (200@nwHMyxobacteria Glide. Curr
Biol 12:369-377

13. Blackhart BD, Zusman D (1985) Frizzy genedgkococcus xanthus are involved in
control of frequency of reversal of gliding motility. Pro@atNAcad Sci USA 82:
8767-8770.

14. Welch R, Kaiser D (2001) Cell behavior in traveling wpatierns of myxobacteria.
Proc Natl Acad Sci USA 98: 14907-14912.

15. Kaiser, D (2007) Bacterial swarming, a re-exanonabf cell movement patterns.
Current Biology 17:R561-R570.

16. Astling DP, Lee JY, Zusman DR (2006) Differentiafeefs of chemoreceptor
methylation-domain mutations on swarming and developimethie social bacterium

Myxococcus xanthus. Molecular Microbiology 59: 45-55.
17. Sozinova O, Jiang Y, Kaiser D, Alber M (2005) ArdéDimensional Model of
Myxobacterial Aggregation by Contact-mediated Inteomst. Proc Natl Acad Sci

USA 102: 11308-11312.

18. Sozinova O, Jiang Y, Kaiser D, Alber M (2006) ArdéDimensional Model of
Fruiting Body Formation. Proc Natl Acad Sci USA 103: 15-252509.

19. Gallegos A, Mazzag B, Mogilner A (2006) Two contimumodels for the spreading
of myxobacteria swarms. Bull Math Biol 68: 837-861.

34



20. Wu YL, Chen N, Rissler M, Jiang Y, Kaiser D, Alladr (2006) CA Models of
Myxobacteria Swarming. El Yacoubi S, Chopard B, andd#anS (Eds.): ACRI
2006, LNCS 4173, Springer-Verlag Berlin Heidelberg. 1§2-203.

21. Newman M E J, Barkema GT (1999) Monte Carlo Mdgin Statistical Physics.

Clarendon Press, Oxford.

22. Spormann AM, Kaiser D (1995) Gliding movementsMgxococcus xanthus. J
Bacteriol 177:5846-5852.

23. Skerker J, Berg H (2001) Direct observation of esttenand retraction of type IV
pili. Proc Natl Acad Sci USA 98: 6901-6904.

24. Behmlander RM, Dworkin M (1994) Biochemical and cinial analyses of the

extracellular matrix fibrils oMyxococcus xanthus. J Bacteriol 176:6295-303

25. Behmlander RM, Dworkin M (1994) Integral proteinstioé extracellular matrix
fibrils of Myxococcus xanthus. J Bacteriol 176:6304-11

26. Peruani F, Deutsch A, Bar M (2006) Nonequilibriunstdung of self-propelled rods.
Phys Rev E 74: 030904(R)

27. Nudleman E, Kaiser D (2004) Pulling Together with&yg Pili. J Mol Microbiol
Biotechnol 7: 52-62.

28. Kaiser AD (1979) Social gliding is correlated with thegence of pili ifMyxococcus
xanthus. Proc Natl Acad Sci USA 76952-5956.

29. Behmlander RM, Dworkin M (1991) Extracellular fibrilsdacontact-mediated cell

interactions in Myxococcus xanthus. J Bacteriol 173: 7814478

35



30. Li Y, Sun H, Ma X, Lu A, Lux R, Zusman D, andiSN. (2003) Extracellular
polysaccharides mediate pilus retractin during social motfitMyxococcus xanthus.
Proc Nat Acad Sci USA 100: 5443-5448.

31. Lu A, Cho K, Black WP, Duan XY, Lux R, Yang Zaglan HB, Zusman DR, Shi W.
(2005) Exopolysaccharide biosynthesis genes requfed social motility in
Myxococcus xanthus. Mol Microbiol 55:206-220.

32. Igoshin, OA, Kaiser, D, Oster, G (2004) Breakinqsyetry in myxobacteria. Curr
Biol 14: 459-462.

33. Wall, D, Kaiser D (1999) Type IV pili and cell motilityM{croReview). Mol
Microbiol 32: 1-10.

34. Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochg1995) Novel Type of Phase
Transition in a System of Self-Driven Particles. Phys Retv 75: 1226-1229.

35. Pelling AE, Li Y, Cross SE, Castaneda S, Shi W, Zeiwski JK (2006) Self-
organized and highly ordered domain structures withimrsws of Myxococcus
xanthus. Cell Motil Cytoskeleton 63: 141-148

36. Pelling, AE, Li Y, Shi W, Gimzewski JK (2005) Nanakx Visualization and
Characterization oMyxococcus xanthus Cells with Atomic Force Microscopy. Proc
Natl Acad Sci USA 102: 6484-6489.

37. Allison C, Emody L, Coleman N, Hughes C (1994) Toée of swarm cell
differentiation and multicellular migration in the uropathoigdy of Proteus
mirabilis. J Infect Dis 169: 1155-1158.

38. Carbonnelle E, Helaine S, Nassif X, Pelicic V (908&ystematic genetic analysis in
Neisseria meningitidis defines the Pil proteins required feerably, functionality,

stabilization and export of type IV pili. Mol Microbiol 61: 131522.

36



39. Jelsbak L, Sggaard-Andersen L (1999) The cefhserassociated intercellular C-
signal induces behavioral changes in individigixococcus xanthus cells during
fruiting body morphogenesis. Proc Natl Acad Sci USA @R3155036. (Table 1).

Parameter descriptior

Parameter values

Notes

Target length of cell
body

30 unit lengths

Actual cell length is

about 5 microns

Number of nodes per N=3
cell
Cell width 3 unit lengths Actual cell width is

about 0.5 micron

times temperature

Stretching and bending K,=5 Equation (7),

coefficients K. =2 Dimensionless
R

Boltzmann constant KT =2 Equation (13),

Dimensionless

Relative strength of

motility terms

a=108=05,y=10
(A'S") or 0 (A'S)

Equation (8)

Magnitude of head
velocity

C=5.0 unit lengths

Equation (8)

Slime aging time

4= 20 minutes (100

simulation time steps)

Table 1. Parameter values used in the simulations.
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