
A method to bridge different-level coarse-grained models by

estimating free energies of high-dimensional conformations:

jump-in-sample simulations

Xin Zhou ∗,1, 2 Yi Jiang †,2 Arthur F. Voter,2 Steen Rasmussen,1 and Hans Ziock1

1Earth and Environmental Science Division,

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

2Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(Dated: November 13, 2007)

Abstract

We present an efficient algorithm, which uses a random jumping walk in the sample of coarse-

grained (CG) conformational spaces, to bridge CG models of different levels. The method it-

eratively estimates the free energies of these high-dimensional CG conformations. The effective

potential of the CG model is fitted from the free energies. The method can be used to construct

CG models, as well as to evaluate and correct any exsiting CG models. We test the method in a

Tetrahedral Molecular fluid to evaluate the exiting CG molecular model and to construct the inter-

molecular effective potential. This method not only works more efficiently than the Wang-Landau

algorithm for calculating the desity of state or free energy, but also can work in high-dimensional

spaces where the existing methods fail.
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I. INTRODUCTION

Computational simulations including Monte Carlo (MC) and molecular dynamics (MD)

simulations are standard tools for providing equilibrium and dynamical properties of systems

in materials science, chemistry, physics and biology. The fundamental limitation of these

simulations is that the accessible time and spatial scales are too small to study many inter-

esting macroscopic phenomena and processes. Recent attempts to overcome this limitation

include the enhanced sampling techniques [1–9] for achieving more complete equilibrium

samples, the slow-dynamic techniques [10–15] for long-time kinetics or dynamics, and many

kinds of multiscale methods [16–21] for studying large-spatial (sometimes also large-time)

properties. The coarse-graining method, which averages some degrees of freedom of the orig-

inal system, is one of the multiscale techniques. For example, in the simulations of polymers,

some bonded atoms map be mapped into superatoms that interact through an effective po-

tential [18, 22–27], such that larger systems can be simulated. This coarse-graining method

by lumping atoms is found to not only quantitatively reproduce the equilibrium properties

of the polymers, but also qualitatively (even semi-quantitatively) reproduce the kinetics

and/or dynamics of the original systems.

The coarse-graining method can be formally described as follows. We have an origi-

nal atomic system with N atoms, whose potential energy is V (RN), and RN is the 3N -

dimensional conformation vector. By lumping some of the atoms into superatoms, we have

a coarse-grained (CG) model with n superatoms, n < N . The CG model has an effective

potential Veff (X
n) in a CG-variable space Xn, where Xn is the 3n−dimensional conforma-

tion vector. The position of a superatom is usually defined as the position of the center of

mass of the corresponding groups of atoms, Xi = 1
Mi

∑

α miαRiα, where Mi =
∑

α miα, miα

and Riα are the mass and position of the αth atom of the ith superatom, respectively. Thus,

the original atomic conformation RN can be rewritten as the CG conformation Xn and the

remaining coordinates YN−n under a linear transformation. The CG variables x and the

corresponding effective potential Veff(x) form a complete CG model of the original system.

To reproduce the thermodynamics of the original system, the effective potential should be

equal to the Landau free energy F (x),

F (x) = −kBT ln

∫

d re−βV (r)δ(x − x(r)), (1)

where β = 1/(kBT ). However, F (x) is often hard to obtain in the 3n-dimensional space x, if
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n is large. Carnonically, we presume some formula for the effective potential with a few free

parameters, then determine these parameters by requiring that the CG model reproduces

some important thermodynamic properties of the original system. The most commonly

used thermodynamic perperties are the eqation of states, and the radial distribution func-

tion (RDF). These properties of the original system can be obtained either from atomisitic

simulations of the original system or from experiments.

We aim to improve this method for generating the effective potentials of the CG models

for the following reasons. (1) The choice of the thermodynamic properties is arbitrary.

Usually, only a few properties are used in the construction of the CG models, thus the

fitted effective potentials depend on the particular choice. (2) These fitted properties are

the result of macroscopic (i.e. ensemble) averaging. Thus the effective potential might not

correctly reproduce the microscopic distribution of the corresponding physical variables. (3)

These thermodynamic properties result mainly from important (stable) conformations, the

CG model might not characterize interesting transition regions. In principle, we do not

expect the CG models to reproduce exactly the kinetics or dynamics of the original systems.

However, we hope that the constructed CG models can detect the kinetics or dynamics at

least qualitatively. (4) There is as yet no general method to evaluate and refine the CG

models.

In the paper, we present a Monte Carlo method, the jump-in-sample (JIS) method, to

bridge different-levels of CG models. The method can efficiently calculate the free energies

of any high-dimensional samples over very large free-energy range. By fitting the effective

potential from these free energies, we can construct the CG model from the original system

or the CG models with finer resolution. The JIS method can evaluate the CG model and

refine the results of the CG model. We test the method in both a low-dimensional (1D)

system and a high-dimensional tetrahedral molecular liquid.

II. THEORIES AND METHODS

A. Free Energies in High-Dimesional CG Space

Take any sample of the CG model, {xi}, i = 1, · · ·M , where each xi is a conformation of

the 3n-dimensional CG space. No matter what distribution the sample satisfies, it is possible
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to organize a MC random walk in accordance with the standard Metropolis algorithm to

calculate their free energies, F (xi). Recall that the original conformation RN can be divided

into the CG conformation x and the reminaing coordinates y. Two types of MC steps

could occur: (1) random-walk in y with the fixed xi, with the standard acceptance criterion:

acc(xi, y → y′) = min(1, exp{−β[V (xi, y′) − V (xi, y)]}); (2) jump from xi to xj with fixed

y. The acceptance probability of the jump transition is

acc((xi, y) → (xj , y)) = (2)

min(1, exp{−β[(V (xj , y) − V (xi, y)) − (Uj − Ui)]}).

Here V (x, y) is the potential of the original system, and Ui is the potential defined in the CG

sample space {xi}. The initial conformation is randomly chosen from {xi} and a random y.

In the simulation, the probability of visits in a sample space (i.e. the visit histogram) is,

pi ∝ exp{−β[F (xi) − Ui]}, thus we have the free energy of xi

F (xi) = Ui − kBT ln pi + const. (3)

In principle, F (xi) is independent of the choice of Ui. In practice, however, the free energies

from different samples may be very different, thus finite-length simulation might not be

enough to get a good estimate of F (xi) because of the exponential dependence of pi on

F (xi). To improve this situation, we can choose Ui such that all pi are in the similar order.

For example, if we choose Ui = F (xi), all conformations in the sample will be visited equally,

and pi will be completely flat. But since F (xi) is unknown, we will gradually and iteratively

adjust Ui to make pi flat, so that all xi can be visited enough times and that F (xi) can be

well estimated. We call this method, a random jump in sample conbined with an iterative

method for estimating the free energy, jump-in-sample (or JIS) method.

Many methods can be used to determine Ui. In the beginning of the simulations, we can

choose a simple initial Ui, e.g., Ui ≡ 0, and then iteratively improve the choice. We first run a

segment of simulation to collect the histogram of the visited states, pi. We then increase Ui by

δV = −kBT ln pi for all nonzero pi. Under the new Ui, we run a new segment of simulation,

collect the histogram, and update Ui. Repeat this process, the histogram pi will become

flatter and flatter. We will have an acceptable Ui when the flatness of pi is acceptable. This

iterative method to determine Ui has already been used in the generalized hyperdynamics

to capture the slow dynamics of entropy-dominated systems [14]. Here, because our aim is
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to improve sampling and not to keep dynamical information, we can adjust Ui with more

flexibility. We can run a segment of simulation and decrease Ui by a positive δV after each

trial jump (or even after a few trial jumps). When a trial jump from xi to xj is accepted, we

decrease Uj by δV ; otherwise, we decrease Ui by δV . Repeat this process till the histogram

is flat. This algorithm is similar to both the Wang-Landau algorithm [28, 29] for calculating

the density of state in the energy space and the metadynamics method [6] for calculating

the free energy in low-dimensional collective-variable space. While both these methods only

work in low-dimension spaces, our JIS method can calculate the free energies of any sample

points in high-dimensional spaces.

Similar to the Wang-Landau algorithm [28], in the JIS simulation, we first use a large

δV , e.g. 1kBT, in order to quickly visit all conformations xi. If some conformations xi

are never visited even in a very long simulation under a large δV , the free energies of these

conformations must be far larger than that of others and than the range we are interested in.

We simply discard these conformations that are useless in the construction of our CG model.

When all the relevant xi are visited sufficiently and we have collected a reasonable histogram,

we terminate the short run and decrease the δV to, e.g. δV/4, and repeat the process. In the

standard Wang-Landau algorithm, δV keeps decreasing as the iteration proceeds until δV

approaches zero ( 10−8kBT), when the simulation is terminated and the final Ui corresponds

to the free energies F (xi). This method takes increasingly long simulation time for each

iteration and the last few iterations are the bottleneck. In our simulations, after a few

beginning Wang-Landau-like strages by using some larger δV (e. g. δV = 1, 1/4, 1/16

or 1/64 of kBT), we then run segments of normal MC simulations under the fixed Ui and

update the free energy F (xi) by using δV = −kBT ln pi after each segment of simulation.

This updating scheme is more efficient than the standard Wang-Landau algorithm [30]. More

importantly, it satisfies the detailed-balance condition. Our algorithm does not require that

the final histogram pi be very flat unlike the Wang-Landau method. We use a more relaxed

criterion to determine the end of the simulation: the minimal histogram pmin is larger than

a preselected threshold pc = 5 ∼ 100. This criterion significantly reduces the simulation

time.

The simulation efficiency depends on the acceptance probability of the jump between

sample points. In some cases, the acceptance probability of the jump move (xi, y) → (xj , y)

may be very low. For example, when a jump from (xi, y) to (xj , y) occurs, we change the
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positions of the centers-of-mass of superatoms (xi to xj) while keeping y, the relative co-

ordinates of atoms to the centers of mass of their corresponding superatoms, unchanged.

Some atoms from different superatoms might overlap and the conformation has to be dis-

carded. The Wang-Landau algorithm can not work for these cases because of the strong

corrleation between the successive conformations [30]. Our JIS scheme avoids the difficulties

of Wang-Landau algorithm by updating Ui after each a segment of simulation rather than

each simulation step. However, if the acceptance probability is too small, the current JIS

method would require too long simulations to be practical. We can further refine the JIS

to overcome this difficulty. For example, we can use intermediate potentials to increase the

acceptance probability of the jump move. An intermediate potential is defined as:

V (x, y; α) = Vintra(y) + αVinter(x, y), (4)

with 0 ≤ α ≤ 1. Here Vintra(y) is the intra-superatom potential, which depends only on

the relative coordinates of atoms y; Vinter(x, y) is the inter-superatom interaction. α = 1

corresponds to the original system. The acceptance probability of jumps increases as α

decreases. An extreme case is when α = 0, all jumps will be accepted. With this intermediate

potential, the free energy becomes

F (xi) = Ui − kBT ln Z(xi; α) + const, (5)

where

Z(xi; α) =

ni
∑

k=1

exp{−β(1 − α)Vinter(x
i, yk)}. (6)

Here ni is the total number of conformations in x = xi. Since smaller α brings larger statistic

errors of free energies, we adjust α until getting enough acceptance probability and smaller

statistic errors in special systems.

B. Effective Potential

To better characterize the complete free energy surface F (x), we need to calculate the free

energies of a large sample {xi}. We can divide the large sample into several sub-samples, and

independently (i.e parallelly) calculate the free energies in each sub-sample. The arbitrary

constant from each sub-sample can be determined by an additional calculation that includes
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at least one sample point from each sub-sample. Thus, the final free energies in the large

sample can be determined with only one arbitrary constant. This subdivision is very useful

when the size of the sample is very large.

Obviously, the choice of sample will affect the effective potential. In general, a good

sample should consist of conformations that effectively cover all the important regions of

the conformational space. When our initial sample is from a finite-length simulation of the

original system, it is often not good enough because the simulation might only cover part

of the stable regions. Some recent techniques for enhanced conformational sampling, such

as the parallel tempering method [31], can be used to generate better samples. In addition,

because the sample is not required to satisfy any particular distribution, we can collect

conformations from many simulations under different conditions in order to better cover

interesting conformational space.

Once we have the free energy of the sample, we can derive the effective potential of the

CG model. In a CG model with identical superatoms, the effective potential is typically

assumed to be a pair-wise additive interaction,

Veff(x) = 2πρn

∫

z2g(z; x)u(z)dz, (7)

where ρ is the number density of superatoms, n is the number of superatoms, and u(z) is the

pair-wise interaction at the inter-superatomic distance z; g(z; x) is the radial distribution

function (RDF) of the CG conformation x. Thus, it is straight forward to fit the interaction

potential function u(z) by minimize the cost functional,

f [u(z)] =
∑

i

[F (xi) − F0 − 2πρn

∫

z2g(z; xi)u(z)dz]2, (8)

where the constant F0 is also a fitting parameter. The residual variance of the fitting can

be used to evaluate the assumption of the pair interaction. if the variance is too large, we

know it is necessary to add multi-body interactions.

C. Refinement of CG models

Canonically, thermodynamic properties are calculated from the ensemble average of the

corresponding microscopic variables. A standard MC or MD simulation generates an equi-
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librium sample, thus the ensemble average can be replaced by the sample average,

〈A〉 =

∫

drA(r) exp[−βV (r)]
∫

dr exp[−βV (r)]

=
1

M

∑

i

A(ri), (9)

where M is the size of sample {ri}, A(r) is the macroscopic variable A as a function of

conformation r. If we have an equilibrium sample {ri
0} of another potential surface V0(r),

the ensemble average of the original system should be calculated by a reweighting process,

〈A〉 =

∑

i A(ri
0)w(ri

0)
∑

i w(ri
0)

, (10)

where the weight factor, w(ri
0) ∝ exp{β[V0(r

i
0) − V (ri

0)]}.

This means that we can use a cheap potential V0(r) to replace the original expensive

potential V (r) and gain significant speedup. For example, if we run simulation M steps in

V (r), we need to calculate V (r) at each step. However, these M calculations only generate

M/m sample points, because we take one sample point every m = 100−1000 steps to ensure

that the conformations are uncorrelated. If we simualte in V0 for M steps, we will generate

M/m sample points that can be used to calculate M/m potential V (r), from which we will

calculate the weight factors. Then using Eq. 10, we reproduce the ensemble average. If

the computed cost of V0 is negligible in comparison with that of V (r), we achieve almost

m-times speedup.

This result can be expanded to reweight CG sample. We only need to change the weight

factor to

w(xi) ∝ exp{β[Veff(x
i) − F (xi)]}, (11)

where F (xi) and Veff(x
i) are the free energy and the effective potential in the equilibrium

sample {xi}, respectively. We can use this weight factor to evaluate the effective potential.

For example, if we are given a CG model with the effective potential Veff , we can generate

a CG sample to calculate the ensemble average of any function A(x) to compare with that

from the original system. Alternatively, we can also compute the free energy using the CG

sample, then evaluate the effective potential by looking at the weight factor. The larger is

the fluctuation of the weight factor, the worse is the CG effective potential in representing

the original system. Thus, we can correct the results of any CG model by calculating the
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weighting factors. The fluctuation of the weight factors measures the quality of the CG

model.

Besides the direct reweighting correction, it is also possible to refine the CG sample by

a refined JIS simulation. The refined simulation is similarly organized into two types of

MC random walk: local y displacement and the jump among the CG sample {xi}. The

acceptance probability of the jump is,

acc((xi, y) → (xj , y)) = min(1, exp{−β[V (xj, y) − V (xi, y) − Veff(x
j) + Veff(x

i))]}). (12)

An important difference between the current refined simulation and the calculation of free

energies is that Veff (x) is fixed to be the effective potential of the CG model, rather than the

arbitrary adjust parameters Ui in Eq.(3). In other word, the refined simulation generates an

equilibrium sample of the original system V (x, y) from an CG sample of the special effective

potential Veff(x). This equilibrium sample can be used to measure the difference between

the CG model and the original system. However, the refined simulation does not generate

new CG conformations, so its results are usually similar to the direct reweighting correction.

We can further improve the refined simulation by relaxing x to the neighborhood of the

CG sample {xi}. The generated sample in the x−relaxed refined simulation satisfies the

equilibrium distribution of the original system V (x, y). An advantage of the x−relaxed re-

fined simulation is the correlation between the successive generated conformations is usually

small due to the jumping. Two types MC steps are (1) locally displace both x and y, and

(2) jump x from the neighborhood of one sample point to that of another. The accepted

probability of the two types MC steps can be written in a single formula,

acc((x, y) → (x′, y′); i, j) = min
(

1, exp{−β[V (x′, y′) − V0(x
j) − V (x, y) + V0(x

i))]}
)

, (13)

where a jumping move is related to a randomly chosen index pair (i, j) with i 6= j, the new

CG cooridnates is calculated from x′ = x + xj − xi. The local displacement corresponds to

i = j. More details of the x−relaxed simulations will appear elsewhere.
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III. RESULTS

A. Single Diatomic Moleucle in 1D Double-Well Potential

To illustrate our JIS method, we consider a simplest model: one two-atom molecule in

a 1D double-well potential. The bond between the atoms follows the Hooks Law with an

elastic coefficient k and an equilibrium length a. We have

V (x1, x2) =
∆E

2
[(x2

1 − 1)2 + (x2
2 − 1)2]

+
1

2
k(|x1 − x2| − a)2, (14)

where x1 and x2 are the position of the two atoms, respectively. We can coarse-grain this

system by considering only the position of the center of molecule, x = (x1 + x2)/2. The

remaining variable is y = x1 − x2.

When we choose a large value for ∆E, we establish a high barrier separating the two

potential wells. Now we run a finite-length traditional MD (or MC) simulation in the

original system, and project the conformations to the CG variable space, we have generated

a CG sample. The sample will only cover part of these stable regions, from which we can

not get the correct, complete effective potential. As we mentioned eariler, the sample which

are used to calculate their free energies is not required to satisfy any special distribution,

we can generate the sample under any potential. We generate an equilibrium sample under

a potential V0(x) = x2 and calculate the free energies in the sample. In the simple example,

the equilibrium sample of V0(x) = x2 is good enough since it cover all the whole interesting

conformational space. By iteratively adjusting Ui through the JIS method as in Eq.(3) we

can visit all conformations in the sample to estimate their free energies.

Fig.(1) shows the results of a JIS simulation without using any intermediate potential

(α = 1). The energy barrier, ∆E = 156.25 kBT, is high. the bond parameters are k = 20

kBT, and a = 0.1. The free energies computed from the CG model faithfully reproduce that

of the orginal system over a large range (0 ∼ 300 kBT) with high accuracy (the error is

smaller than 1 kBT), except for the region near z = 0. In the original double well potential,

z = 0 is a unstable extremum. The measured free energy surface shows a stabe state

around z = 0, which corresponds to a bond-expanded state due to the finite-strength bond

connected the two atoms. This discrepancy is expected because in the CG model we neglect

the intramolecular degree of freedom completely.
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For comparison, in the inset of Fig.(1), we also show the free energies by using an interme-

diate potential defined in Eq.(4) with α = 0.2. The difference between these two methods is

negligible, which means that the statistic errors from the intermediate potential is ignored.

B. Liquids of Tetrahedral Molecules

We now consider a more complex system of n tetrahedral molecules consisting of q = 4

atoms of the same mass m0 [32, 33]. The interaction between all non-bonded atoms follows

a truncated and shifted 12 − 6 Lennard-Jones potential with a cutoff rc,

u(z) = 4ǫ[(
σ

z
)12 − (

σ

z
)6] − Ec, (15)

for z ≤ rc, and u(z) = 0 otherwise. Here z is the interatomis distance, Ec = 4ǫ[( σ
rc

)12−( σ
rc

)6].

Within each molecules, the atoms are bonded via an attractive finite extensible nonlinear

elastic (FENE) potential

UFENE(z) = −
1

2
kR2

0 ln[1 − (z/R0)
2], (16)

for z ≤ R0, and UFENE(z) = ∞ otherwise. Here z is the bond length, the divergence length

R0 = 1.5σ, and stiffness k = 30ǫ/σ2. We use the reduced units by seting σ, ǫ and m0 as

units of length, energy and mass, respectively.

A natural CG model is to treat each molecule as a super-atom, neglecting the atomic

details, and use an intermolecular effective potential. Praprotnik et al. [32] simulated such

a system with the temperature T = 1, the number density ρ = 0.1 and rc = 21/6. They

required that the CG model reproduce the intermolecular RDF, and fitted the effective

potential as the Morse potential,

U(z) = γ{1 − exp[−κ(z − r0)]}
2, (17)

with parameters γ = 0.105,κ = 2.4, r0 = 2.31 and cutoff at r0.

To test our JIS method, we simulate the same system with n = 864 molecules. At T = 1

and ρ = 0.1, we first generate 1000 CG conformations under the Morse potential as described

by eq.(17), then calculate the free energies of these conformations. In this low-density case,

the distances between the non-bonded atoms are almost always larger the cutoff rc = 21/6.

Therefore almost all trial jumps are accepted and the histogram pi is nearly flat. The free
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energies are found to be in a very small range (about 1kBT). However, the potential energy

of these conformations are in the range of a few tens of kBT. Thus even though the Morse

potential, eq.(17), can reproduce the center-of-mass RDF of atomistic simulations, it cannot

match the free energies, and hence is not a good effective potential.

Furthermore, we can use the free energies and Morse potential energies of the conforma-

tions to compute the weight factor according to Eq.(11). We then generate a new ensemble-

averaged RDF using the weighting factor [Eq.(10)]. This new RDF is nearly the same as the

RDF from the original system (see Fig.(2)). It indicates that the two very different effective

potential can generate the same RDFs, suggesting that the traditional method to form ef-

fective potential is not sufficient. Fig.(2) also shows that the fluctuation of the reweighting

factors (or the fluctuation of F (xi) − Vmorse(x
i)) is huge.

In the current system, the correct effective potential should be, u(z) = 0 for z > 1.3,

rather than the previous Morse potential u(z) = 0 until z > 2.31. The correct u(z) at

z ≤ 1.3 can be obtained if we calculate the free energies of other conformations where the

shortest intermolecular distance is smaller. The current 1000 conformations sampled from

the repulsive Morse potential is not sufficient to fit u(z) for z < 1.3. We can generate these

conformations with methods such as parallel tempering simulations, then fit u(z) over the

complete range of z.

To illustrate how the JIS method calculates free energies of a high-dimensional sample,

we still use the same 1000 CG conformations, but set the cutoff of interatomic LJ potential

rc = 2. In this case, the free energies in the CG sample cover a very large range. Since

the exact free energies of the sample are unknown, we run independent simulations by

using different control parameters (such as the seed of random number generator, initial

conformation, termination condition, and the parameter α of the intermediate potential) to

compare the free energies. Each simulation needs about 108 ∼ 109 MC steps (1 ∼ 3 days

CPU time on a 2.8 GHz single processor). The results of two independent simulations are

shown in Fig.(3). Over a large range (about 150 kBT), the free energies from two different

simulations differ only by an additive constant; the error is less 1kBT. By fitting to eq.(7),

we obtain the pair interaction (see Fig.(4) ). Because the applied CG conformations come

from a simulation of the repulsive Morse potential, the minimal intermolecular distance in all

these CG conformations is larger (about 1.3) than the equilibrium intermolecular distance

in the current original system with the attractive interatomic LJ interaction (rc = 2), thus
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the CG sample does not allow the pair interaction in the small r region. From the fitted

pair interaction at large r region, we can approximate the intermolecular LJ interaction with

ǫ ∼ 8.5 and σ ∼ 1.1.

thus we can better fit the pair interaction over the whole range of r.

IV. DISCUSSION

We present the JIS method that can calculate the free energies of high-dimensional con-

formations. The method can be used to fit the effective potentials of CG models or to

evaluate and improve the CG models. The JIS method can be viewed as a generalization of

the expanded ensemble method [34], which calculate the free energies of a system at different

temperatures. In the expanded ensemble method, the system at each temperature is a sub-

ensemble and these sub-ensembles form a expanded ensemble. The simulation uses jump

walks among the sub-ensembles and use normal random walks inside each sub-ensemble to

estimate the free energies of these sub-ensembles. In our method, the sub-ensembles are

indexed by the (high-dimensional) CG coordinates rather than the temperature.

The selection of CG sample, which is independent of the JIS method, is important to

characterize the whole effective potential energy surface. How to generate a good sample

is outside the topic of this paper. Usually, it is sufficient to reproduce thermodynamics of

original systems if the CG sample covers almost all the important conformational regions.

Adding some interesting transition conformations can increase the ability of the formed CG

model in getting kinetics. The samples generated from the parallel tempering simulations

or other enhanced conformational techniques in the original system are usually sufficient.

In the jumping walk of the JIS method, conformations of all molecules are changed at

the same time, the acceptance possibility of the jumping is usually low. We can use the

intermediate potential with small parameter α to overcome the difficulty. The statistic

errors of the obtained free energies in the small-α simulation might be significant. However,

the estimates are usually sufficient to fit the effective potential. In comparison with other

methods for calculating free energies, e.g. thermodynamics integration [35], the JIS method

can estimate the free energies more efficiently. The JIS method can also be combined with

another method to refine our results if necessary. For example, we can calculate the free
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energy of any CG conformations from the thermodynamics integral,

F (xi; α = 1) = F (xi; α0) +

∫ 1

α0

dα〈Vinter(x
i, y)〉α, (18)

where 〈Vinter(x
i, y)〉α is the ensemble average under the intermediate potential V (x, y; α)

described by eq.(4) with the constraint x = xi. For each xi, we can independently run the

constraint simulation with x = xi and calculate the average intermolecular energy at many α

points, then integrate the free energy from α = 0 to α = 1. Here F (xi; α = 0) is independent

of xi and F (xi; α = 1) is the desired free energies. The main errors of the method come

from the very large fluctuation of the intermolecular energy at small α. Therefore, we can

first calculate F (xi; α0) from the JIS method, then obtain good estimates of F (xi; α = 1) by

integrating 〈Vinter〉α from α0 to 1, to obtain F (xi) with high accuracy. Otherwise, we can

directly estimate the free energies from the JIS simulation with α0.
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FIG. 1: (Online color). The free energies of a sample in the single diatom molecule. The calculated

free energies in the equilibrium sample of V0(z) = z
2 with α = 0.2 (opened circles) and α = 1.0

(filled squares). If fixing the intramolecular bond length, a direct expected effective potential is

the double-well external potential with ∆E = 156.25 (line). The real effective potential (i.e free

energy) is different from it near z = 0. Inset: the details of the calculated free energies near z = 0.
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FIG. 2: (Online color). Coarse-graining the tetrahedral molecular liquid. Top left: the radial

distribution function (RDF) from direct averaging (solid line) and from reweighting averaging

(dashed line) are shown; Top right: the fitted pair interaction u vs the intermolecular distance r.

Bottom: the calculated free energies (thick line) and the Morse energies (thin dotted line) of the

1000 CG confromations.
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FIG. 3: (Online color). The free energies of some coarse-grained conformations in the tetrahedral

molecular liquids are shown. The results of two independent simualtions with different control

parameters are in consistent each other. Here the free energies from one simulation have been

shifted by a constant.
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FIG. 4: The fitted intermolecular interaction of the tetrahedral molecular liquids. Top: the fitted

pair-additive interactive potential u vs the intermolecular distance r. Since the minimal inter-

molecular distance in the applied CG sample is larger than 1.3, no u(r) for r < 1.3 is available.

Solid line is a Lennard-Jones potential with ǫ ∼ 8.5 and σ ∼ 1.1 as a guide for the eye. Bottom:

the difference between the free energies and the fitted pair potential in all the CG conformations.
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