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Abstract

This study evaluates and compares two methodologies, Monte Carlo simple genetic algorithm (MCSGA) and noisy genetic algo-
rithm (NGA), for cost-effective sampling network design in the presence of uncertainties in the hydraulic conductivity (K) field. Both
methodologies couple a genetic algorithm (GA) with a numerical flow and transport simulator and a global plume estimator to iden-
tify the optimal sampling network for contaminant plume monitoring. The MCSGA approach yields one optimal design each for a
large number of realizations generated to represent the uncertain K-field. A composite design is developed on the basis of those
potential monitoring wells that are most frequently selected by the individual designs for different K-field realizations. The NGA
approach relies on a much smaller sample of K-field realizations and incorporates the average of objective functions associated with
all K-field realizations directly into the GA operators, leading to a single optimal design. The efficacy of the MCSGA-based com-
posite design and the NGA-based optimal design is assessed by applying them to 1000 realizations of the K-field and evaluating the
relative errors of global mass and higher moments between the plume interpolated from a sampling network and that output by the
transport model without any interpolation. For the synthetic application examined in this study, the optimal sampling network
obtained using NGA achieves a potential cost savings of 45% while keeping the global mass and higher moment estimation errors
comparable to those errors obtained using MCSGA. The results of this study indicate that NGA can be used as a useful surrogate of
MCSGA for cost-effective sampling network design under uncertainty. Compared with MCSGA, NGA reduces the optimization
runtime by a factor of 6.5.
© 2005 Published by Elsevier Ltd.

Keywords: Contaminant transport; Monitoring network design; Spatial moment analysis; Noisy genetic algorithm; Monte Carlo analysis; Uncer-
tainty

1. Introduction analyzing groundwater systems and managing ground-
water resources [1,8,13,19,27,34,41,48-50,56]. A primary

Since the early 1980s, the coupled simulation-optimi- motivation for the development of simulation-optimiza-
zation model has increasingly become a valuable tool for tion models is the high costs associated with groundwa-

ter quality management. A representative simulation-
optimization model is one that seeks to identify the
" Corresponding author. Tel.: +1 205 248 0579; fax: +1 205 248 least-cost strategy to meet specified constraints. In re-

0818. cent years, the least-cost strategies are usually associated
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with pump-and-treat or bioremediation design [2,5,30,
46,55].

Groundwater remediation often has time horizons of
30 years or longer. Thus long-term monitoring of a
remediation system’s performance is essential to ensure
that the remediation objectives are being achieved and
the risks to human health and environment are being
properly managed [9]. Over-sampling is a common
problem encountered in groundwater quality monitor-
ing, where data collection and analysis of long-term
monitoring are expensive. Although the cost for an indi-
vidual sampling data point may be relatively small, the
scale of the required data collection effort over time
can make the cumulative costs very high. For a typical
groundwater contamination site, several hundred sam-
ples may be collected and analyzed each year that may
cost hundreds of thousands of dollars. To prevent over-
sampling, applications of simulation-optimization mod-
els to long-term sampling network design can lead to
substantial cost savings by eliminating or minimizing
unnecessary samples [9]. This paper is intended to ad-
dress simulation-optimization modeling for cost-effec-
tive groundwater sampling network design in the
presence of uncertainties in the hydraulic conductivity
field.

Groundwater sampling network design has been
studied extensively in the past [3,4,6,10,11,21-23,25,29,
31,32,36,39,42,43,51], and more recently the efforts have
often focused on the least-cost strategies [43,39,51]. The
optimization of sampling network design can be accom-
plished using a variety of approaches as summarized in
[35]. Selecting an appropriate method involves numer-
ous criteria, the most important of which include site-
specific long-term performance objectives and the
amount and type of available data. Reed et al. [39] pre-
sented an optimization methodology in which a genetic
algorithm is coupled with a flow and transport simulator
and a global mass estimator to search for optimal sam-
pling strategies. Wu et al. [54] extended the methodology
of Reed et al. [39] by introducing the first and second
moments of a plume as additional constraints into the
optimization formulation. The methodology developed
by Reed et al. [39] and extended by Wu et al. [54] does
not address uncertainties in the hydraulic conductivity
field.

In reality, there always exists some amount of uncer-
tainty in an aquifer simulation model. One of the most
important parameters, in terms of its contributions to
uncertainty, is hydraulic conductivity (K). In particular,
the transport of contaminants in groundwater is domi-
nated by the spatial variation of hydraulic conductivity.
Sampling decisions will have to be made under consider-
ation of uncertainties in the aquifer simulation model,
and the reliability of model-based sampling decisions
will be a function of model uncertainties. A commonly

used approach to dealing with the uncertainty in the
K-field is the conditional Monte Carlo simulation based
on a certain number of measured hydraulic conductivity
data [12,26,31,32,47]. Although a number of studies
have incorporated uncertainties into the simulation-
optimization model to design cost-effective sampling
networks and determine the reliability of plume detec-
tion in cleanup systems of landfills and hazardous waste
sites [11,31,32,47], the fundamental objectives of those
studies are substantially different from the goal of this
study.

This study is intended to evaluate and compare two
methodologies for cost-effective sampling network de-
sign under consideration of uncertainty. Both methodol-
ogies couple a genetic algorithm with a numerical flow
and transport simulator and a global plume estimator
to identify the optimal sampling network for contami-
nant plume monitoring. Because a simple genetic algo-
rithm cannot address uncertainty directly, other
techniques such as Monte Carlo simulation, stacking
of K-field realizations, and chance constraints [5,15,
32,37] must be used to incorporate uncertainty into a
simple genetic algorithm. For the first methodology used
in this study, the Monte Carlo approach is adopted to
generate a large number of equally likely realizations
of the K field to account for the effect of uncertainty
on optimal network design. For the second methodol-
ogy, a noisy genetic algorithm is adopted which was
developed specifically to deal with uncertainty.

Unlike Monte Carlo simulation that requires a large
number of samples to be drawn from the probability dis-
tribution of the K-field to achieve sufficient accuracy, a
noisy genetic algorithm can work well without extensive
sampling from the realizations of the K-field [18,33,
44,46]. Smalley et al. [46] successfully coupled a noisy
genetic algorithm with a flow and transport model for
predicting concentrations in a risk-based in situ bio-
remediation design system. Gopalakrishnan et al. [18]
used a noisy genetic algorithm to identify the optimal
groundwater remediation design based on the assess-
ment of risks to human health. To date, noisy genetic
algorithms have only been applied to remediation design
associated with groundwater quality management [18,46].
This study thus represents a first attempt to apply a
noisy genetic algorithm to sampling network design un-
der uncertainty. To gain confidence in the applicability
and usefulness of noisy genetic algorithms in solving
sampling network design problems, this paper presents
a detailed comparison between a noisy genetic algorithm
and the Monte Carlo based approach.

This paper is organized in five sections. Following
this introduction, we provide a brief overview of the
simulation-optimization model used in this study for
sampling network design under deterministic conditions.
We then discuss two methodologies, Monte Carlo sim-
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ple genetic algorithm and noisy genetic algorithm, for
incorporating uncertainties into the deterministic simu-
lation-optimization model. Next we illustrate the two
methodologies and compare their performance in an
application to a synthetic aquifer system. Finally we
summarize the findings and offer some concluding
remarks.

2. Optimal monitoring network design

Wu et al. [54] presented a simulation-optimization
methodology for cost-effective sampling network design
under deterministic conditions. Their methodology is
an extension of Reed et al. [39] and is based on the min-
imization of total monitoring (capital and sampling)
costs subject to two accuracy constraints. For the sake
of completeness, the methodology of Wu et al. [54]
is briefly recapitulated in this section. For more
detailed information, refer to Wu et al. [54] and Reed
et al. [39].

2.1. Numerical simulation and global plume estimation

The first step in the methodology of Wu et al. [54] is
the development of flow and transport models for the
study site. This study utilizes the flow and transport
models based on the three-dimensional finite-difference
flow code, MODFLOW [20,28], and its solute transport
companion, MT3DMS [57]. The flow and transport
codes are used to simulate the contaminant plume from
the initial time to the end of the anticipated monitoring
period. The simulated plume represents the future con-
ditions to be monitored. If a model node is selected as
a potential monitoring well location, the simulated con-
centration value at that location is considered known.

The second step is to use the known concentrations at
all potential monitoring well locations to construct an
approximate new plume through interpolation. The
interpolated plume is then compared, in terms of both
total mass as well as first and second moments, with
the simulated plume output from the transport model
without any interpolation. If enough nodes are selected
as potential monitoring well locations, the difference be-
tween the simulated and interpolated plumes would be
minimal. On the other hand, the more model nodes
are selected as potential monitoring well locations, the
higher the capital and sampling costs would be. Thus
there exists a tradeoff between the accuracy of the inter-
polated plume based on the sampled data and the cost-
effectiveness of the sampling network.

An interpolation method, ordinary kriging (OK) [14],
is applied to estimate contaminant concentrations at all
unsampled nodes within the model domain. Then the
OK-interpolated concentrations can be used for global

plume estimation to compare with that determined from
the concentration distributions directly output from the
transport model without any interpolation. In this
study, the global plume estimation relates to three mo-
ments, including the zeroth, first and second moments.
The zeroth moment represents the global mass of the
plume. The first and second moments specify the cen-
troid of the plume and the spread of the plume around
its centroid, respectively [16,36].

2.2. Objective function and constraints

The third step in the methodology of Wu et al. [54] is
the formulation of an optimization model. The objective
of the optimization model is to minimize the total mon-
itoring (installation/drilling and sampling) costs while
maintaining the accuracy of global plume estimation
based on the sampled data. The monitoring network de-
sign problem can thus be formulated as an optimal con-
trol model with an objective function and a set of
constraints [54]:

n n

min J = alzxil,-+ac2 Zyid,- (1)
P P

subject t0  epmass < &1 (2)

ey < & (3)

end < &3 4)

where, in the objective function as given in (1), J is the
management objective representing the total costs for
sampling and well installation/drilling, n is the total
number of potential monitoring wells; o; is the cost
for each sampling, x; is a binary variable indicating
whether sampling takes place at well i (yes if x;=1;
no if x; = 0), /; is the number of sampling at different cle-
vations for well i. If sampling takes place at well i, the
well i is selected to be sampled at multiple (i.e., /;) eleva-
tions. o, is the fixed capital cost for installation/drilling
per unit depth of well i, d; denotes the depth of borehole
associated with well i, and y; is a binary variable indicat-
ing whether well i is drilled (yes if y; = 1; no if y; = 0).

The first constraint as expressed in Eq. (2) requires
that the discrepancy, e,ss, be smaller than a prescribed
error tolerance, ¢;, between the global mass of the com-
plete solute plume as predicted by the solute transport
model and that of the approximate solute plume inter-
polated from the sampled data at the installed monitor-
ing wells. The second and third constraints in Egs. (3)
and (4) require that both 1st and 2nd spatial moments
of the complete and approximate solute plumes as de-
scribed above agree with each other within two sets of
pre-determined criteria, & and &3, respectively. e;s and
eangq are the weighted sum of errors for the respective
first and second moment estimations. Mathematically,
the three constraints can be written as
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where M, is the contaminant mass in the area of interest
as determined by the transport model, and M; is the
approximate mass in the same area as determined by
the global mass estimator based on the sampling design
J» up; is the first or second moment of the simulated
plume as output from the transport model, u;; is the cor-
responding moment estimated on the basis of the sam-
pling design j, i denotes the order of moment (i.e., first
or second moment), nd denotes the dimension of the
plume and is equal to 2 or 3, depending on the type of
the flow and transport model, k is the direction along
which the moment is computed, and o is the weight as-
signed to the ith moment in the k-direction. For a three-
dimensional problem, the second moment includes nine
component terms (reduced to six due to symmetry),
whereas in a two-dimensional system, the second mo-
ment has only three component terms.

The constrained optimization problem as defined in
Egs. (1)—(4) can be transformed into an easier-to-solve
unconstrained one by adding the amount of any con-
straint violation to the fitness function as a penalty. This
is accomplished in this study by modifying Eqgs. (1)—(4) as

with
€mass — €
P = ﬁl 1041 + ﬂzNunestimatm e >0 (9)
1

Py = Bs[(ers — &) + (e2na — )] (10)
where F is the penalized fitness value; Py and P, are the
penalty amounts of constraint violation with respect to
the global mass and higher moment estimation errors,
respectively; Nunestimate 18 the number of points at which
the concentration is not estimated as a result of no sam-
pling data point within the specified search radius, and
p:(i=1, 2, 3) is penalty coefficients. The specified search
radius is defined a maximal distance of search for known
data (concentrations) around an unestimated point.

2.3. Solution by genetic algorithms

The final step in the methodology of Wu et al. [54] is
to find the optimal sampling plan from among many
alternatives using the genetic algorithm (GA) [17,38,45].
In recent years, GA has been shown to be a valuable
tool for solving complex optimization problems in
broad fields, including groundwater management and

monitoring network design [2,7,11,24,30,40,51-53,55].
For any sampling network design problem, a number
of potential sampling locations may be specified. The
GA considers each sampling alternative design to be a
string (chromosome) consisting of zero-one variables,
where the value of 1 in the ith digit (bit) represents sam-
pling from the ith potential location, and 0 no sampling.
The total number of nonzero digits in the string denotes
the number of sampling locations used in the current de-
sign. In this study, a simple GA procedure was used that
consisted of 60 generations with a population of 800
individuals (chromosomes) in each generation. For a
more thorough discussion of using GA in the context
of sampling network design, refer to [39,54].

3. Methodologies for dealing with uncertainty

A simple genetic algorithm (SGA) cannot explicitly
address the uncertainty in the aquifer simulation model
arising from insufficient hydraulic conductivity data.
Methodologies for dealing with uncertainty in optimiza-
tion modeling are reviewed by Freeze and Gorelick [15].
This study evaluates and contrasts two methodologies in
the context of monitoring network design. First, SGA is
combined with Monte Carlo simulation in what is re-
ferred to as Monte Carlo simple genetic algorithm
(MCSGA). Second, SGA is applied in a noisy environ-
ment in what is referred to as noisy genetic algorithm
(NGA) [18,33,46].

3.1. Monte Carlo simple genetic algorithm

A commonly used stochastic approach for accommo-
dating the uncertainty arising from insufficient hydraulic
conductivity data needed for a groundwater model is
Monte Carlo simulation in which multiple realizations
of the hydraulic conductivity field are generated
[12,31,32,47]. Each realization is equally likely in the sta-
tistical sense, and can be further conditioned to the same
set of known hydraulic conductivity data. The flow and
transport model must be run for each K realization,
leading to a range of calculated head and concentration
distributions. It is noteworthy that several assumptions
are associated with the Monte Carlo methodology ap-
plied in this study, including, (1) the hydraulic conduc-
tivity field follows a log-normal distribution, (2) the
hydraulic conductivity field is ergodic and has stationary
second moment, and (3) the spatial correlation is defined
as an isotropic, exponential covariance function [46].

For each realization of the hydraulic conductivity
field, the sampling network design problem becomes a
deterministic one and can be solved independently using
the simple genetic algorithm as described in Section 2. In
this manner, the optimal or near-optimal designs corre-
sponding to all realizations of the K-field can be ob-
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tained and evaluated. These designs are interim, each of
which only satisfies the constraints associated with a
particular K realization. Subsequently, a composite de-
sign can be developed on the basis of those potential
monitoring wells that are most frequently selected by
the individual interim designs for different K realiza-
tions. Since several hundred or more K realizations
may be required for adequate representation of the
uncertainty in the K-field, the MCSGA approach is time
consuming. A simplified flow chart of the MCSGA ap-
proach is given in Fig. 1(a).

3.2. Noisy genetic algorithm

The noisy genetic algorithm (NGA) is a relatively
new search technique that allows a simple genetic algo-
rithm to operate in a noisy environment [18,33,44,46]. In
the context of this study, a noisy environment means
that the fitness measure of a given trial monitoring de-
sign (chromosome) cannot be evaluated accurately be-
cause of the effect of K variability on the plume
transport. As a result, a special type of fitness function,
referred to as sampling fitness function, is utilized that is
based on the averaging of fitness function values for

— Individual 1
— Individual 2
Flow & Transport — .

for K Realization #1

Gen#1|_

— Individual npopsiz

— Individual 1
— Individual 2

Gen #2

— Optimal Design #1

— Individual 1
— Individual 2

Flow & Transport
for K Realization #2

Gen #1

< [TT1

— Individual 1
— Individual 2

Gen #2

L Optimal Design #2

(a)

multiple realizations of the K-field. Unlike Monte Carlo
simulation that requires extensive realizations drawn
from probability distributions to obtain reasonably
accurate results, NGA has been shown in afore-men-
tioned studies to perform well without sampling a large
number of K realizations. According to the Central Lim-
it Theorem, the fitness function for a given trial moni-
toring design will reduce the amount of noise by
taking the mean of multi-sampling fitness evaluations
[18,46].

The main difference between NGA and a simple GA
is that the fitness function for a single generation in the
former is the average of function evaluations obtained
from multiple hydraulic conductivity realizations. The
population in each generation contains many individu-
als representing different interim network designs. The
noisy fitness for each individual is found by evaluating
it for several realizations, and is compared with those
of others within the population. As the generation
evolves, those individuals with the highest noisy fitness
function values will dominate the population. Because
only those individuals with high fitness under all selected
hydraulic conductivity realizations are able to dominate,
the procedure will converge to optimal solutions with

Flow &Transport Simulations
for each Selected K Realization

® ® - K
Avg. OBF 1
Avg. OBF 2
Avg. OBF 3

Gen #1

Flow &Transport Simulations
for each Selected K Realization

(k] [ - [Ke

Avg. OBF 1
Avg. OBF 2
Avg. OBF 3

Gen #2

L

Optimal Design

(b)

Fig. 1. Schematics of the two methodologies used in this study for dealing with uncertain hydraulic conductivity in monitoring network design
optimization: (a) Monte Carlo simple genetic algorithm (MCSGA), and (b) noisy genetic algorithm (NGA). Note that npopsiz is the size of GA
population, and ‘Gen’ is the abbreviation for GA generation. K in the rectangular box refers to running the flow and transport model for the
conditional realization K;. ‘Avg. OBF1’ is the average objective function value for individual No. 1.
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high fitness even when only a few sample realizations of
the K-field are drawn for each design.

In Eqgs. (5) and (6), M, is the contaminant mass in the
model domain determined by the transport model; and
up,1 and ug , are the first and second moments of the cal-
culated plume as output from the transport model,
respectively. For each realization of the K-field, different
values of both uy; and uy, are determined, which pre-
sents a difficulty when NGA is applied to the monitoring
network design problem. This is because reasonably
accurate and stationary values of 1 ; and u , are needed
as common references for comparison of potential de-
signs associated with different hydraulic conductivity
realizations. To overcome this difficulty, it is assumed
that up; and uy,, along with M,, can be determined
from the plume resulting from the kriged K-field based
on the measured K data at a set of known locations.
This assumption is consistent with the practice in which
the K distribution for a field-scale model is often inter-
polated from the measured data by the kriging method
and used as the basis for monitoring network design.
Fig. 1(b) illustrates the framework used in this study
for cost-effective monitoring network design based on
NGA.

In this study, K-field sampling is done through a ran-
dom number generator with each random number corre-
sponding to a particular realization among all the
realizations generated a priori. A potential monitoring
design is evaluated for each K realization by running
the flow and transport model and determining the objec-
tive function and constraint violations. Then the overall
fitness of any given potential design is set to the average
of its fitness values associated with every selected K real-
ization [18,46].

Note that the methodologies presented in this study
identify the optimal sampling design for only one mon-
itoring period. For the monitoring network design prob-
lems with multiple monitoring periods, the value of y; in
Eq. (1) is 1 when the ith monitoring location is selected
for a particular monitoring period; and the value of y;
remains 0 for all other periods since the capital cost
should be counted only once. Also, the fixed capital cost
is generally more expensive than the sampling cost at
any monitoring location, and thus the network design
for one monitoring period affects those of other periods.
Accordingly, for the multi-period monitoring network
design problems, the optimal network designs for differ-
ent monitoring periods are not independent.

4. Application to a synthetic aquifer system

4.1. Description of the application

The hypothetical application used in this study in-
volves a two-dimensional confined aquifer measuring

600 m long in the x-direction and 400 m wide in the y-
direction. Fig. 2 shows the plan view of the synthetic
aquifer and the block-centered finite difference mesh.
The aquifer is surrounded by a constant-head boundary
along the left side, a specified-flux boundary with a con-
stant inflow rate along the right side, and no-flow
boundaries along the upper and lower sides. The
hydraulic conductivity distribution in the aquifer is iso-
tropic and represented by a log-normally distributed,
spatially-correlated random field. Other properties
including porosity, thickness, and dispersivities are con-
stant throughout the aquifer system. Key input data
used in the flow and transport model and X field gener-
ation are listed in Table 1. The flow and transport model
for the application is based on a version of MODFLOW
[28] and MT3DMS [57] codes.

Sequential Gaussian simulation (SGSIM) [14] was
used to generate 1000 equally likely realizations of the
K-field, based on the InK statistical parameters (mean,
variance, and correlation length) listed in Table 1. The
hydraulic conductivity was assumed to be known at 62
measurement locations (see scattered square symbols
in Fig. 2) within the aquifer, with the mean and variance
of InK equal to 2.2 and 0.3, respectively. The K values
ranged from a minimum of 2.6 m/day to a maximum
of 30.0 m/day. All 1000 K realizations were conditioned
to the 62 K data.

An instant spill was assumed to occur at the source
area (co = 1000.0 ppb) that resulted in a contaminant
plume migrating toward the left boundary (see Fig. 2).
The plume shown in Fig. 2 was obtained by the trans-
port model for the K-field kriged from the 62 known
K data. The total simulation time was three years, the
monitoring period considered in this application. A total
of 71 potential monitoring locations were initially se-
lected as shown in Fig. 2. The total mass and the first
and second moments for the interpolated plume based
on the 71 monitoring locations were in reasonably close
agreement with those calculated directly from the output
of the transport model.

In this study, the operational cost for sampling (o/;)
and the fixed cost for installation/drilling (od;) were
both taken to be $2000 for each monitoring well. Wu
et al. [54] pointed out that the penalty costs set approx-
imately 5-20 times the expected real monitoring costs
would result in an optimal or near-optimal sampling de-
sign that is both cost-effective and sufficiently accurate
in terms of mass and higher moment estimations. More-
over, the number of sampling data is always much smal-
ler than the total number of model nodes in a numerical
simulation model, thus it is rather difficult to reduce the
second moment estimation errors, making it necessary
to set the error tolerance for the plume moment con-
straints as small as possible [54]. Considering this
approximate rule of setting penalty coefficients and the
expected number of monitoring wells in this example,
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Fig. 2. Configuration of the monitoring network design problem. The solid triangles indicate the pre-defined potential monitoring well locations. The
open circles denote the optimal monitoring wells selected by NGA. The color-filled contour map represents the concentration distribution at the end
of the monitoring period output by the transport model for the hydraulic conductivity field kriged using 62 known K values (shown as open squares).

Table 1
Primary input data used in this study®
Parameter Value
Porosity 0.175
Aquifer thickness 10.0 m
Longitudinal dispersivity 8.5m
Ratio of horizontal transverse to 0.1
longitudinal dispersivity
Constant flux along the specified-flow boundary 9.45 m/day
Mean of InK 2.2 m/day
Variance of InK 0.30
Correlation scale of hydraulic conductivity 100.0 m
Grid spacing along column 20.0 m
Grid spacing along row 20.0 m

# Modified from Wagner [51].

the coefficients for the fitness objective function given in
Egs. (8)—(10) were set as follows: ; = 5.0 x 10*, 5, = 50,
B3 =3.0x10% & =0.05, and &, = &5 = 0. All weights as-
signed to the higher moments along different directions
are set equal, i.e., of =1 in Egs. (6) and (7).

4.2. Solution based on Monte Carlo simple genetic
algorithm

For each conditional realization of the K-field, the
simple genetic algorithm was applied to identify a mon-
itoring network that is optimal specific to the associated

K realization. As a result, a total of 1000 individual opti-
mal designs were obtained corresponding to 1000 K real-
izations. Fig. 3 shows how frequently each of the 71
potential monitoring wells is selected by any of the
1000 individual optimal designs. From a comparison
of Figs. 3 and 2, it is evident that the monitoring wells
either close to the plume centroid or near the edges have
a greater probability of being chosen by one or more
optimal designs. This is because overall the interpolated
plume based on those monitoring wells is more likely to
match the plume directly output from the transport
model.

Fig. 4 is a scatter diagram showing the relative errors
of the interpolated plume based on each monitoring net-
work for a corresponding K realization. The relative er-
rors are expressed in terms of the differences in global
mass and higher moments between the interpolated
plume and the reference plume output by the transport
model without any interpolation. The average relative
errors of global mass and first moments for all monitor-
ing designs are quite small, at 4.17% and 2.93%, respec-
tively, but that of second moments is substantially larger
at 69.65% (Table 2). This can be attributed to the signif-
icant variation of plume shape caused by the variability
in the K-field.

Fig. 5 shows the distribution of the number of mon-
itoring wells in each optimal design for a corresponding
realization of the K-field. There are, on average, 40 mon-
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1.0 sizes in later generations. This strategy was adopted in
this study. The number of K-field realizations was set
0.8 to five realizations for the first four generations and in-
% creased by five realizations every four generations after-
S o6 ward until the maximum of 30 realizations was reached.
E From trial runs, it was determined that 30 K-field real-
2 o4 izations and 40 generations were sufficient to identify
§ an optimal or near-optimal monitoring network design.
02 The monitoring wells selected by the optimal network
design obtained using NGA are shown in Fig. 3 as col-
0o or-filled columns; their locations relative to the plume
Ty 1 o1 a1 a“ 51 61 71 are shown in Fig. 2. It is noteworthy that most of the

Potential Location Number

Fig. 3. Relative frequency of each pre-defined potential monitoring
well selected by the individual optimal designs obtained using MCSGA
for 1000 conditional realizations of the K-field. The columns of shaded
color denote the optimal monitoring locations selected by NGA.

itoring wells, which represent a 43.66% potential cost
savings compared with the costs for the initially selected
71 potential wells. The standard deviation of the distri-
bution is 5 wells, with a minimum of 24 and a maximum
of 52. Correspondingly, the former represents a maxi-
mum potential cost savings of 66.20% and the latter a
minimum cost savings of 26.76%.

Based on the individual optimal designs obtained for
different K realizations, a single composite design may
be developed which would be optimal, in an average
sense, given the uncertainty represented by the 1000 K
realizations. Since there is an average of 40 monitoring
wells in all individual designs as shown in Fig. 5, the
40 monitoring wells with the highest probabilities of
selection by any individual design (from a maximum
of 0.914 to a minimum of 0.518) were designated as
the composite optimal design. The composite design of
40 wells was then applied to all 1000 K realizations.
The resulting average relative errors of global mass
and higher moments are also shown in Fig. 4 and Table
2. From a comparison of scattered errors in Fig. 4, it can
be seen that the error distributions are similar between
the individual optimal designs for corresponding K real-
izations and the single composite design applied to the
same K realizations. The most notable difference be-
tween the two is that the average relative error of second
moments decreases significantly for the composite de-
sign. These results confirm the validity of the composite
design as a superior representative of the individual de-
signs optimized independently for each of the 1000 K
realizations.

4.3. Solution based on noisy genetic algorithm
Smalley et al. [46] concluded that an effective strategy

for K-field sampling in NGA is to use smaller sample
sizes for early generations followed by larger sample

wells selected by NGA also have a greater probability
of being selected by MCSGA. The optimal monitoring
network identified by NGA includes 39 monitoring
wells, which corresponds to a potential cost savings of
45.07% compared with the costs for the initially selected
71 potential wells. Furthermore, the NGA-based opti-
mal design of 39 wells has one fewer well than the
MCSGA-based composite design of 40 wells.

To investigate the robustness of the NGA-based opti-
mal design, it was applied to the 1000 K realizations gen-
erated previously for Monte Carlo simulation to
compute the relative errors of global mass and higher
moments under each of the 1000 K realizations. The rel-
ative errors are expressed in terms of the differences be-
tween the interpolated plume based on the monitoring
network and the reference plume output by the trans-
port model under the kriged K-field. For the sake of
comparison, the scattered distribution of relative errors,
with an average of 5.47% for global mass and 3.09% and
53.97% for first and second moments, respectively, is
also shown in Fig. 4. The comprehensive key statistics
of relative errors for all the network designs obtained
using different methodologies is listed in Table 2.

4.4. Comparison and discussion

From the first glance of Fig. 4, it is difficult to differ-
entiate the relative errors of global mass and first mo-
ment for the NGA-based optimal design applied to
1000 different K realizations from those for both
MCSGA-based individual optimal designs and the com-
posite 40-well design. The error distribution in terms of
global mass and first moment for the NGA-based opti-
mal design is very similar to those for both the MCSGA-
based individual designs and the composite design.
However, the distribution of the relative error in terms
of second moment for the three different sets of designs
is clearly distinct from one another. On the whole, the
relative errors of second moments for the NGA-based
optimal design are relatively larger than those of the
MCSGA-based composite design for different K realiza-
tions and smaller than those of the individual optimal
designs obtained using MCSGA for different K realiza-
tions. As shown in Table 2, the average relative errors
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Fig. 4. Comparison of relative estimation errors of global mass and higher moments for 1000 realizations of the K-field under different network
design methodologies. The errors are computed as the relative differences between the plume interpolated from the optimal monitoring wells and that
given by the transport model without any interpolation for 1000 conditional realizations of the K-field.

Table 2
Statistics of relative estimation errors for optimal monitoring network designs obtained using different methodologies
Item® MCSGA Composite MCSGA NGA

Mass o1 2 Mass I 2 Mass I 2
Minimum 0.0000 0.0007 0.2348 0.0000 0.0006 0.1247 0.0000 0.0006 0.2321
Maximum 0.3180 0.0860 1.8290 0.1287 0.0671 1.1909 0.1566 0.0844 1.4825
Mean 0.0417 0.0293 0.6965 0.0312 0.0189 0.3151 .0547 0.0309 0.5397
Standard deviation 0.0323 0.0150 0.2901 0.0230 0.0103 0.1239 0.0277 0.0156 0.1913

% The items of mass, x; and p, represent the relative estimation errors for the mass, first and second moments of the plume, respectively.

632 of global mass, first and second moments are 4.17%,
633 2.93% and 69.65%, respectively, for the individual opti-

mal designs obtained using MCSGA for the 1000 K real-
izations. The average relative errors of global mass and
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0.10 the overall distributions for the first moment errors are
similar and sufficiently small for all three cases.
0.08 Fig. 6(c) shows the differences among the three cases
% for the second moment errors. The MCSGA-based com-
& 506 posite 40-well design is most satisfactory, with smaller
§ errors than both the NGA-based design and MCSGA-
2 504 based individual designs. However, the shape of CDF
% for the NGA-based design is similar to that for the
0.02] MCSGA-based composite 40-well design, which is shar-
per than that for the MCSGA-based individual designs.
00014 ! , ] , | ‘ | ‘ L L | ‘ N I | Also, compared with the MCSGA-based individual de-

25 30 35 40 45 50
Number of Monitoring Wells in the Optimal Design

Fig. 5. Distribution of the number of monitoring wells selected by
each optimal monitoring network design obtained using MCSGA for
1000 conditional realizations of the K-field.

first moments are sufficiently small. However, due to sig-
nificant variations in K realizations to which the second
moments are very sensitive, the average relative error of
second moments is substantially larger. The MCSGA-
based 40-well composite design has average relative er-
rors of 3.12%, 1.89%, and 31.51% for global mass, first
and second moments, respectively, which are lower than
those computed for the individual optimal designs. Thus
the composite design can be considered an optimal rep-
resentative of the 1000 individual optimal designs. The
single optimal design obtained using NGA, when ap-
plied to the same 1000 K realizations, resulted in average
relative errors of 5.47%, 3.09%, and 53.97% for global
mass, first and second moments, respectively. The aver-
age relative errors of global mass and first moment for
the NGA optimal design are close to those for both
MCSGA-based individual optimal designs and the com-
posite 40-well design. However, the average relative er-
ror of second moments for the NGA optimal design is
smaller than that of the MCSGA-based individual opti-
mal designs, but larger than that of the MCSGA-based
composite 40-well design.

To further validate the result from the NGA, Fig. 6
shows a visual comparison of the histograms (discrete
probability density function or discrete PDF) and cumu-
lative distribution function (CDF) for relative errors of
global mass, first and second moment estimates, respec-
tively. Fig. 6(a) indicates that the range of distribution
for the global mass errors based on the NGA design is
close to that based on the MCSGA composite 40-well
design, even though the former has an greater mean
than the latter (5.47% vs. 4.17%). Overall, the differences
among MCSGA-based and NGA-based designs are
insignificant. Fig. 6(b) shows the distribution of the first
moment errors. The difference between the NGA- and
MCSGA-based designs is almost negligible. While the
error distribution for the MCSGA-based composite
40-well design is defined more narrowly and sharply,

signs, the error distribution for the NGA-based design
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Fig. 6. Comparison of relative estimation errors of global mass and
higher moments in terms of PDF and CDF for optimal network
designs obtained using different methodologies.
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has a smaller mean and narrower range. Overall, the
optimal design identified by NGA appears to be an
acceptable surrogate for the MCSGA-based designs.

Computationally, NGA is much more efficient than
MCSGA. In this study, completion of an optimization
run based on MCSGA requires a total run time of
approximately 170 hours on a desktop PC equipped
with a 2.20 GHz Pentium-4 CPU. In contrast, the com-
pletion of a run based on NGA requires only 26 hours
on the same PC. For real-world applications, MCSGA
may become computationally prohibitive. The results
of this study show that NGA can find the near-optimal
sampling design, and the distribution of global mass and
higher moment estimation errors based on the NGA de-
sign have statistical traits similar to those based on
MCSGA. Thus with its computational efficiency and
robustness, NGA may represent a promising alternative
to MCSGA for real-world applications to design the
most cost-effective groundwater monitoring networks
under uncertainty.

5. Conclusions

We have evaluated and compared two methodolo-
gies, Monte Carlo simple genetic algorithm (MCSGA)
and noisy genetic algorithm (NGA), for incorporating
the uncertainty in the K-field into cost-effective monitor-
ing network design problems. Both methodologies cou-
ple a genetic algorithm with a numerical flow and
transport simulator and a global plume estimator to
identify the optimal sampling network for contaminant
plume monitoring. However, they differ in the handling
of the K-field uncertainty. MCSGA utilizes a sufficiently
large number of realizations of the K-field for adequate
uncertainty representation, and identifies an optimal
monitoring network design for each realization. A limi-
tation of this approach is that the multiple designs can-
not be applied directly to a real field application. A
composite design, however, can be developed on the
basis of those potential monitoring wells that are most
frequently selected by individual designs under different
K-field realizations. NGA, on the other hand, relies on a
much smaller sample of K-field realizations, and incor-
porates the average of objective functions associated
with all K-field realizations into the GA operators, to
identify a single optimal design.

For the application example examined in this paper,
the optimal network design obtained using NGA
achieves a potential cost savings of 45.07% while main-
taining acceptable accuracy in global mass and higher
moment estimations. The estimation error distributions
obtained by applying the NGA optimal design to multi-
ple realizations of the K-field closely agree with those
obtained by applying the simple genetic algorithm to
all individual realizations of the K-field (MCSGA). This

indicates that NGA can be used as an effective surrogate
of MCSGA for cost-effective monitoring network design
under uncertainty. Compared with MCSGA, NGA is
much more efficient computationally, by a factor of
6.5 for this study, and results in a unique solution.

While this study has demonstrated the advantages
of using NGA to accommodate uncertainty of hydrau-
lic conductivity in monitoring network design, further
research is needed to investigate how the methodol-
ogy can be improved to further reduce the estimation
errors of plume moments and how the K-field statistics
and sampling strategies as well as GA solution parame-
ters affect the computational accuracy and efficiency.
Moreover, further study is needed to demonstrate the
applicability and flexibility of the NGA methodology
at large-scale field sites.
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